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ABSTRACT To address the drastic growth of data traffic dominated by streaming of video-on-demand
files, mobile edge caching/computing (MEC) can be exploited to develop intelligent content caching at
mobile network edges to alleviate redundant traffic and improve content delivery efficiency. Under the
MEC architecture, content providers (CPs) can deploy popular video files at MEC servers to improve users’
quality of experience (QoE). Designing an efficient content caching policy is crucial for CPs due to the
content dynamics, unknown spatial-temporal traffic demands, and limited service capacity. The knowledge
of users’ preference is very useful and important for efficient content caching, yet often unavailable in
advance. Under this circumstance, machine learning can be used to learn the users’ preference based on
historical demand information and decide the video files to be cached at the MEC servers. In this paper,
we propose a multi-agent reinforcement learning (MARL)-based cooperative content caching policy for
the MEC architecture when the users’ preference is unknown and only the historical content demands can
be observed. We formulate the cooperative content caching problem as a multi-agent multi-armed bandit
problem and propose a MARL-based algorithm to solve the problem. The simulation experiments are
conducted based on a real dataset fromMovieLens and the numerical results show that the proposedMARL-
based cooperative content caching scheme can significantly reduce content downloading latency and improve
content cache hit rate when compared with other popular caching schemes.

INDEX TERMS Caching, cooperative, mobile edge caching, multi-agent reinforcement learning.

I. INTRODUCTION
With the development of smart mobile devices (e.g., smart-
phones, tablets, wearable devices), the demand for low-
latency mobile applications as well as multimedia services
has been increasing greatly. It will lead to an explosivemobile
trafficwhich challenges the design of futuremobile networks.
According to the research from Cisco [1], the total volume
of mobile data traffic will rise sevenfold from 2016 to 2021.
Studies [2], [3] revealed that a large amount of the raised
mobile data traffic is due to the duplicate downloads of
popular video files. Using mobile content distribution tech-
niques, popular video files can be cached in intermediate
servers or proxies (e.g., gateways, routers) so that the requests

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhiyong Chen.

for the same video file can be available without duplicate
transmissions from remote servers. In this way, the trans-
mission resource consumption at both backhaul and core
networks can be significantly saved and also the Quality of
Experience (QoE) of users could be improved [4].

Content distribution networks (CDN) have been well
investigated in the Internet [5]. However, we cannot directly
apply traditional CDN based content caching techniques to
mobile networks, since content caching mechanism inmobile
networks is quite different from that in the Internet. In mobile
networks, the network resources (e.g., computation capacity,
bandwidth capacity, storage capacity) and the locations of the
deployed servers are constrained. Furthermore, the hit rate of
cached video files could be rather low in mobile networks due
to the user mobility, content dynamics and limited number of
users in a cell. Moreover, the amount of video files provided
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by content providers (CPs) is increasing rapidly and the
updating rate becomes increasingly high. Although caching
cost is becoming much cheaper, it is impossible to cache all
video files as caching less-popular video files at servers still
needs to consume storage and backhaul resources. Hence,
it is crucial to design efficient caching policies to maximize
the benefits of local caching and sharing for future mobile
networks.

Recently, the emerging mobile edge caching/computing
(MEC) architectural technology has been standardized by
the European Telecommunications Standards Institute [6].
MEC servers provide high caching and computing capabili-
ties within the mobile network edges, which can be exploited
to deploy mobile applications and multimedia services as
well as to cache popular video files in close proximity to
mobile subscribers [7]. Furthermore, MEC servers can pro-
vide specific functions that cannot be fulfilled with traditional
network infrastructure, such as mobile big data analytics,
context-aware services performance optimization. Moreover,
MEC servers in a cluster can perform caching in a cooperative
way and share their cached video files with each other [8].
MEC servers could be owned by CPs aiming at improv-
ing their users’ QoE. Under this circumstance, accurate cell
information (such as users’ demands, users’ context informa-
tion, radio conditions, etc.) can be acquired dynamically to
facilitate intelligent content caching in a cooperative way to
improve cache hit rate and alleviate user perceived download-
ing latency.

The main challenge of efficient content caching concerns
about content popularity which is defined as the probability
that a specific file is requested at a certain time. Most existing
researches on proactive caching assume the content popu-
larity distribution is known or obeys Zipf distribution or its
variants [9]–[15]. In reality, the content popularity is complex
and non-stationary due to the content dynamics and unknown
spatial-temporal traffic demands. In this case, learning meth-
ods could be used to predict content popularity from traf-
fic and content access pattern [16]–[20]. However, content
popularity can well reflect the average interests of multiple
users, but may not reflect the interests of individual users.
In fact, the users’ preference in terms of interested files may
substantially differ from each other [21]. Hence, an efficient
proactive caching policy should take into account both the
users’ preference and the CP’s specific objective. In particu-
lar, many CPs have provided service differentiation to their
users, e.g., members have more benefits than non-members.
CPs may be willing to optimize content caching according to
users’ prioritization level. For example, if there are users with
different interests, the CP would like to prioritize members
by caching the video files favored by members. Furthermore,
if a CP wants to promote a certain video file, the CP could
prioritize the video file in content caching strategies [22].

In this paper, we design a cooperative content caching
scheme in MEC servers by exploiting multi-agent reinforce-
ment learning when the prior information of content popular-
ity and users’ preference are unknown. Considering service

differentiation, we use the weighted reduction of download-
ing latency as the caching reward and model the cooperative
content caching problem as a multi-agent multi-armed bandit
problem aiming at maximizing the accumulated expected
caching reward over a long-term horizon. Q-learning is used
by MEC servers to learn how to coordinate their caching
decisions in the multi-agent system. MEC servers learn the
Q-values of their own caching decisions in conjunction with
those of otherMEC servers. Since the space of Q-table is huge
and thus traditional multi-agent Q-learning algorithm may
need exponential number of steps to traverse all the Q-values,
we propose a combinatorial upper confidence bound method
to reduce the Q-table space to effectively reduce the com-
plexity. Simulation experiments are conducted based on a
real dataset from MovieLens and the numerical results show
that our proposed caching scheme can significantly reduce
content downloading latency and improve content cache hit
rate when compared with other popular caching schemes.

The remainder of the paper is organized as follows.
We introduce previous related work and describe the sys-
tem model in Section II and Section III respectively.
In Section IV, the optimal cooperative content caching
problem is formulated as a multi-agent multi-armed bandit
problem. In Section V, we elaborate the multi-agent rein-
forcement learning based algorithm to solve the problem.
In Section VI, we evaluate the performance of our proposed
caching algorithm by simulation and finally conclude the
paper in Section VII.

II. RELATED WORK
In recent years, the design of efficient content caching strate-
gies for mobile networks has attracted much research interest.
Existingmobile caching strategies can be roughly categorized
into two types: those with perfect content popularity informa-
tion and those without.

A. CACHING STRATEGIES WITH PERFECT
POPULARITY INFORMATION
So far, the majority of related research work assumes that the
perfect popularity information is known in advance. In [9],
the authors investigated the fundamental limits of caching
in a caching system. The authors of [10] proposed coordi-
nated caching at base-stations (BSs) to alleviate backhaul
transmission as well as improve the users’ QoE. In [11],
the authors studied a caching problem in a heterogeneous
network with helpers. The caching problem was shown to
be NP-hard, and a heuristic algorithm was proposed. In [12],
wireless bandwidth constraints are set in the content caching
problem of small BSs (SBSs). In [13], a joint design of
caching and delivery strategies was studied by assuming the
users’ instantaneous content demands are known in advance.
The authors of [14] presented a novel architecture for Device-
to-Device (D2D) caching with cooperation, and formulated
the D2D caching problem aiming at minimizing the down-
loading latency. In [15], we focus on hybrid SBS-D2D
caching and propose an optimal cooperative caching policy
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with aim of providing a global optimal caching solution
for hybrid SBS-D2D networks. These studies assumed the
perfect knowledge of instantaneous content demands or the
content popularity distribution. However, due to the content
dynamics and users’ mobility, the content popularity in a
cell may change over time. Therefore, it is a necessary and
challenging work to learn the content popularity and users’
preference dynamically.

B. CACHING STRATEGIES WITH NON-PERFECT
POPULARITY INFORMATION
Thus far, there is little research work which assumes non-
perfect information of content popularity, and machine learn-
ing methods are exploited to learn the content popularity
by observing users’ historical content demands and user-
content correlations. In [16] and [17], the authors proposed
transfer learning-based caching schemes to exploit the con-
textual information (i.e., users’ historical content demands,
user-content correlations, social ties, etc.) extracted from the
source cell. Then, this prior information is introduced to the
target cell for finding the optimal content caching strategy.
Those transfer learning-based caching schemes exploit super-
vised learning and thus require training sets. As appropriate
training sets are always not at hand, it is more suitable to use
an online learning algorithm to estimate the content popular-
ity over time.

In [18], [19] and [20], multi-armed bandit learning is used
to online estimate the content popularity. The estimated con-
tent popularity is then used to optimize the content caching
scheme. The users’ connectivity to the SBS and coopera-
tion among SBSs are taken in to consideration respectively
in [19] and [20]. However, the estimated content popularity
distribution of a large population is very different from the
preference of individual users [21]. Thus these approaches
are not effective for mobile content caching.

The authors of [21] optimized caching strategy at BSs
by exploiting users’ preference. They showed that content
popularity and users’ preference may be different. Hence,
content popularity may not reflect the interests of individual
users. In [22], the authors proposed a context-aware proactive
content caching policy while considering users’ preference
and service differentiation. The proposed algorithm learns
content popularity online leveraging users’ context informa-
tion. However, the authors considered either single cache case
[22] or multiple cache case without cooperation [21]. These
observations inspire us to develop new efficient caching pol-
icy for multiple cache cases with cooperative content caching
and delivery.

III. SYSTEM MODEL
MEC brings the cloud computing and caching capabilities
to the mobile network edges. Operators can open the MEC
servers to CPs, allowing them to deploy video files in the
local cache of MEC servers to improve mobile subscriber’s
experience [23]. We consider a typical MEC system model
as shown in Fig. 1. In this model, a set of MEC servers

FIGURE 1. System model of cooperative content caching for MEC.

in a cluster form a cooperative caching domain to support
mobile multimedia service in the edge of mobile networks.
Usually MEC servers could be co-located with the cellular
BSs [8] and a MEC server takes charge of providing mobile
multimedia services and applications for a cell [17]. For
simplicity, in the rest of this paper, we use "domain" and
"server" to indicate "cooperative caching domain" and "MEC
server" respectively.

A CP owns some resources (such as storage capacity,
computation capacity) of servers to provide low-latency local
cloud services. The CP periodically deploys and updates
popular video files in the local cache of servers to improve
mobile users’ QoE.

In a specific domain, servers perform content caching and
sharing in a cooperative way [8]. For example, if a content
request cannot be fulfilled by local cache C1 in the system
of Fig. 1, it may be served by C2 or C3. By using the
content caching services provided by servers, mobile users’
content requests may not need to be forwarded to data center
through backhaul links, and thus content delivery latency and
redundant transmissions can be drastically reduced.

The servers in a domain can exchange caching informa-
tion or share cached video files with other servers via the
communications between BSs. For example, the X2 interface
which provides the data transfer function between NodeBs
in LTE [24] can be used to realize communications between
these servers. Although cooperative caching is resource-
demanding and may cause some latency due to cooperation,
it can greatly improve cache hit rate and reduce downloading
latency (through the network core) in return. Furthermore,
the latency using wireless connection between servers is neg-
ligible compared with that for a user to obtain files from core
network through backhaul links if the cache hit rate is low
without cooperation.

Let there be M servers in a domain, denoted by
M = {1, 2, · · · ,M}, which are co-located with BSs.
We assume that time is slotted into periods. We denote by
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T = {1, 2, · · · ,T } the set of time periods, where T is
the finite time horizon. Caching decisions are periodically
updated for each time period.

There areU users in the domain. Let U = {1, 2, . . . ,U} be
the set of considered users. The CP provides the total number
of F video files and the set of video files is denoted by F =
{1, 2, · · · ,F}. Each file f ∈ F is of size sf and the CP owns
local caches with storage capacity Sm in each server m ∈M.
Each BS has a certain coverage area. Users located in

the coverage area can connect to the server co-located with
the BS. The set of connected users of a server may change
dynamically due to the user mobility. We define U t

m ⊂ U as
the set of users located in the coverage area served by server
m in time period t .
Users’ preference is the conditional probability that a spe-

cific file is requested by a user given that the user has a file
request, which reflects the demands of each user. Denote by
pf |u ∈ [0, 1] the conditional probability that user u demands
file f given that it requests a file. Users may have different
preferences for files. We assume that the content demands of
user u occurs independently and follows a Poisson process
with mean φu (arrival/time period) [25].
We denote by d tu,f the frequency of file f requested by user

u in time period t , which is an independent identically dis-
tributed (i.i.d.) random variable with mean θu,f = E

(
d tu,f

)
.

Therefore, the expected frequency of file f requested by user
u within one time period is θu,f = φu · pf |u. In this paper,
we take a realistic scenario that φu and pf |u are unknown in
advance.

We assume that each server has the information of cur-
rently cached files by other servers in the same domain and
periodically broadcasts to its connected users. Users send a
file request to their connected server, other servers in the
domain or data center, which is up to the availability of
the requested file [20]. Specifically, if the requested file is
unavailable at their connected server, the server just for-
wards the content request and does not know the detailed
information about the requested file. Then, a MEC server
can obtain the knowledge of users’ instantaneous content
demand when the requested file is available in its cache,
but it may not know users’ instantaneous content demand
when the requested file is unavailable in its cache. Therefore,
the overall users’ instantaneous content demand is unknown
to these servers.

When a user has a content demand, he can get the requested
file in the following ways: 1) Local transmission: if the local
server (i.e., he connected server) has stored the requested file
in its cache, and then the requested file is transmitted from the
local server to the user directly. 2) Intra-domain transmission:
if the file is not stored in the local server, but at least one
of servers in the domain have stored it, and then the local
server fetches the requested file from other servers for the
user. 3) External transmission: if all servers in the domain
do not store the requested file, the local server fetches the
requested file from the data center.

We denote the downloading rate between server m and
server n as Zm,n, n ∈ M, n 6= m, and the download-
ing rate between server m and data center as Zm,0, and
Zm,n > Zm,0. We assume that the downloading latency
of u ∈ U t

m incurred for fetching file f from server m
is L tu,m,f = 0. The downloading latency of u ∈ U t

m
fetching file f from MEC server n and data center is
L tu,n,f = sf /Zm,n, n ∈ M, n 6= m and L tu,0,f = sf /Zm,0
respectively.
Naturally, CPs should design the content caching strategy

carefully to minimize the average downloading latency for
maximizing the user QoE. However, the CP may intend to
provide different services to users. For example, if there are
users with different interests, the CP can prioritize some
users by caching files interested by these users. In this case,
the downloading latency of a prioritized user can be asso-
ciated with a higher weight than the downloading latency
of a regular user. To this end, we denote by K the set of
service types. Let vk ≥ 1 denote a weight associated with
the downloading latency experienced by a user of service
type k ∈ K. Considering the service differentiation, the CP’s
goal becomes to minimize the weighted downloading latency.
Furthermore, the CP may want to prioritize certain files, such
as movies with high rating. In this case, each file can be
associated with a fixed and known weight. Hence, we denote
by wf ≥ 1 the prioritization weight for file f . In case
of no service differentiation, i.e., vk = 1, k ∈ K and
wf = 1, f ∈ F , the goal is to minimize the average (non-
weighted) downloading latency. This is a special case of
our model. The notations we used in this paper are listed
in Table 1.

TABLE 1. Notations.
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IV. PROBLEM FORMULATION
In this section, we model the cooperative content caching
problem of minimizing the weighted downloading latency as
a multi-agent multi-armed bandit (MAB) problem.

A. PRELIMINARY: MULTI-AGENT MULTI-ARMED
BANDIT PROBLEM
MAB problem has been well studied in statistics and machine
learning for many years. In the classic MAB problem, there
are a single agent and F independent arms. In each time
period, the agent selects an arm to play, and receives a random
reward of the played arm. The expected reward of playing
an arm follows an i.i.d. model with an unknown mean. The
problem is to decide which arm should be played in the next
time period based on the current information, so that the accu-
mulated expected reward in a long-term can be maximized.

In a MAB learning problem, there is a well-known tradeoff
between exploration and exploitation: whether one should
select some new arms that have not been played much, aim-
ing at reliably estimating the mean rewards of these arms
(exploration) or one should select known arms that offer
higher rewards so far, aiming at achieving the highest accu-
mulated empirical rewards (exploitation). If the agent knows
the reward model of each arm, the optimal algorithm would
always play the arm with the maximum expected reward.
A commonly used criterion for measuring the performance
of a MAB algorithm is regret, which is defined as the gap
between the obtained reward of the algorithm and that of the
optimal algorithm. Auer et al. [26] proposed an index policy,
called upper confidence bound (UCB) algorithm, which can
achieve a regret on the order ofO (logT ) over time horizon T ,
and this is the order-optimal.

There is a variant of MAB problem, called the combina-
torial MAB (CMAB) [27]. Different from the classic MAB
model, in the CMAB model, a set of arms (called a super
arm) can be played simultaneously at each time period. The
combinatorial nature among multiple super arms results in
dependencies between them. Further, the number of super
arms increases super-exponentially and the reward of each
super arm depends on the rewards of all underlying arms.
Extended to multi-agent setting, the expected reward of play-
ing a super arm is associated with the play of other agents.
In the following, we model the cooperative content caching
problem to minimize the weighted downloading latency as a
multi-agent CMAB problem.

B. MULTI-AGENT CMAB PROBLEM FOR CONTENT
CACHING IN MEC SERVERS
We consider an F-armed bandit with M agents, and each
arm and agent corresponds to a file and a server respectively.
In each time period, the agents select several arms to play, i.e.,
servers select several files to cache. The aim is to minimize
the weighted downloading latency.

We define a binary caching decision variable x tm,f ∈ {0, 1}
to indicate whether file f is placed at the local cache of

server m in time period t: x tm,f = 1 if file f is cached and
x tm,f = 0 otherwise. The total size of cached files in a server
cannot exceed its storage capacity, i.e.,

∑
f ∈F x tm,f · sf ≤

Sm,∀m ∈M. Then, the caching decision vector of server m
in time period t is defined as xtm = (x tm,1, . . . , x

t
m,F )

T , where
x tm,f ∈ {0, 1}, f ∈ F and

∑
f ∈F x tm,f · sf ≤ Sm. The caching

decision matrix of all servers in time period t is denoted by
Xt
= (xt1, . . . , x

t
M ).

We define the binary caching routing decision variable
ytu,n,f ∈ {0, 1} to indicate whether user u ∈ U t

m retrieves
file f from server n or not. Obviously, user u can fetch file
f from server n only when file f is placed at the local cache
of server n and thus, ytu,n,f ≤ x tn,f . Furthermore, file f can
be retrieved from either one server in the domain or the data
center. Hence, we have

∑
n∈M ytu,n,f ≤ 1. In our content

retrieval protocol, user u ∈ U t
m always retrieves file f from

the server with the lowest delay, namely ytu,n,f = 1 when∏i−1
j=1 (1− x

t
(j)u,f

) · x t(i)u,f = 1, where n = (i)u is the i-th
lowest delay server for user u and ytu,n,f = 0 otherwise.

We use the weighted reduction of downloading latency as
the reward of server m caching file f in time period t , which
is defined as:

r tm,f = wf ·
∑
n∈M

∑
u∈U t

n

d tu,f · vku · (L
t
u,0,f − L

t
u,m,f ) · y

t
u,m,f ,

where ku ∈ K is the service type of user u. The expected
reward of server m caching file f is given by:

E
(
r tm,f

)
= wf ·

∑
n∈M

∑
u∈U t

n

θu,f · vku · (L
t
u,0,f − L

t
u,m,f ) · y

t
u,m,f .

In time period t , for server m, a particular caching deci-
sion vector xtm is selected and only for those files with
x tm,f = 1, the value of r tm,f is observed. We denote by Ctm =
{f
∣∣∣f ∈ F , x tm,f = 1 } the set of files cached in serverm in time

period t . In time period t , the history seen by server m is:

Ht
m = {(X

1
→ (r1m,f )f ∈C1

m
), . . . , (Xt

→ (r tm,f )f ∈Ctm
)},

which implies that each server can observe the caching deci-
sions of other servers.
The problem we need to solve can be presented as follows.

Given the network topology and MEC server storage capac-
ity, without knowing the users’ content demand in advance,
by simply observing the content requests for the cached files
over time, what is the optimal caching strategy such that the
total expected caching reward can be maximized?
The proactive caching problem with objective of maximiz-

ing the total expected caching reward up to time horizon T is
formulated as follows:

max
T∑
t=1

∑
m∈M

∑
f ∈F

E
(
r tm,f

)
,

s.t.
∑
f ∈F

x tm,f · sf ≤ Sm, ∀m ∈M,

x tm,f ∈ {0, 1},∀m ∈M, ∀f ∈ F . (1)
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It is easy to show that even with the knowledge of the
expected users’ content demand θu,f , u ∈ U , f ∈ F at each
server, problem (1) is NP-hard [17]. Moreover, we devote
to a more practical case in which θu,f , u ∈ U , f ∈ F is
unknown in advance. We then resort to multi-agent rein-
forcement learning process, in which servers learn from the
historical caching reward to adjust their caching decision,
to solve problem (1).

V. MULTI-AGENT REINFORCEMENT LEARNING-BASED
CACHING POLICY
Extending reinforcement learning to multi-agent systems has
been an attractive research area in recent years. A well-
understood example of reinforcement learning algorithm is
Q-learning. Due to the simplicity and convergence guarantees
of Q-learning, it is a nature choice to apply Q-learning algo-
rithm to multi-agent systems. In multi-agent Q-learning algo-
rithm, each agent maintains Q-values as the expected rewards
for every state-action pairs, which are stored in an array
known as the Q-table. Since the multi-agent CMAB problem
does not require a state representation, we just simplify the
general multi-agent Q-learning to its stateless version [28].

We denote the set of caching decision vectors by Xm =

{(xm,1, . . . , xm,F )T
∣∣xm,f ∈ {0, 1} , f ∈ F ,

∑
f ∈F xm,f · sf ≤

Sm} and the set of reduced caching decision matrixes by
X−m = {(x1, . . . , xm−1, xm+1, . . . , xM ) |xn ∈ Xn, n ∈ M,
n 6= m} for server m. In classical multi-agent Q-learning
algorithm, each server m ∈ M maintains a Q-table
{Qm,xm (X−m)|xm ∈ Xm, X−m ∈ X−m}, where Q-value
Qm,xm (X−m) provides the estimated reward of selecting
caching decision vector xm when the reduced caching deci-
sion matrix is X−m. Server m updates its Q-table based
on sample Xt

→ (r tm,f )f ∈Ctm
as follows: Qm,xtm (X

t
−m) ←

Qm,xtm (X
t
−m)+ λt · (

∑
f ∈Ctm r

t
m,f − Qm,xtm (X

t
−m)), where 0 ≤

λt ≤ 1 is the learning rate, which usually decays with t . xtm
and X t

−m are the caching decision vector selected by serverm
and the reduced caching decision matrix observed by server
m in time period t respectively.
However, there are two issues preventing the use of the

classical multi-agent Q-learning algorithm to solve the for-
mulated problem. First, the space of the Q-table is 2M+F . It is
exponential to the number of servers and the number of files,
and thus the classical multi-agent Q-learning algorithm may
need exponential number of steps to traverse all the values
of the Q-table. Second, after caching decision vector xm is
selected, we can get some information regarding the rewards
of the underlying caching decision variables xm,f , f ∈ F ,
whichmay be shared by other caching decision vectors. How-
ever, these information are discarded in the classical multi-
agent Q-learning algorithm, making it less effective.

In the CMAB model, a caching decision vector (e.g., xm)
consists of underlying caching decision variables (e.g., xm,f ,
f ∈ F). In each time period, after one caching decision vector
is selected, the rewards of all underlying caching decision
variables are revealed. Since the expected rewards of caching

decision vectors can be computed by the expected rewards
of underlying caching decision variables, a combinatorial
UCB (CUCB) algorithm [27] is proposed to use the expected
rewards of underlying caching decision variables instead
of the expected rewards of caching decision vectors. Thus,
the space of the Q-table can be reduced from the number of
caching decision vectors to the number of underlying caching
decision variables.

Therefore, we introduce a CUCB-type algorithm into
our multi-agent system to reduce the space of the Q-table.
We denote the set of reduced caching decision vectors by
X−m,f = {(x1,f , . . . , xm−1,f , xm+1,f , . . . , xM ,f )

∣∣xn,f ∈ {0, 1} ,
n ∈ M, n 6= m} for server m. We employ Q-table
{Qm,f (x−m,f ) | f ∈ F , x−m,f ∈ X−m,f } instead of
{Qm,xm (X−m) | xm ∈ Xm, X−m ∈ X−m} to reduce the space
of Q-table from 2M+F to F · 2M−1 for each server m ∈ M.
Instead, this reduction is at the cost of computing the optimal
caching decision vector; i.e., the algorithm has to employ a
computation oracle which takes the Q-table as input, together
with the problem instance, for computing the optimal caching
decision vector x∗m. As the optimal solution of a combinatorial
problem may be computationally hard, we allow the oracle
to be an (α, β)-approximation oracle, where α, β ≤ 1, i.e.,
the oracle could output a caching decision vector whose
expected reward is at least α fraction of the optimal expected
reward with probability β. Next, we elaborate our proposed
multi-agent reinforcement learning based caching algorithm
as follows.
Q-table {Qm,f (x−m,f ) | f ∈ F , x−m,f ∈ X−m,f }: Q-value

Qm,f (x−m,f ) is the average reward observed by server m of
caching file f when the reduced caching decision vector is
x−m,f .
Updating Q-values: If file f is cached by server m in time

period t , Q-table is updated asQm,f (xt−m,f )← Qm,f (xt−m,f )+
1

Cm,f (xt−m,f )+1
·(r tm,f−Qm,f (x

t
−m,f )), where x

t
−m,f is the reduced

caching decision vector observed by serverm in time period t
andCm,f (xt−m,f ) is the number of times that xt

−m,f is observed
by server m until time period t .
Belief-maintenance procedure: Although server m cur-

rently has Q-values of all reduced caching decision vectors,
the expected reward of performing a caching decision vector
depends on other servers’ current strategies. To estimate other
servers’ current strategies, each server observes the historical
caching decisions of other servers andmaintains beliefs about
other servers’ strategies. The belief-maintenance procedure
is presented as follows. Each server m ∈ M assumes that
server n ∈M, n 6= m will cache files in accordance with m’s
current beliefs about n (i.e., m’s empirical probability distri-
bution over n’s caching decisions). Serverm treats the relative
frequency of server n’s caching choices as the indicator of
n’s current strategy. Server m keeps counts Cm,f denoting the
number of times file f cached by serverm andCm,n,f denoting
the number of times that file f cached by server n. For each
server n 6= m, m assumes n caches file f with probability
Prm,n,f = Cm,n,f /t . Hence, server m assesses the probability
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of reduced caching decision vector x−m,f ∈ X−m,f selected
by other servers to be:

Prm(x−m,f ) =
∏
n∈M
n6=m
xn,f=1

Prm,n,f ·
∏
n∈M
n6=m
xn,f=0

(1− Prm,n,f ),

and the expected reward of caching file f to be Qm,f =∑
x−m,f ∈X−m,f Qm,f (x−m,f ) · Prm,f (x−m,f ).
BiasingQ-values: To promote the exploration-exploitation,

we bias the Q-values based on the particular structure of the
problem. The biased Q-value is given by Q̄m,f = Qm,f + l ·√

3 log(M ·t)
2M ·Cm,f

, where l = max
i∈F

Qm,i/si.

(α, β)-approximation oracle: We resort to a (α, β) approx-
imation oracle which takes the biased Q-value Q̄m,f ,m ∈M,
f ∈ F as input for finding the optimal caching decision vector
x∗m. The problem for computing x∗m is a 0-1Knapsack problem
with values Q̄m,f , f ∈ F , and weights sf , f ∈ F , which can
be rewritten as follows:

max
∑

f ∈F
Q̄m,f · xm,f ,

s.t.
∑

f ∈F
sf · xm,f ≤ Sm,

xm,f ∈ {0, 1}. (2)

The 0-1 Knapsack problem is known to be NP-hard
[29]. The exact solution of x∗m requires huge computational
resources. Therefore, we employ a greedy algorithm with
low-complexity as the (α, β)-approximation oracle. The solu-
tion of the (α, β)-approximation oracle is defined as xm =
Oracle(Q̄m,1, . . . , Q̄m,F ). The greedy algorithm starts with
the feasible solution xm = (0, 0, . . . , 0)T and sequentially
replaces the zeros by ones, starting with the most beneficial
(in the sense of values Q̄m,f /sf ) if each such change does
not break the feasibility. The process is terminated when
the last feasible solution is obtained. This is to say that the
greedy algorithm constructs a series of feasible solutions with
monotonically increasing the objective function value and
the last feasible solution is the greedy solution xm. Formally,
the solution xm is obtained in the following way. We sort
xm,fi , fi ∈ F , i = 1, 2, . . . ,F in a descending order according
to their "specific values" Q̄m,fi/sfi : Q̄m,f1/sf1 ≥ Q̄m,f2/sf2 ≥
· · · ≥ Q̄m,fF /sfF . Let xm,f1 = 1 and for k = 2, . . . ,F ,

xGm,fk =


1,

k−1∑
j=1

sfjx
G
m,fj + sfk ≤ Sm

0,
k−1∑
j=1

sfjx
G
m,fj + sfk > Sm.

Let δ =
∑

f ∈F Q̄m,f · x∗m,f /
∑

f ∈F Q̄m,f · xm,f be the ratio
between the objective function value of the optimal algo-
rithm and that of the greedy algorithm. In [29], it has
been proved that δ ≤ 2, and thus

∑
f ∈F Q̄m,f · xm,f ≥∑

f ∈F Q̄m,f · x∗m,f /2, i.e., the greedy algorithm can achieve
at least 1/2 fraction of the optimal objective function value
with probability 1. Therefore, the greedy algorithm can be

an (α, β)-approximation oracle, where α = 1/2 and β = 1.
Additionally, if the maximum file size is much smaller than
the storage capacity, then δ ≈ 1 [29], and thus, α ≈ 1. In the
case of si = sj, i, j ∈ F , i.e., when all file sizes are the
same, the greedy algorithm is the optimal. The multi-agent
reinforcement learning based caching algorithm for MEC is
summarized in Algorithm 1.

Algorithm 1 Multi-Agent Reinforcement Learning Based
Caching Algorithm
1: Each server m ∈M do
2: Initialize: Cm,f = 0, Cm,n,f = 0, Cm,f (x−m,f ) = 0,
Qm,f (x−m,f ) = 0, n ∈M n 6= m, f ∈ F , x−m,f ∈ X−m,f .

3: Cache each file at least once, observe the rewards
r tm,f , f ∈ F , and update Cm,f , Cm,n,f , Cm,f (x−m,f ),
Qm,f (x−m,f ) for f ∈ F , n ∈M, n 6= m, x−m,f ∈ X−m,f .

4: While t ∈ T do
5: Compute Prm,n,f = Cm,n,f /t , n ∈M, n 6= m, f ∈ F and

Prm(x−m,f ) =
∏

n∈M
n6=m
xn,f=1

Prm,n,f ·
∏

n∈M
n6=m
xn,f=0

(1− Prm,n,f ),

x−m,f ∈ X−m,f , f ∈ F .
6: Compute Qm,f =

∑
x−m,f ∈X−m,f

Qm,f (x−m,f ) · Prm(x−m,f ),

f ∈ F .
7: Compute Q̄m,f = Qm,f + l ·

√
3 log(M ·t)
2·M ·Cm,f

, f ∈ F .

8: Compute xtm = Oracle(Q̄m,1, . . . , Q̄m,F ).
9: Broadcast caching decision vector xtm to other servers.
10: Receive caching decision vector xtn, n ∈M, n 6= m from

other servers.
11: Observe r tm,f , f ∈ Ctm.
12: UpdateCm,f ← Cm,f +1, f ∈ Ctm andCm,n,f ← Cm,n,f +

1, n ∈M, n 6= m, f ∈ Ctn.
13: Update Qm,f (xt−m,f ) ← Qm,f (xt−m,f ) +

1
Cm,f (xt−m,f )+1

·

(r tm,f − Qm,f (xt−m,f )), f ∈ Ctm and Cm,f (xt−m,f ) ←
Cm,f (xt−m,f )+ 1, f ∈ Ctm.

14: t ← t + 1.

Next, we analyze the complexity of Algorithm 1. In the
procedure of Algorithm 1, in each time period, MEC servers
make caching decisions in parallel. When a server determines
its caching decision, it needs to compute Q-values and find
the optimal caching decision by the (α, β)-approximation
oracle. The time complexity of computing Q-values is
O(2M−1 · F) and the time complexity of finding the optimal
caching decision vector is O(F). Therefore, the time com-
plexity of Algorithm 1 is O(2M−1 ·F) for each server in each
time period.

In the following, we present the regret bound of Algo-
rithm 1. With an (α, β)-approximation oracle, it is unfair to
use the difference between the reward obtained by a CUCB
algorithm and the optimal reward as the regret. Instead,
we use the (α, β)-approximation regret, which is defined as
the difference between the reward obtained by the algorithm
and the α · β fraction of the optimal reward, since the reward
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obtained by the oracle is only α fraction of the optimal reward
with probability β.

Fact 1. The CUCB algorithm using an (α, β)-approxi-
mation oracle with a monotonicity and bounded smooth-
ness function can achieve an (α, β)-approximation regret of
O (logT ) over time horizon T .

Proof: cf. [27] for proofs.
Corollary 1: Algorithm 1 can achieve a (α, β)-approxi-

mation regret of O (logT ) over time horizon T .
Proof: For server m, the expected reward of a caching

decision vector xm is
∑

f ∈Ctm r
t
m,f , which is linear to the

expected rewards of all underlying caching decision variables
xm,f , f ∈ F . Hence, the monotonicity property is satisfied.
We define the bounded smoothness function as f (1) = Sm·1,
i.e., increasing the expected reward of all underlying caching
decision variables by 1 can increase the expected reward of
the caching decision vector at most Sm ·1. According to Fact
1, Algorithm 1 achieves an (α, β)-approximation regret of
O (logT ) over time horizon T .

VI. PERFORMANCE EVALUATION
We use a dataset of MovieLens from the real word [30]
to evaluate the performance of our proposed cooperative
content caching algorithm. The MovieLens datasets are full
of data describing how people rate movies. The MovieLens
1M Dataset [31] records 6,040 MovieLens users’ rating data
in the form of 〈User ID, Movie ID, Rating, Timestamp〉,
which contains 1,000,209 ratings of 3,952 movies within the
years 2000 to 2003. Additionally, the users’ demographic
information is provided in the following format: 〈User ID,
Gender, Age, Occupation, Zip-code〉.

We assume that the movie rating process in the dataset is
corresponding to the content request process (refer to [22] for
a similar approach). Therefore, in our simulation, a user rating
a movie at a certain time in the dataset is corresponding to
the user requesting the movie at that time. This assumption
can be easily removed as users usually rate movies after
watching them. We divide the timestamp into time periods

FIGURE 2. The number of content requests in each time period.

of one hour each, assuming that MEC servers update their
caching decision at an hourly basis. Fig. 2 shows the number
of content requests in each time period.

For the performance evaluation of our proposed algorithm,
we classify the users into different coverage areas which
served by different servers according to their Zip-code. The
default number of serversM is assumed to be 5.We normalize
the size of each movie file sf to one unit and the default
storage capacity of each server Sm is assumed to be 50 units.
Hence, the total storage capacity in the domain corresponds
to about 6% of the total number of movie files, which is a
realistic assumption [12], [22]. We normalize the download-
ing rate between server m and data center to 1, i.e., Zm,0 = 1,
m ∈M and assume the ratio of the downloading rate between
server m and n to the downloading rate between server m
and data center as Zm,n/Zm,0 = 5, m, n ∈ M, n 6= m. Let
there be two service types 1 and 2 with weights v1 = 2 and
v2 = 1 respectively. Therefore, service type 1 is prioritized
since the associated weight of service types 1 is higher than
that of service types 2. We assign the users in age 18-25 to
service type 1 and classify all rest users to service type 2.
Additionally, we use the average rating of movie file f as the
prioritization weight wf for movie file f .
We conduct simulation experiments to compare the per-

formance of our multi-agent reinforcement learning (MARL)
based caching scheme with the following three caching
schemes. 1) Single-agent reinforcement learning (SARL)
based caching scheme [32], which ignores the multi-agent
nature of the problemmodel. Each server maintains a Q-table
Qm,f , m ∈ M, f ∈ F . The Q-table is updated with-
out regard for the caching decisions made by other servers.
In each time period t , the Q-table is updated by Qm,f ←
Qm,f + 1

Cm,f+1
· (r tm,f − Qm,f ), f ∈ Ctm. Then the Q-value is

biased and inputted into the (α, β)-approximation oracle for
computing the optimal caching decision vector. 2) Myopic
caching scheme [18], which is a modified version of the least
recently used (LRU) caching scheme [33]. At each replace-
ment phase, LRU caches the most recently requested file and
replaces the least recently used file. In our model, since only
the content requests for those files in the local cache can
be observed, LRU is inapplicable. In the Myopic caching
scheme, it randomly replaces all the files that have not been
requested within last time period with other files. 3) Random-
ized replacement (RR) caching scheme [34], which randomly
places files in the local cache of MEC servers until all caches
become full.

The performance metrics we use include the (cumulative)
caching reward, the (cumulative) number of caching hits,
the weighted average downloading latency (WADL) and the
cache hit rate (CHR). The caching reward is defined as∑

m∈M
∑

f ∈Ctm r
t
m,f for time period t . The number of cache

hits is defined as the number of content requests served
by a server in the domain. The WADL is defined as the
sum weighted downloading latency for all content requests
divided by the number of content requests. The CHR is
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FIGURE 3. The (cumulative) caching reward and the (cumulative) number of cache hits of MARL, SARL, Myopic and RR
cache schemes for different time periods. (a) The caching reward. (b) The cumulative caching reward. (c) The number of
cache hits. (d) The cumulative number of cache hits.

defined as the ratio of the total number of cache hits to the
number of content requests.

In the first experiment, we evaluate the (cumulative)
caching reward and the (cumulative) number of cache hits
over time in Fig. 3. As it is shown in Fig. 3(a) and Fig. 3(c),
the caching reward and the number of caching hits of all
caching schemes are bursty over time, due to the burst-
ness of the content request process. Fig. 3(b) and Fig. 3(d)
clearly illustrate that MARL and SARL caching schemes
outperform Myopic and RR caching schemes in terms of the
cumulative caching reward and the cumulative number of
caching hits. This is because that MARL and SARL caching
schemes learn from the historical users’ content requests,
while Myopic caching scheme learns only from one-step past
and no learning is adopted in RR caching scheme. It also can
be observed that the MARL caching scheme outperforms the
SARL caching scheme since MARL learns the Q-values of
their own caching decisions as well as those of other servers
while SARL only learn the Q-values of their own caching
decisions. In particular, compared with SARL, Myopic and

RR caching schemes, the gain of the MARL caching scheme
in terms of the cumulative number of cache hits is approxi-
mately 41%, 157% and 246%, respectively in time horizon T .
Next, we examine the WADL and CHR when the storage

capacity of each server varies from 10 to 100 units in Fig. 4.
As expected, the WADL decreases and the CHR increases
with the increasing storage capacity of each server for all
caching schemes, since more files can be cached in servers.
In Fig. 4(a), it is shown that the WADL of the MARL
caching scheme is significantly lower than that of SARL,
Myopic and RR caching schemes. In particular, the MARL
caching scheme outperforms SARL, Myopic and RR caching
schemes with the improvement on the WADL approximately
8%, 21% and 24%, respectively when the storage capacity is
up to 100 units.

In the following, we compare the WADL and CHR for
varying number ofMEC servers from 1 to 10 in Fig. 5.We can
see that the WADL decreases with the number of servers in a
domain for all caching schemes in Fig. 5(a), while the CHR
increases with the number of servers for all caching schemes
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FIGURE 4. The weighted average downloading latency and the cache hit rate of MARL, SARL, Myopic and RR cache
schemes for different storage capacities. (a) The weighted average downloading latency. (b) The cache hit rate.

FIGURE 5. The weighted average downloading latency and the cache hit rate of MARL, SARL, Myopic and RR cache
schemes for different numbers of MEC servers. (a) The weighted average downloading latency. (b) The cache
hit rate.

in Fig. 5(b). This is because that with the increase of the
number of servers, more users’ content requests can be served
in the domain. In Fig. 5(b), we can observe that the CHR
of MARL caching scheme is significantly higher than that
of SARL, Myopic and RR caching schemes. Compared with
SARL, Myopic and RR caching schemes, the gain of MARL
caching scheme in terms of CHR is approximately 41%,
129% and 199% respectively when the number of servers is
up to 10. Besides, the difference becomesmore significant for
more MEC servers. Therefore, our proposed MARL caching
scheme can greatly improve the CHR, especially for the large
number of servers in a domain, by learning historical content
demands.

VII. CONCLUSION
In this paper, we have addressed the cooperative content
caching problem for MEC architecture, when the users’ pref-
erence is unknown and only the historical content demands
are observed. Considering the service differentiation, we use

the weighted reduction of downloading latency as the caching
reward andmodel the cooperative content caching problem as
a multi-agent multi-armed bandit problem to maximize the
total expected accumulated caching reward over a long-term
horizon. We propose a MARL-based caching algorithm tech-
nically solve the problem. Q-learning is used byMEC servers
to learn how to coordinate their caching decisions in multi-
agent systems. MEC servers learn the Q-values of their own
caching decisions in conjunction with those of other MEC
servers. Since the space of Q-table is huge and thus traditional
multi-agent Q-learning algorithm needs exponential number
of steps to traverse all the Q-values, a combinatorial upper
confidence bound method is proposed to reduce the space of
the Q-table to effectively reduce the complexity. Moreover,
we adopt the belief-maintenance procedures to estimate other
servers’ strategies. Simulation results show that the proposed
MARL-based caching scheme can significantly reduce con-
tent downloading latency and improve content cache hit rate
in comparison with other popular caching schemes.

VOLUME 7, 2019 61865



W. Jiang et al.: MARL-Based Cooperative Content Caching for Mobile Edge Networks

REFERENCES
[1] Cisco Visual Networking Index: Forecast and Methodology, 2016–

2021. Accessed: Nov. 21, 2017. [Online]. Available: http://www.cisco.
com/c/en/us/solutions/collateral/service-provider/visual-networking-
index-vni/complete-white-paper-c11-481360.html

[2] L. Qiu and G. Cao, ‘‘Popularity-aware caching increases the capacity of
wireless networks,’’ in Proc. IEEE INFOCOM, May 2017, pp. 1–9.

[3] Y. Zhou, L. Chen, C. Yang, and D. M. Chiu, ‘‘Video popularity dynamics
and its implication for replication,’’ IEEE Trans. Multimedia, vol. 17, no. 8,
pp. 1273–1285, Aug. 2015.

[4] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. C. M. Leung, ‘‘Cache
in the air: Exploiting content caching and delivery techniques for 5G
systems,’’ IEEE Commun. Mag., vol. 52, no. 2, pp. 131–139, Feb. 2014.

[5] A. Passarella, ‘‘A survey on content-centric technologies for the current
Internet: CDN and P2P solutions,’’ Comput. Commun., vol. 35, no. 1,
pp. 1–32, 2012.

[6] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, ‘‘Mobile edge
computing—A key technology towards 5G,’’ ETSI White Paper, vol. 11,
no. 11, pp. 1–16, 2015.

[7] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, ‘‘Mobile edge computing:
A survey,’’ IEEE Internet Things J., vol. 5, no. 1, pp. 450–465, Feb. 2018.

[8] M. T. Beck, M. Werner, S. Feld, and S. Schimper, ‘‘Mobile edge comput-
ing: A taxonomy,’’ in Proc. 6th Int. Conf. Adv. Future Internet, Jan. 2014,
pp. 48–55.

[9] M. A. Maddah-Ali and U. Niesen, ‘‘Fundamental limits of
caching,’’ IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867,
May 2014.

[10] Y. Li, Y. Xu, T. Lin, X.Wang, and S. Ci, ‘‘A novel coordinated edge caching
with request filtration in radio access network,’’ Sci. World J., vol. 2013,
Art. no. 654536.

[11] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, ‘‘FemtoCaching: Wireless content delivery through dis-
tributed caching helpers,’’ IEEE Trans. Inf. Theory, vol. 59, no. 12,
pp. 8402–8413, Dec. 2013.

[12] K. Poularakis, G. Iosifidis, and L. Tassiulas, ‘‘Approximation algorithms
for mobile data caching in small cell networks,’’ IEEE Trans. Commun.,
vol. 62, no. 10, pp. 3665–3677, Oct. 2014.

[13] M. Gregori, J. Gómez-Vilardebó, J. Matamoros, and D. Gündüz, ‘‘Wireless
content caching for small cell and D2D networks,’’ IEEE J. Sel. Areas
Commun., vol. 34, no. 5, pp. 1222–1234, May 2016.

[14] R. Amer, M.M. Butt, M. Bennis, and N. Marchetti, ‘‘Inter-cluster coopera-
tion for wireless D2D caching networks,’’ IEEE Trans. Wireless Commun.,
vol. 17, no. 9, pp. 6108–6121, Sep. 2018.

[15] W. Jiang, G. Feng, and S. Qin, ‘‘Optimal cooperative content caching and
delivery policy for heterogeneous cellular networks,’’ IEEE Trans. Mobile
Comput., vol. 16, no. 5, pp. 1382–1393, May 2017.
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