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ABSTRACT Functional tremors are clear symptoms of neurodegenerative diseases; as such, they indicate
the progression of Parkinson’s disease (PD). Digitized handwritten pattern analysis of Archimedes’ spirals,
words, and sentences can help evaluatemovement discords in the upper limbs. It offers a simple, comfortable,
and repeatable method of examination for clinical applications and at-home monitoring usages. Upper
limb tremors can be found in PD, essential tremor (ET), and cerebellar disorders. This paper proposes a
quantitative method to scale the variations of functional tremors. The deviation (in cm) and the accumulation
angle (in rad) of the feature pattern in polar expression were extracted to scale the variability at different
tremor levels. Then, the proposed intelligent classifier, which is used as a perceptual color representation-
based classifier (PCRC) and comprises a radial Bayesian network and a color relation analysis method, was
employed to screen PD or ET with perceptual color representation. An assistant tool can integrate a smart
mobile device (iPad/smartphone) and PCRC into the decision support system for individualized functions
to evaluate the progression of the tremor level. The proposed decision support system was validated using
data collected from 50 subjects. With fivefold cross-validation, average true positive, average true negative,
and hit rates of 92.02%, 88.17%, and 90.44%, respectively, were obtained to quantify the performance of
the proposed classifier for identifying normal controls and PD or ET.

INDEX TERMS Parkinson’s diseases, deviation, accumulation angle, radial Bayesian network, perceptual
color representation- based classifier.

I. INTRODUCTION
Parkinson’s disease (PD) is a chronic and long-term neurode-
generative disease that gradually affects the motor system.
Alzheimer’s disease and neurodegenerative disorder lead to
dementia and cognitive and behavioral problems. Patients
with Parkinsonian and Alzheimer’s diseases are the largest
groups of those with neurode-generative disorders. These
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diseases can be caused by genetic and environmental factors.
Their prevalence rates increase with advancing age in both
males and females, and there is a tendency to develop at
over ages greater than 60 years [1]–[3]. The main motor
symptoms can be observed at an early stage of the dis-
ease, such as shaking, rigidity, slow movement, and walk-
ing difficulties, which are known as parkinsonisms. These
symptoms slowly progress over time. PD features comprise
physical signs such as muscular rigidity, rhythmic tremors,
and postural instability. Tremors are involuntary rhythmic
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oscillations of the hands, arms, or legs (mostly occurring in
the hands). These tremor symptoms have particular charac-
teristics such as different frequencies, regularity/irregularity,
and directionality. Essential tremor (ET) is a slowly progres-
sive monosymptomatic disorder and starts on one side of the
body and extends to affect both sideswithin 3 years; it tends to
relapse at ages over 40 years. It involves rhythmic oscillation
with high characteristic frequencies of 8–10 Hz (between
4 and 12 Hz) and postural tremors [4]. The characteris-
tic frequencies decrease with age. PD tremor types include
resting, postural, and action tremors, and the frequency
band 4–6Hz is associated with the PD resting tremor. Tremors
are a functional movement disorder that can be observed
when the upper limbs are moving during limb stretch-
ing, writing, or drawing [7]–[9]. The tremors can be reg-
ular or irregular in amplitude and have a specific range
of characteristic frequencies. Measurements of oscillation
amplitudes, dominant frequencies, and directions with rhyth-
mic or arrhythmic movements can help to confirm the pres-
ence of functional movement disorders.

As described in the literature [5], [6], [10]–[12], sensor-
based quantitative methods, such as using a tri-axial
accelerometer, tri-axial gyroscope, tri-axial magnetometer,
laser-based displacement transducer, and electromyography,
have been established to evaluate tremor levels and abnormal
movements. These methods, with sensors worn on the sub-
ject’s body (bilateral wrists and legs, waist, chest), are used
to monitor motor dysfunction and to quantify bradykinesia,
rigidity, and various types of tremors in PD patients [5], [12].
However, when using sensor-based quantitative methods,
it is not possible to immediately observe the testing results.
The aforementioned methods require the analysis of sev-
eral features from the recorded signals via time-domain
and frequency-domain analyses, including signal preprocess-
ing, feature extraction, and pattern recognition and assess-
ment. In analysis through signal preprocessing, bandpass
filters are used to retain the desired frequency ranges,
permitting the identification of the typical frequencies of
tremors, including a bandpass filter at 3–6 Hz, 6–9 Hz, and
9–12 Hz for PD or resting tremor, ET or postural tremor, and
kinetic tremor, respectively [5], [6], [10], [12]. In addition,
the lengths of the data stream affect the resolution of tremor
detection for analyzing different dominant frequency tremors.

Sensor-based methods with multiple channels (transition
protocol) need to synchronously transmit sampling data from
the sensors. Many acquired signals need to be analyzed.
Patients must wear many wearable sensors, resulting in dis-
comfort and limitations for at-home practical applications.
After frequency-feature extraction, low-, medium-, and high-
frequency tremors are divided into three groups for classifi-
cation. Then, machine learning methods, such as the hidden
Markov model, Bayes classification, support vector machine,
and logistic regression, are selected to implement a deci-
sion support system for tremor classification [7], [13]–[15].
However, for complicated feature patterns, linear classifi-
cation methods have difficulty solving nonlinear separable

classification problems. Non-linear classifier-based pattern
recognition systems, such as machine learning methods and
support vector machine (SVM) with multi-layers [16]–[18],
can solve nonlinear separable classification problems by
identifying a nonlinear hyperplane in feature space. These
methods have an average accuracy of 70%–90% in terms of
identifying normal controls and PD or ET. The results of these
methods indicate that the nonlinear SVM-based classifier
performs better than the traditional neural networks [18].
The parameters of the kernel functions of the nonlinear
SVM are required for optimization by the optimization algo-
rithms with iterative computations for updating the network
parameters. Moreover, determining the structure of the mul-
tilayer network and updating the parameters with iterative
computations are the primary concerns. In clinical applica-
tions, it is essential to establish a simple assistant tool that can
rapidly produce screening results through which neurologists
can evaluate disease evolution with the effectiveness of drug
treatment. Additionally, patients need a simple tool for at-
home use for home-based monitoring.

Digitized handwritten patterns, includingArchimedes’ spi-
rals, words, and sentences [5], [7], [15], [19]–[21], offer
a computer-assisted tool to evaluate patients’ symptoms in
the shortest possible time. Computerized pattern analysis
using an iPad, smartphone, or digital tablet with an Apple
pencil or an ink-pen (pressure sensor) [5], [15] is a method
of recording the dynamics when a patient draws a pat-
tern or writes something. Its assistant tool can immediately
acquire the digitized handwritten patterns in real time using
customized software [7]. Therefore, the recording of the
raw data of handwritten patterns via a smart mobile device
(Apple, 12.9-inch iPad) and an intelligent classifier imple-
ment can be integrated into an assistant tool for home mon-
itoring use. It can provide a comfortable writing/drawing
tool for subjects under repeated examinations. In this study,
a five-turn Archimedes’ spiral and a 15-cm straight line
were selected to evaluate the patients’ symptoms. A spiral
in polar coordinates is a straight line that can be easily
compared with the handwritten spiral in the same coordinate.
In digitized handwritten patterns, increased variability in
amplitudes and frequencies can appear when drawing a pat-
tern if a functional tremor occurs. To quantify the varia-
tions of functional tremors, the deviation (Dev, cm) and
the accumulated angle (2, rad) of the feature pattern in
polar coordinates are extracted to scale the variability at
different tremor levels. Two key indices are parameterized
using fuzzy membership functions with certainty grades
between 0 and 1 [21], [22]. Then, for nonlinear separa-
ble classification, a nonlinear pattern-recognition scheme
comprising a radial Bayesian network and the color rela-
tion analysis method is used to separate the normal control
from PD or ET, [23]–[26], the so-called perceptual color
representation-based classifier (PCRC). A radial Bayesian
network with nonlinear membership functions can be con-
ducted by a multi-layer pattern mechanism using nonlinear
units to deal with nonlinear separable tasks. Hence, its pattern
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FIGURE 1. Sample Archimedes’ spiral and straight line drawn on an iPad. (a) Sample drawn in
the Cartesian coordinate system (normal control). (b) Polar representation of the radius
(in cm) and angle (in rad) transformation.

mechanism separates the output values of a Bayesian net-
work into ‘‘hue angle’’ and ‘‘saturation value’’ to screen
PD or ET. In contrast to conventional intelligent classifiers,
the proposed PCRC method is an automatic analytical tool
without iterative computations, an optimization technique,
parameter adjustment, or an inference scheme [25], [26]. The
tremor levels are parameterized into the specific member-
ship grades to describe normal controls, subjects with PD,
and subjects with ET using the fuzzification operations. Its
algorithm permits operation in a flexible manner with less
parameter assignment. The PCRC method provides visual
representation with color codes to realize PD screening, such
as green series color for healthy subjects, blue series color
for those with ET, and red series color for subjects with PD.
Its algorithm is also easy to program using a laptop or a
portable smart device. The experimental results will reveal
the feasibility of automated screening for PD or ET.

The remainder of this article is organized as follows:
Section II describes the methodology, including the hand-
written spiral collection and analysis, and PCRC method.
Section III presents decision support system implementation,
tremor quantification and evaluation, and comparison with
the conventional intelligent classifier. Section IV presents the
experimental results and conclusions.

II. METHODOLOGY
A. HANDWRITTEN PATTERN COLLECTION AND ANALYSIS
Handwritten spirals (Archimedes’ spirals) and straight lines
were collected on an iPad (Apple, 12.9-inch iPad Pro, 120 Hz

sampling rate) with an Apple pencil (240 Hz sampling rate,
precision± 0.25 mm) [5], [7], [15], [18]. As seen in Figure 1,
subjects were asked to sit in a chair and draw two samples,
including an Archimedes’ spiral and a straight line, using
their dominant hand. The handwritten samples were obtained
in line with the following standard procedure:

• Record the Cartesian coordinates (x, y) with the vari-
ables, xn and yn, corresponding to the nth samples,
n = 1, 2, 3, . . .;

• Record the pen pressure applied by an Apple pencil in
arbitrary units;

• Record the sampling number, N .

Each Archimedes’ spiral was drawn from its center
(original point) to its extremity (five turns anticlockwise) in a
10 cm× 10 cm square by the subjects, as seen in Figure 1(a).
For the second sample, each subject drew a straight line from
the left- to the right-hand side. The subjects were asked to
draw each sample at their natural speed with no time limita-
tion for sketching the guided spiral and the straight line. For
two repeated measurements at each visit, the subjects drew
two spiral samples and two straight lines with their dominant
hand while the drawing arm was unsupported. The pressure
sensor of the iPad was used to monitor whether the subject
(she or he) drew the patterns. In this study, 100 spiral sam-
ples and 100 line samples were collected from 50 subjects,
including normal control subjects, Parkinson’s disease (PD)
patients, and essential tremor (ET) patients, and analyzed.
After the sampling coordinate points had been acquired,
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FIGURE 2. Linearized spiral trace (PD case). (a) Spiral trace in Cartesian coordinate system. (b) Spiral trace in polar
representation. (c) Functional tremor quantification for a handwritten spiral.

the polar expression was used to linearize the traced spirals
and straight lines by plotting the graph of radius (r) versus
angle (θ), which are derived from the Cartesian coordinates to
polar coordinates from theApple pencil in the traced samples.
r and θ are calculated as described previously [14], [19], [20]:

rn =
√
(xn − x0)2 + (yn − y0)2 (1)

θn = tan−1(
yn − y0
xn − x0

) (2)

where coordinates x0 and y0 are the original point. Angle
θn is returned as a series of increasing or decreasing posi-
tive or negative values in the Cartesian quadrant. The angles
are calculated in the active quadrant using the change in sign
and value of angle θn, and subsequently accumulating the
radian angle from the previous iteration, as seen in the polar
representation, rn 6 θn, n = 1, 2, 3, . . . ,N , in Figure 1 (b). The
total accumulation angle, 2, can be calculated as follows:

2 =

N−1∑
n=1

(θn+1 − θn) (3)

The pseudocodes for replacing the coordinate system are
shown in the Appendix.

In this study, polar representations are used to analyze the
crucial aspects of the drawn samples, as seen for the spiral
trace and linearized spiral trace in Figures 2(a) and 2(b).
While comparing the ideal template obtained through radius-
angular transformation, the goal is to detect differences
between the ideal template, r0n, and traced sample, rn. For
estimating the tremor activity, the difference, e0n, can be
calculated as follows:

e0n = abs(rn − r0n) (4)

r0n =
8
35

(θn − 2.5) (5)

where n is the sampling number, n = 1, 2, 3, . . . ,N ; operator
abs(·) is returned as the absolute value. The deviation curve,
edev, is computed from the linearized spiral trace as follows:

edev = abs(e0 − detrend(e0)) = abs(e0 − e1) (6)

where operator detrend(·) is a function of the detrending
process used to remove the variations [27]–[29]. In clinical
evaluation, a physiological assessment of a functional tremor
is performed by assessing the increased variability of tremor
amplitude and frequency during spiral drawing. To quantify
the effect of the functional tremor, the deviation (Dev, cm) is
employed to scale the increased variability with the accumu-
lation angle, 2′, as follows:

Dev =
abs(edev,1 − edev,N−1)2′

2
= slope2′ (7)

where 2 is the total accumulation angle. Index Dev is pro-
portional to the accumulation angle, 2′. Spiral is associated
with the accumulation angle; hence, the fluctuation of the
drawn spiral can be captured. As seen in Figure 3, spiral traces
and linearized spiral traces indicate differences in a normal
control subject (green line) and a PD subject (blue line).
Hence, index Dev is used to separate the normal condition
from PD and ET for handwritten spiral analysis. In addition,
functional tremors indicate the variances in tremor amplitude
and frequency during the drawing of a straight line. Owing
to a lack of fluency in drawing the straight line, subjects
are unable to complete the task quickly. Thus, the accumula-
tion angle, 2′, increases as tremor amplitude and frequency
increase in the polar representation, as seen in the normal
control subject, and PD and ET subjects in Figure 4. The total
accumulation angle, 2, is selected to quantify the changes
in movement characteristics, tremor amplitude, and tremor
frequency using equation (3).

B. PERCEPTUAL COLOR REPRESENTATION-BASED
CLASSIFIER (PCRC)
A total of 100 spiral samples and 100 line samples were
collected and analyzed from normal control subjects (24),
patients with PD (21), and patients with ET (5). Further,
the collection of the raw data was approved by the hospi-
tal research ethics committee and the Institutional Review
Board, under approval number VGHKS18-CT7-07#. For
100 pairs of feature parameters (Dev, 2), 45 pairs of feature
parameters (45% training patterns) were randomly selected
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FIGURE 3. Characteristic comparisons for normal control and PD subjects. (a) Comparisons of spiral
traces for normal control and PD subjects. (b) Comparisons of linearized spiral traces for normal
control and PD subjects.

FIGURE 4. Movement characteristics in straight-line drawing. (a) Straight-line trace in Cartesian
coordinate system for PD and ET subjects. (b) Straight line trace in polar representation for PD and ET
subjects. (c) Straight line trace in Cartesian coordinate system for normal control subjects. (d) Straight
line trace in polar representation for normal control subjects.

to train the PCRC classifier in the learning stage, and the
remaining 55 pairs (55% testing patterns) were used to eval-
uate the PCRC classifier in recalling stage. The statistics for
average deviations (cm), average accumulation angles (rad),
and their standard deviations obtained using the 45 pairs
of feature parameters are shown in Figure 5. According to
Figure 5, two indices, Dev (cm) and 2 (rad), are parameter-
ized with Gaussian, Z sigmoidal, and S sigmoidal member-
ship functions, varying between values of 0 and 1 [22]–[24].
The value of certainty grades (CG) can be parameterized in
specific ranges using equations (8)–(10), as follows:

• Membership functions, µDev,Nor , µDev,ET , and µDev,PD,
can be used for parameterizing the index Dev (in cm) to
describe the normal control, PD, and ET, as follows:

µDev,Nor =

exp(−
1
2
× (

Dev−DevNor
σDev,Nor

)2), Dev > DevNor

1, Dev≤DevNor ,
µDev,Nor ∈ [0, 1] (8)

µDev,ET = exp(−
1
2
× (

Dev− DevET
σDev,ET

)2),

0.00 < Dev < Devmax , µDev,ET ∈ [0, 1] (9)
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FIGURE 5. Statistics for average deviations (cm) and average
accumulation angles (in rad). (a) Average deviations (in cm) for three
conditions. (b) Average accumulation angle (rad) for three conditions.

µDev,PD=

exp(−
1
2
× (

Dev−DevPD
σDev,PD

)2), Dev < DevPD

1, Dev≥DevPD,
µDev,PD ∈ [0, 1] (10)

where mean valuesDevNor ,DevET , andDevPD are 0.47, 0.71,
and 0.79, respectively, while standard deviations, σDev,Nor ,
σDev,ET , and σDev,PD are 0.18, 0.24, and 0.35, respectively;
Devmax = 2.00 cm is the maximum deviation.
• Membership functions, µAng,Nor , µAng,ET , and µAng,PD,
can be used for parameterizing the 2 (rad) to describe
the normal control, PD, and ET, as follows:

µAng,Nor =

exp(−
1
2
× (

2−2Nor

σAng,Nor
)2), 2 > 2Nor

1, 2 ≤ 2Nor ,

µAng,Nor ∈ [0, 1] (11)

µAng,ET = exp(−
1
2
× (

2−2ET

2Ang,ET
)2), 0.00 < 2 < 2max ,

µAng,ET ∈ [0, 1] (12)

µAng,PD =

exp(−
1
2
× (

2−2PD

σAngv,PD
)2), 2 < 2PD

1, 2 ≥ 2PD

,

µAng,PD ∈ [0, 1] (13)

where mean values 2Nor , 2ET , and 2PD are 4.21, 8.78,
and 8.54; while standard deviations, σAng,Nor , σAng,ET , and
σAng,PD are 1.96, 2.32, and 2.32, respectively; and 2max =

20.00 rad is the maximum accumulation angle. Then, a set of
IF-THEN rules is used to represent linguistic inference rules,

as follows:

Rule 1#: IF (G1 = µDev,Nor and G4 = µAng,Nor ) THEN
y1 (Normal Control) (14)

Rule 2#: IF (G2 = µDev,ET and G5 = µAng,ET )
THEN y2 (ET ) (15)

Rule 3#: IF (G3 = µDev,PD and G6 = µAng,PD)
THEN y3 (PD) (16)

where six certainty grades (µDev,Nor , µDev,ET , µDev,PD,
µAng,Nor , µAng,ET , and µAng,PD) are propositions (G1, G2,
G3, G4, G5, and G6); and y1, y2, and y3 are the assigned
classes. Then, a radial Bayesian network represents the output
probabilistic relationships among the three classes (m = 3) as
follows:

yj=
6∑

k=1

wkjGk

/ 6∑
k=1

Gk (17)

wkj=

{
1, k ∈ Class j

0, k /∈ Class j
, j = 1, 2, 3, k = 1, 2, 3, 4, 5, 6

(18)

where the values ofwkj ∈ [0, 1] assign the connection weights
for the three classes, which are coded as binary values,
encoding (1) Class 1 (Normal Control): [1, 0, 0, 1, 0, 0],
(2) Class 2 (ET): [0, 1, 0, 0, 1, 0], and (3) Class 3 (PD): [0, 0,
1, 0, 0, 1], with a value of ‘‘1’’ for possible class, and all other
classes are encodedwith a ‘‘0’’ value. The connectingweights
from the overall propositions to the summation node, 6Gk ,
are set as 1. The associated nodes, y1, y2, and y3, denote three
classes: Normal control, ET, and PD. The Bayesian network
computes the probabilities of the presence of three classes and
subsequently transfers them to the gray grade for each class,
y1 = g1, y2 = g2, and y3 = g3, as vector g = [g1, g2, g3].
Then, the minimum and maximum gray grades are obtained
as follows:

gmin = min[ g1, g2, g3 ] (19)

gmax = max[ g1, g2, g3 ] (20)

where gmin 6= gmax (constraint condition). According to the
HSV color model, with hue angle, angular dimension started
at the red primary at 0◦ through green primary (120◦) and
blue primary (240◦) and then back to red primary (360◦).
The model comprised neutral, achromatic, or gray colors,
ranging from black (0) at lightness 0 to white (1) at light-
ness 1. The hue angle, H ∈ [0, 360◦], could be defined as
follows [21], [22]:

H =



60× (
g1 − g2
1g

), gmax = g3, g1 ≥ g2

120+ 60× (
g2 − g3
1g

), gmax = g1

240+ 60× (
g3 − g1
1g

), gmax = g2

300+ 60× (
g2 − g1
1g

), gmax = g3, g1 < g2,

1g = gmax − gmin (21)
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where gmin = gmax and H = 0 (no geometric meaning).
Index H , which refers to the three color series is used to
identify the Normal Control, ET, and PD, as green series color
(60◦–180◦), blue series color (180◦–300◦), and red series
color (0◦–60◦ or 300◦–360◦) in Figure 6. In addition, hue
angle, H , is generally normalized to lie between 0 and 60,
as follows:

hc =
[
H
6

]
, hc ∈ [0, 60] (22)

where hc is a suitable parameter for use in computer graphics
applications and human user interfaces. The saturation, S, and
value, V , are described as pure color saturation and lightness,
respectively, which are defined as follows [24], [25]:

V = gmax , S =

{
0, gmax = 0

1−
gmin

V
, gmax 6= 0

(23)

These can help clinicians (expert neurologists) or patients
to visualize the screening results. For tremor screening,
index H is used to identify the three levels as angle points.
An intelligent PCRC is conducted to automatically screen the
possible tremor level, as shown in Figure 6(a). Subsequently,
index S in the range 0.5–1.0 provides high confidence for con-
firming the possible level. Figure 6(b) shows the flowchart of
Parkinson-related disease screening, including feature extrac-
tion, inference rules, and perceptual color representation-
based classification.

C. DECISION SUPPORT SYSTEM IMPLEMENTATION
The proposed decision support system was implemented
in a computer-assisted application program for Parkinson-
related disease screening, as seen in the user interface
in Figure 7(a). The screening algorithms, such as the fea-
ture extraction and PCRC algorithms, were established using
the high-level, graphical, and text-based programming lan-
guage in LabVIEW programming software and MATLAB
workspace (NITM,Austin, TX, USA). These intelligent algo-
rithms are the core techniques used to automatically extract
the feature parameters and assess the signs from the handwrit-
ten templates. The data acquisition system comprised an iPad
(Apple) and an Apple pencil. In this study, each subject had
to draw a spiral sample and a straight line on the iPad screen
using the Apple pencil. The digitized data were transferred to
a laptop/PC for further analysis, as shown on the left-hand
side of Figure 7(a), and to store the Cartesian coordinates
of the drawing points over time in a two-dimensional (2D)
area, as depicted in Figure 7(b). The PCRC was designed as
a decision support method with two input variables (deviation
and accumulation angle), six membership functions, three
associated nodes, and one summation node in the Bayesian
network. The outputs of associated nodes and summation
node were used to circulate the probabilistic relationships
among three classes. Then, PCRC utilized the output values
of Bayesian network into ‘‘hue angle’’ and ‘‘saturation value’’
to identify the normal control, ET, or PD through perceptual

color representation, including green, blue, and red series
colors. The colormap function can be used to display the
hue angle as colors in computer graphics applications and
human user interfaces. The proposed decision support system
was employed to automatically screen the signs in the hand-
written templates to identify subjects potentially suffering
from PD or ET. Hence, the integration of a portable data
acquisition system and a decision support system was estab-
lished to detect the progression of Parkinson-related diseases
to aid neurologists in preliminary diagnosis and home-based
monitoring. The goal here is to identify and warn subjects
of impending illness as early as possible and to offer them
appropriate treatment.

III. EXPERIMENTAL RESULTS
A. TREMOR QUANTIFICATION AND EVALUATION
Experimental data were obtained from 100 subjects; age
range, 26–97 years; average age, 67.8 ± 14.1 years) enrolled
at Kaohsiung Veterans General Hospital, Kaohsiung City,
Taiwan, including normal controls (without tremor), those
with PD, ET, dementia, and other tremor types (psy-
chogenic, action, or postural tremors), as related profile in
the Appendix. Tremors could be defined as rhythmic shak-
ing or involuntary rhythmic movements in clinical indica-
tions. Subjects with PD exhibited physical signs such as
muscular rigidity, rhythmic tremor, and postural instability.
Symptoms associated with ETwere rhythmic oscillation with
high characteristic frequencies. For PD and ET investigations,
subjects with dementia, subjects undergoing drug treatment,
and erroneous measurements were excluded from the dataset.
Tremors might occur in healthy subjects, the so-called phys-
iological tremors. Such type of tremors was also excluded.
Furthermore, subjects with PD or ET could potentially draw
spiral and straight-line templates effectively. If their tremors
were absent at the time of drawing, the subjects would be
asked to resample. Thus, three datasets were selected to vali-
date the proposed decision support system, including 24 nor-
mal control subjects, 21 patients with PD, and 5 patients with
ET (as shown in the Appendix), with clinical measurement
data and examinations with the proposed decision support
system. Figure 8 shows the typical handwritten spiral tem-
plates drawn by PD and ET subjects (ET/postural tremor).
It can be seen that the normal control subjects drew a regular
spiral template. Those with ET tremors exhibited symmetri-
cal and bilateral postural tremors with symptom frequencies
between 4 and 12 Hz [4]. The findings demonstrated that
the handwritten spiral template exhibited a regular fluctua-
tion (saw-like pattern and harmonics) along the traced tra-
jectory, as shown in Figure 8(a). Moreover, the frequencies
of postural tremors were lower (between 4 and 9 Hz) than
those of ET. The frequency distributions of ET and postural
tremors overlapped in the range of symptom frequencies.
Subjects with PD had lower symptom frequencies between
4 and 6 Hz [5]. Oscillatory movement involved a rhythmic
back-and-forth action with the thumb and the index finger
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FIGURE 6. Decision support model. (a) The structure of intelligent classifier and perceptual color representation, (b) Flowchart of Parkinson related
diseases screening.

(pill-rolling tremor) [6]. The spiral template presented a
longer spiral and asymmetric arc, as depicted in Figure 8(b).
In addition, approximately 60% of PD subjects experienced
postural tremors [21], as shown in Figure 8(c). Moreover,
regarding the characteristics of the straight line, it showed
irregular fluctuation in amplitude and frequency for PD
and ET cases, as depicted for subjects with PD and ET
in Figure 4(a) and for normal controls in Figure 4(c).

To quantify the irregular fluctuation observed along the
traced trajectory, the index Dev was employed to scale the
variability for extracting the feature parameter in the traced
spiral; it could be divided into three groups: (1) normal
control: 0.0464–0.6795 cm (average: 0.4743 ± 0.1866 cm),
(2) ET: 0.5119–1.0651 cm (average: 0.7131 ± 0.2495 cm),
and (3) PD: 0.5009–2.1838 cm (average: 0.7882 ±
0.3499 cm). The slope of the deviation curve, edev (cm/rad),
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FIGURE 7. User interface for decision support system and data acquisition system. (a) Decision support system,
(b) Data acquisition System.

increased as the tremor level increased in amplitude and
frequency. The accumulation angle, 2, was also used to
quantify the variants for extracting the feature parame-
ter in a traced straight line, as divided into three groups:
(1) normal control: 2.0766–6.9883 rad (average: 4.21 ±
1.9681 rad), (2) ET: 5.9138–14.7004 (average: 8.7797 ±
2.3288 rad), and (3) PD: 5.5155–15.1349 rad (average:
8.5398 ± 2.3294 rad). The slope of the straight line trace
in the polar representation decreased as the tremor level
increased. These feature parameters were separated into spe-
cific ranges and used to separate the normal control from
PD or ET as preliminary screening, which confirmed the
utility of the feature parameters for further classification
applications.

The experimental data obtained from participating sub-
jects were randomly selected to verify the proposed deci-
sion support system in the recalling stage. The test data
of 31 participating subjects are shown in Table 1. For
example, subject #17 (aged 82 years), who had PD, exhib-
ited rest, action, and postural tremors. Action and postural
tremors appeared with rest tremors in the frequency distribu-
tions. Among these symptoms, action tremors occur in most
PD cases. To quantify the irregular fluctuations, feature
parameters were extracted from digitized handwritten spiral
and straight-line templates using a feature extraction algo-
rithm, as Dev = 0.8154 (cm) and 2 = 7.7541 (rad), as seen
in Table 1. The screening procedure for the decision support
system was performed in line with the following procedure:
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TABLE 1. Experimental results with feature parameters, Dev (cm) and 2 (rad) Note: Symbol ∗: Handedness, symbol L: Left hand side, and symbol R: Right
hand side.
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FIGURE 8. Typical handwritten spiral templates for ET, PD, and postural tremor subjects. (a) Spiral
template and feature parameter (Dev = 0.8181 cm) for ET tremor. (b) Spiral template and feature
parameter (Dev = 1.4380 cm) for PD tremor. (c) Spiral template and feature parameter
(Dev = 0.8972 cm) for postural tremor.

Step 1) given the two feature parameters, [Dev, 2] =
[0.8154, 7.7541],

Step 2) computed 6 certainty grades using equations,
(8) – (13), as [µDev,Nor , µDev,ET , µDev,PD, µAng,Nor , µAng,ET ,
µAng,PD]= [0.0252, 0.8246, 1.0000, 0.0380, 0.8224, 0.8916],
Step 3) used the linguistic inference rules to assign the

propositions [G1, G2, G3, G4, G5, G6] and computed the
probabilities for 3 classes using equations, (17) – (18), as [y1,
y2, y3] = [0.0175, 0.4573, 0.5252],

Step 4) converted the probabilities to the gray grades and
converted those to hue angle and saturation using equations,
(19)–(23), as [H , S] = [351.97, 0.9666], for red series color
to identify the ‘‘PD case’’. Index, S = 0.9666, offered high
confidence to judge the possible severity of PD tremor.

Step 5) normalized the hue angle to lie between 0 and 60 for
displayed in computer graphic application.

The entire process took an average CPU time of 0.5301 s
to identify the possible class. Furthermore, two expert
neurologists agreed with the ‘‘PD (Resting Tremor)’’
level and allowed further medical treatment. These testing
results confirmed that the proposed decision support sys-
tem could separate normal controls from ‘‘PD’’ or ‘‘ET’’
cases, and the saturation index S ≥ 0.5000, denoted
high confidence in this regard. Moreover, for sub-
ject #13 (aged 80 years), given the feature parameters,
Dev = 0.8972 (cm) and 2 = 3.4177 (rad), the screening
results indicated ‘‘PD’’ level with indexesH = 359.47◦ (red)
and S = 0.4552, and for subject #27 (aged 69 years), given
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TABLE 2. Experimental results of fivefold cross validation for PCRC.

the feature parameters, Dev = 0.6249 (cm) and 2 = 8.2187
(rad), the screening results indicated ‘‘ET’’ level with indexes
H = 291.11◦ (pink) and S = 0.7304. Both case studies
showed the true positive value for possible level identification
with lower confidence. Expert neurologists judged that the
participating subjects had postural tremor and Parkinsonism.
Postural or action tremor usually occurred in PD, either
alone or in combination in the early stage. Seventy percent of
PD patients exhibited tremor and had progression of diseases
with early postural instability and akinesia. For these cases,
the proposed method provided the preliminary diagnosis
and then could define the ‘‘warning case’’ for continuously
monitoring disease progression. In case #31 (aged 74 years),
rest tremors might have disappeared during drawing. The
proposed decision support system easily allowed subjects to
be repeatedly examined in terms of whether they had signs
of PD or ET. This confirmed that the proposed decision
support system could provide a scientific approach for tremor
screening at an early stage. The experimental results for
31 subjects are shown in Table 1.

For untrained patterns as shown in Figure 9, 55 testing
patterns were used to validate the PCRC classifier, with a
hit rate of 85.45% (8 failures, 4 FPs, and 4 FNs), a true
positive rate of 87.88%, and a true negative rate of 81.81%
for identifying the correct classes in the recalling stage.
In this study, the K-fold cross-validation (rotation estimation)
method [30], [31] was also used to evaluate the performance
of a classifier model on data of limited size. As general empir-
ical evidence, Kf = 5 or 10 was generally performed with
interchanging the trained patterns and untrained patterns.
In the cross-validation stage, the dataset was divided into two
subsets as 45 trained patterns and 55 untrained patterns in
each test. In this study, these trained and untrained patterns
were randomly selected from dataset for fivefold cross- val-
idation, as seen in Table 2. We started with the subset of
data for training purpose and then evaluated the screening
accuracy with the untrained patterns, using fivefold cross-
validation by separating the testing patterns into five groups.
Through fivefold cross-validation, an average true positive
rate of 90.90% was obtained to quantify the performance of
the proposed classifier for identifying PD or ET, an average
true negative rate of 90.16% for identifying normal con-
trols, and an average hit rate of 90.54% for identifying the

FIGURE 9. Feature Patterns (Dev, 2) for untrained patterns including
normal control, ET, and PD.

correct class. The testing data were used to validate classifier
feasibility, as seen in Table 2. The results of fivefold cross-
validation revealed promising classification capacity from
use on limited testing data to estimate the performance of the
classifier model.

B. COMPARISON WITH THE CONVENTIONAL
INTELLIGENT CLASSIFIER
The multilayer neural network methods were also selected
to train a classifier for separating normal controls from
ET or PD cases, such as general regression neural network
(GRNN) [32]–[34] and support vector machine (SVM) [35].
To train nonlinearly separable functions, these methods could
use the kernel-based function (Gaussian radial basis func-
tion) to modify its architecture as a multiclass classifier. The
kernel-based transformation transfers the input space into
a higher dimensional space through nonlinear transforma-
tion. For example, the total number of symptomatic patterns
was 45, including 18 for normal controls, 5 for ET, and
22 for PD. We applied the 45 paired input–output training
patterns (Devk , 2k ), k = 1, 2, 3, . . . , 45, to determine the
GRNN configuration, such as the numbers of inputs, patterns,
summations, and output nodes [32]–[34]. The output patterns
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FIGURE 10. Classifier training with the gradient descent and PSO algorithms. (a) and (b) The optimal network parameter and mean squared
error versus the number of iteration computing using the PSO algorithm. (c) and (d) The optimal network parameter and mean squared error
versus the number of iteration computing using the gradient descent algorithm.

were encoded as binary values with the value ‘‘1’’ or ‘‘0’’ for
class identification, as encoding (1) Class 1 (normal control):
[1, 0, 0], (2) Class 2 (ET): [0, 1, 0], and (3) Class 3 (PD):
[0, 0, 1]. According to the training patterns, we had 2 input
nodes, 45 pattern nodes in the hidden layer, 4 nodes in the
summation layer, and 3 output nodes (network topology:
2–45–4–3). Two weight matrices, a 45-by-2 matrix and a
45-by-4 matrix, were used to store the connection weights.
Considering 4 bytes for each digital storage, the total memory
storage was 1080 bytes (45 × 2 × 4 bytes and 45 × 4 × 4
bytes). Then, the optimization algorithms, such as gradient
descent learning algorithm and particle swarm optimization
(PSO) algorithm, were used to adjust the optimal network
parameter as the width of kernel-based function to mini-
mize the mean squared error (MSE) by iterative compu-
tations. The PSO algorithm with time-varying acceleration
coefficients [36], [37], different particle sizes, and a maxi-
mum iteration number of 50 was carried out to search for
the optimal network parameter. We performed at least five
runs with the random initial parameters and the given particle
sizes, 20–40. For the convergent condition, tolerance value
≤10−2, and a maximum iteration number of 50, the opti-
mal parameters could be guaranteed to minimize the MSE,
as seen in Figures 10(a) and 10(b). By increasing the particles
from 20 to 40, the solution took <25 iterative computations

(average CPU time: 15.98 s) to search for the optimal parame-
ter and theMSEmonotonically decreased to reach the conver-
gent condition. For example, a particle size of 30 and optimal
network parameter of 0.0035 could be obtained (blue dashed
line), and a learning accuracy of 100% was guaranteed in the
learning stage.

For the same training patterns, the gradient descent
learning algorithm was also used to search for the optimal
network parameter with the initial parameter, 1.0000; learn-
ing rates, η = 0.1, 0.3, 0.5, and 0.7; maximum iteration
number 100; and convergent condition, ≤10−2. We per-
formed four runs with different learning rates, as seen in
Figures 10(c) and 10(d). It could be seen that a greater learn-
ing rate, η = 0.7, allowed a rapid learning stage to search
for the optimal parameter. However, its optimal solution was
easy to trap the perturbation around the local minimum solu-
tion or tend to the divergent condition, as seen from the solid
line in Figure 10(d). The optimal solution list could not be
guaranteed to reach the convergent condition. The learning
accuracy was 75.56% (11 failures) in the learning stage.
In addition, with a smaller learning rate, η = 0.1, its optimal
solution list monotonically decreased and was also guaran-
teed to reach the convergent condition. Its computation took
51 iterative computations (average CPU time: 0.64 s) to deter-
mine the optimal parameter, 0.0248, and obtained learning

61750 VOLUME 7, 2019



P.-J. Kan et al.: Polar Expression Feature of Digitized Handwritten Pattern for Automated-PD Screening Using PCRC

TABLE 3. Experimental results of fivefold cross-validation for GRNN-based classifier.

TABLE 4. Experimental results of fivefold cross-validation for SVM-based classifier.

accuracy of 100% in the learning stage. As indicated by the
red dashed line in Figures 10(c) and 10(d), with learning rate
η = 0.5, the learning stage could rapidly reach the convergent
condition in <12 iterative computations (average CPU time:
0.17 s) and also obtained learning accuracy of 100%. The
optimal parameter, 0.0071, could also guarantee minimiza-
tion of themean squared error. In addition, swarm intelligence
algorithm and gradient descent learning algorithm could also
be used to train the SVM-based classifier [38].

For the same untrained patterns, 55 testing patterns (22 nor-
mal controls, 10 subjects with ET, and 23 subjects with
PD) were randomly selected to validate the multilayer neural
network method, with a hit rate of 83.63% (9 failures, 5 FPs,
and 4 FNs), a true positive rate of 87.50%, and a true neg-
ative rate of 78.26%, for identifying the correct class in the
recalling stage. The experimental results obtained with the
fivefold cross-validations were shown in Tables 3 and 4 for
GRNN-based and SVM-based classifiers, as an average true
negative rate of 86.55% and 87.81% for identifying normal
controls, an average true positive rate of 87.62% and 88.07%
for identifying those with PD or ET, and an average hit
rate of 86.91% and 87.99% for identifying the correct class,
respectively. The multilayer neural network methods offered
an adjustable model to train a classifier with input–output
paired training patterns in specific applications. To reduce
the number of learning computations, the initial conditions

and learning parameters were assigned using a trial-and-error
method. As feed the new training patterns, its learning process
required retraining to adjust the network parameters using
the entire datasets. When the number of training patterns
was increased, the limitations increased in both the number
of iterative computations and the computational time. The
convergent condition also affected the training process, reli-
ability, and classification efficiency. In addition, its model
required good-quality data, more incremental training pat-
terns, and optimization algorithm efforts to enhance the hit
rate, the true positive rate, and the true negative rate. The
GRNN and SVM methods had some limitations, including
the iterative computations for updating network parameters,
initial condition assignment (initial network parameter, accel-
eration coefficients, learning rate, convergent condition), and
network configuration assignment [39].

In contrast to the GRNN and SVM method, the PCRC
method had the inference mechanism with perceptual color
representations to decision-making in classification applica-
tion. It is an adaptive pattern mechanism with adjustment of
the mean values and standard deviations of membership func-
tions via statistics of current database. Hence, the parameters
of membership functions could be directly assigned, which
required less parameter assignment and no iterative process
to adjust the parameters. In addition, the Bayesian network
topological size could be reduced from 2–45–4–3 to 2-6-4.
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The memory storage of connection weights could also be
reduced from 1080 bytes to 144 bytes (6 × 2 × 4 bytes and
6 × 4 × 4 bytes). Its model was a visual model to separate
the normal control from ET or PDwith straightforward math-
ematical operations. The hue angle used a visual approach
with color codes to realize the three levels in green, blue,
and red series colors. The PCRC method had the ability to
self-regulate the primary color grades using the average gray
grades, andminimum andmaximum gray grades. This simple
decision-making method was easily implemented in a tablet
PC and in an intelligent embedded system by commercial
HMI (Human Machine Interface) software and C/C++ pro-
gramming language. This assistant tool also had individual-
ized functions to evaluate the progression of tremor level to
meet patient self-care demands.

IV. CONCLUSION
This study developed an assistive tool to screen PD using
polar expression features and a perceptual color representa-
tion -based intelligent classifier. We intended to offer an auto-
mated PD screening method for a computer-aided decision-
making system. Digitized handwritten patterns were used
to record the dynamics when drawing Archimedes’ spirals
and straight lines , which could detect movement disorders
when any type of tremor occurred. These handwritten pat-
terns showed variability in tremor amplitudes, frequencies,
and directions. In polar expression features, two indexes,
deviation (Dev) and accumulation angle (2), were extracted
from the digitized handwritten patterns to scale the variabil-
ity in different tremor levels, as Dev could be quantified
in the traced spiral: (1)normal control: 0.0464–0.6795 cm,
(2) ET: 0.5119–1.0651 cm, and (3) PD: 0.5009–2.1838 cm;
and2 could be divided into three groups: (1) normal control:
2.0766–6.9883 rad, (2) ET: 5.9138–14.7004, and (3) PD:
5.5155–15.1349 rad. Then, PCRC classifier was employed to
separate the normal control from PD or ET with perceptual
color representation, including green series color, blue series
color, and red series color. With the fivefold cross-validation,
average true positive rate of 92.02%, average true negative
rate of 88.68%, and average hit rate of 90.44% were obtained
to verify the feasibility of this approach for automated
PD screening. In contrast to the multilayer neural network
methods, the proposed PCRC method also provided promis-
ing results and had higher true positive rate, true negative rate,
and hit rate.

The proposed decision support system integrates the iPad
and PCRC classifier for individualized functions to evalu-
ate the progression of tremor level and has the following
advantages:

• easy acquisition of digitized handwritten patterns using
customized software;

• repeated examinations for clinical applications and at-
home monitoring uses;

• easy design of an algorithm with less parameter assign-
ment and no iterative process to adjust the network
parameters;

• easy implementation of feature extraction and screen-
ing algorithms in a portable smart device or a
laptop.

In future research, the sensor-based method can be further
applied to integrate into the proposed assistive tool. We can
also use temporal, spatial, or kinematic parameters of hand-
writing together with the PCRC classifier or the random
decision forest-based classifier (with minimal amounts of
parameter tuning) to enhance the classification performance
and screening accuracy.

APPENDIX
1. The pseudocodes for replacing the coordinate system are
shown below.

Algorithm 1 Pseudocode of Handwritten Spiral Collection
for Tremor Analysis
01 % Transform the Archimedes’ spiral to origin point

x = x−x(1,1) % Cartesian coordinate system
02 y = y−y(1,1)
03 % Convert Pixels to cm
04 x = 0.19273 + (x ∗ 0.025426)
05 y = 0.19273 + (y ∗ 0.025426)
06 % Transform the Cartesian coordinate to polar

expression
for i = 1 to N do

07 r(1,i) = sqrt((x(1,i)^2) + (y(1,i)^2)) % Radius
08 angle(1,i) = abs(atan2(y(i,1),x(i,1))) % Angle
09 end for
10 % Angle is a series of increasing or decreasing

positive or negative values
for j = 1 to N-1 do

11 accumulator = accumulator + abs(angle(1,j)
− angle(1,j + 1))

12 sum_angle(1,j) = accumulator
end for

13 % Ideal spiral tracing data for polar expression
for j = 1 to N-1 do

14 r0(1,i) = (sum_angle(1,j) − 2.5) ∗ (8/35) ;
15 end for
16 % Compute the difference between the subject’s

spiral and ideal spiral
e0 = abs(r − r0)

17 % Detrend process with the error e0
e1 = detrend(e0)

18 % Compute the deviation curve
deviation = abs(e0− e1)

19 % Compute the slope of deviation curve
slope = abs(deviation(1,1)-deviation
(1,n− 1))/sum_angle0(1,n− 1)

20 % Compute the slope of deviation curve
deviation = slope ∗ sum_angle (1,n− 1)

21 plot (sum_angle, r0)
22 plot (sum_angle, deviation)
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Algorithm 2 Pseudocode of Handwritten Straight Lin for
Tremor Analysis

01 % Transform the straight line to origin point
x = x − x(1,1) % Cartesian coordinate system

02 y = y − y(1,1)
03 % Convert Pixels to cm
04 x = 0.19273 + (x ∗ 0.025426)
05 y = 0.19273 + (y ∗ 0.025426)
06 % Transform the Cartesian coordinate to polar

expression
for i = 1 to N do

07 r0(1,i) = sqrt((x(1,i)^2) + (y(1,i)^2)) % Radius
08 angle0(1,i) = abs(atan2(y(i,1),x(i,1))) % Angle
09 end for
10 % Angle is a series of increasing or decreasing

positive or negative values
for j = 1 to N− 1 do

11 accumulator = accumulator + abs(angle0(1,j)
− angle0(1,j+ 1))

12 sum_angle(1,j) = accumulator
end for

13 plot (sum_angle, r0)

2. Clinical profile of the enrolled subjects.
A total of 100 subjects were enrolled in the IRB project,

including normal controls and subjects with ET, PD, and
other classes (dementia, muscular rigidity, insomnia, and
psychogenic tremors). The profile of the enrolled subjects is
shown below.

A total of 100 handwritten patterns from 50 subjects
were analyzed for early detection application, including
24 normal controls (mean age: 51.25 ± 11.15 years) and
26 subjects with movement disorders, including 5 subjects
with ET (mean age: 59.8 ± 6.06 years) and 21 with PD
(mean age: 66.52 ± 3.63 years). The grade of disease was
age-related, which was confirmed by two expert neurolo-
gists. The prevalence of PD increased with advancing age,
and it had a tendency to relapse over 60 years of age.
ET comprised a slowly progressive monosymptomatic dis-
order, starting on one side of the body and further affecting
both sides and then spreading to the neck and vocal cords
within 3 years, with a relapse tendency after 40 years of age.
The experimental profile of the enrolled subjects is show’
below:
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