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ABSTRACT To determine the optimal trajectory for the dive phase of a hypersonic missile, a maneuver
strategy using inverted flight is presented. The combat scene that the hypersonic missile attacks the fixed
target on the ground is considered in this paper. Particularly, a maneuvering form named inverted flight
is first applied to the hypersonic missiles. Afterward, an optimal trajectory is designed by minimizing the
attack time with a preset terminal flight path angle, where the constraints of the angle of attack, dynamic
pressure, heating transfer rate, and normal overload are taken into account. In order to solve the designed
trajectory optimization problem, an improved hp-adaptive pseudospectral method with mesh size reduction
is presented. The simulation results show that the proposed algorithm can significantly reduce the mesh scale
with satisfactory accuracy and the trajectory obtained by the proposed algorithm is in accordance with the
actual flight law. Furthermore, contrast simulation demonstrates that the inverted flight has better trajectory
performance than normal flight.

INDEX TERMS Trajectory optimization, hypersonic missile, inverted flight, pseudospectral method, mesh
refinement.

I. INTRODUCTION
The hypersonic vehicles are mainly divided into three typical
categories: reentry gliding, air-breathing cruise, and rocket-
powered aerospace transport [1]. As for the hypersonic mis-
siles, reentry gliding and air-breathing cruise are usually
adopted. The hypersonic missiles powered by the scramjet
or the booster rocket have become the latest global strike
weapons [2]. As the terminal of the whole manruver pro-
cess, the flight in dive phase directly determines whether
the strike mission can be completed [3]. For the sake of
achieving better flight performance, some researchers have
made active attempts. To avoid ablation of aerodynamic
rudders under harsh heating condition, a control mechanism
named moving mass control (MMS) has been designed for
the reentry vehicles [4]. And, a novel configuration of internal
mass moving is proposed for bank-to-turn (BTT) control in
details [5]. In addition, a higher order sliding mode (HOSM)
disturbance observer and double-layer gain-adaptation algo-
rithm are proposed to deal with the matched and unmatched
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disturbances [6]. Further, the finite- and fixed-time
nonrecursive HOSM observer is studied, achieving a better
performance than the finite-time recursiveHOSMdifferentia-
torb [7]. Recently, researchers have been paying more atten-
tion to the design of the controller with high precision and
strong robustness. However, few studies have been conducted
on the trajectory optimization of the hypersonic missiles in
dive phase. The combat scene that the hypersonic missile
attacks the fixed target on the ground is considered in this
paper. We aim to design an optimal maneuver trajectory to
break through enemy’s air defense system and maximize
target penetration.

The maneuvering form for the hypersonic missile in dive
phase is first discussed. Mehta et al. established the longi-
tudinal model of the hypersonic missile and generated the
optimal trajectory by incorporating the terminal conditions
to achieve the maximum target penetration [8]. Based on
this research, a HOSM controller is proposed to achieve the
tracking of the optimal trajectory with robustness and high
accuracy [9]. In addition, Zhu et al. simplified the model of
the hypersonic missiles by feedback linearization, and then
obtained a three-dimensional maneuvering trajectory based
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on the optimal control theory [10]. Furthermore, the motion
camouflage theory is used to obtain the interception con-
dition of the missile and a guidance law is proposed for
attacking ground target [11]. It should be noted that the
above studies are carried out on the premise of using normal
flight and the importance of selecting a suitable maneuvering
form has been ignored. Different from the traditional ballis-
tic missiles, the hypersonic missiles are usually designed to
be plane-symmetrical in geometry with a high lift-to-drag
ratio [12]. Thus, the maneuvering form has an important
influence on the trajectory performance. For example, there is
a great difference between the trajectory obtained by normal
flight and that obtained by inverted flight. In order to take
the unique aerodynamic shape of the hypersonic missiles
into account, two typical maneuvering forms, i.e., the normal
flight and the inverted flight, are studied in this paper.

As for how to solve the trajectory optimization problem,
there are two main types of methods, i.e., indirect method and
direct method. Constrained by the dynamic pressure, heating
transfer rate, and normal overload, the hypersonic missiles
in dive phase have a narrower flight corridor. By the indirect
methods, the design process of optimal trajectorywill become
complex if one considers the path constraints. To meet this
challenge, Wang et al. converted the constraint of the nom-
inal overload into the constraints of the Euler angles, and
then obtained the trajectory by zeroing the line-of-sight(LOS)
angular rate [13]. One disadvantage of the above study is
that only the constraint of nominal overload is considered,
and another disadvantage is that the trajectory obtained by
zeroing the LOS angular rate is relatively straight, resulting
in the poor ability of target penetration. In order to avoid the
troublesome derivation of analytical expressions, the direct
method is widely used to solve the problem of trajectory
optimization. By discretizing and parametrizing the states
and controls, the continuous-time optimal control problem is
transformed into a problem of nonlinear programming (NLP)
with finite dimensions. The key problem is to design an
algorithm with high accuracy and fast convergence. Recently,
many studies have focused on the design of algorithms for
solving NLP. In [14], a genetic algorithm (GA) is introduced
to obtain the optimal trajectory for the hypersonic vehicles
in unpowered-gliding phase and the problem of sensitivity to
initial value in indirect method is solved. Similarly, GA is
used for the trajectory generation of the boost-gliding hyper-
sonic vehicles tomaximize the range [15]. In order to improve
the accuracy and reduce the computational burden, a semi-
analytical algorithm is proposed and its performance has been
shown to be significantly superior to GA [16]. In addition,
a pattern search algorithm (PS) is designed for the trajectory
optimization of the hypersonic boost glide vehicles in [17].
The ratio of lift to drag (L/D) is selected as the control param-
eter of PS and it is proved that the PS is more efficient than
GA. Moreover, the particle swarm optimization algorithm
(PSO) is used for the ascent phase trajectory optimization of
vehicles with multi-combined cycle engine [18] and reentry
phase trajectory optimization of hypersonic weapons [19],

with the advantage of good convergence and strong
robustness [20].

A direct method, namely, the Gauss pseudospectral
method [21] (GPM), has been widely used in the solution
of the trajectory optimization problems. For example, for the
reentry phase of the hypersonic vehicles [22], the midcourse
of the hypersonic interceptions [23], and the ascent phase
of the ramjet-powered vehicles [24], the optimal trajecto-
ries are all obtained by introducing the GPM. Moreover,
the trajectory optimization for the supersonic vehicle with a
Turbine-Based-Combined Cycle engine is also solved via the
GPM [25]. Compared with other direct methods, the advan-
tage of GPM is that the Karesh Kuhn Tucker (KKT) condi-
tions of transformed NLP are consistent with the first-order
optimality conditions of the continuous-time optimal con-
trol problem [26]. Furthermore, GPM has global optimality
and shows promise in dealing with the complex problems.
Thus, GPM is a good choice to solve the trajectory opti-
mization problem considered in this paper. In order to get
a better performance, it is necessary to improve the GPM.
In [27], a ph mesh refinement method is presented to reduce
the computation burden while ensuring the accuracy. Based
on the hp-adaptive pseudospectral method [27], the optimal
trajectory of a spaceplane in the reentry phase is obtained
to complete a temporary reconnaissance mission [28].The
shortcoming of the ph mesh refinement method [27] is that
the mesh can only increase in size, resulting in an increased
computational burden. In order to further optimize the algo-
rithm, the adaptive mesh refinement methods with mesh size
reduction are studied [29]. In the previous study, we had put
efforts into the design of the mesh refinement algorithm [30].
Thus, the improved hp-adaptive pseudospectral method is
introduced to solve the problem of the trajectory optimization
for the hypersonic missiles in dive phase.

Motivated by the above literatures, an optimal maneu-
ver trajectory for the hypersonic missiles in dive phase is
presented based on an improved hp-adaptive pseudospectral
method. First, the model for the hypersonic missile is estab-
lished wherein the realistic and complete aerodynamic data,
published by NASA [31], is adopted. Then, the maneuvering
form of the hypersonic missile is discussed. It should be
noted that target penetration is negatively correlated with the
value of AoO (the inertial angle of obliquity (AoO) is defined
as the angle between the normal to the target surface and
the missile trajectory [8]). Particularly, a maneuver strategy
under inverted flight is adopted in this paper. The inverted
flight can make full use of lift to change the direction of
velocity, thus achieving the fast strike with a larger flight path
angle (i.e. a smaller AoO). Afterwards, an optimal maneuver
trajectory is designed by minimizing the attack time with a
preset terminal flight path angle, where the constraints of
angle of attack, dynamic pressure, heating rate and normal
overload are taken into account. Furthermore, a algorithm
is presented for the solution of the designed trajectory opti-
mization problem, based on the improved hp-adaptive pseu-
dospectral method.
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The main contributions of this paper are as follows:
i) An optimal maneuver trajectory is designed by minimiz-

ing the attack time with a preset terminal flight path angle.
Particularly, the inverted flight is selected as the maneuvering
form.

ii) An improved hp-adaptive pseudospectral method with
mesh size reduction is presented for the solution of the
designed trajectory optimization problem.

The rest of this paper is organized as follows. In the
next section, the model of the hypersonic missile is given,
and an optimal maneuver trajectory using inverted flight is
described. The third section gives the algorithm for the solu-
tion of the designed maneuver trajectory in detail. Numerical
simulation and the conclusion are presented in fourth and fifth
sections, respectively.

II. MODELING AND TRAJECTORY OPTIMIZATION
DESCRIPTION
A. HYPERSONIC MISSILE MODEL
Ignoring the earth’s rotation and assuming that the earth is
a sphere [32], the kinematical and dynamic equations of
the hypersonic missiles in the ground coordinate system are
described as follows [33].

ẋ = V cos γ cosψ (1)

ḣ = V sin γ (2)

ż = −V cos γ sinψ (3)

V̇ =
−D
m
− g sin γ (4)

γ̇ =
L cos σ − N sin σ

mV
−

g
V

cos γ (5)

ψ̇ = −
L sin σ + N cos σ

mV cos γ
(6)

where x, h, and z are the components of the position vector
of the hypersonic missile. V , γ , and ψ denote the velocity,
flight path angle, and heading angle, respectively. σ is the
bank angle. m is the vehicle mass, and g is the gravitational
acceleration. The lift L, drag D, and side force N are given
as 

L = qSCL
D = qSCD
N = qSCN

q =
1
2
ρV 2, ρ = ρ0 exp

(
h0 − h
hs

) (7)

where q denotes the dynamic pressure, and S is the reference
area. ρ is the air density, and ρ0, h0, hs are the constant
parameters of atmospheremodel [34].CL ,CD, andCN denote
the lift coefficient, drag coefficient, and side force coefficient,
respectively.

The aerodynamic model used in this paper is derived from
the actual data published by NASA [31]. Compared with the
methods of nonlinear curve fitting in [35], [36], smaller resid-
ual between the fitting curve and the actual data is obtained
by using the least square error criterion and quasi-Newton

FIGURE 1. Schematic diagrams of force analysis under two maneuvering
form. (a) using normal flight. (b) using inverted flight.

modifiedmethod in [33]. Thus, the curve fittingmodel (CFM)
described in [33] is adopted in this paper. The expressions of
CL , CD and CN are given in the Appendix.

B. TRAJECTORY OPTIMIZATION DESCRIPTION
The combat scene that the hypersonic missile attack the fixed
target on the ground is considered in this paper. As the last
period of the entire strike mission, the trajectory generation in
dive phase is critical to a successful strike mission because it
directly determines whether the hypersonic missile can break
through the air defense system and cause effective damage to
the target. The hypersonic missiles break through the enemy’s
air defense system relying on the advantage of speed, so the
lateral maneuvering is not considered. First of all, two typical
maneuvering forms, i.e., the normal flight and the inverted
flight, are studied. The schematic diagrams of force analysis
under two maneuvering form are given as Fig. 1.

By analyzing the forces of the missile, the centripetal
acceleration aC and the tangential acceleration aT are given
as follows.

aC =
G cos γ ± L

m
(8)

aT =
D− G sin γ

m
(9)
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where G = mg denotes the gravity. The symbol ‘‘±’’ is
selected as ‘‘−’’ for the normal flight or as ‘‘+’’ for the
inverted flight.

In order to narrow the response time of the air defense
system, the shortest attack time is needed. The shorter the
flight time, the less the kinetic energy loss. Thus, the tangen-
tial acceleration aT is expected to be small enough to remain
the velocity a big value. Furthermore, the centripetal accel-
eration aC is expected to be big enough to provide a smaller
AoO, enhancing the damage ability to the target,. It can be
concluded that the larger the value of aC/aT is, the more
beneficial it is for the dive flight, without considering the
constraints.

For the normal flight, the attack of angle (AoA) has to
be negative to provide a negative lift if a big value of aC
is wanted. At this time, the design of the control system
will become difficult. By using the inverted flight, the above
troubles will be avoided. Moreover, the characteristic of
L/D under inverted flight is better than those under normal
flight, which will provide a bigger value of aC/aT . Thus,
the inverted flight has more advantages for the hypersonic
missile in dive phase.

The maneuver trajectory objective is selected by minimiz-
ing the cost functional

J = φ(X(t0), t0,X(tf ), tf ) = tf (10)

subject to the dynamic constraint

Ẋ = f (X(t), u(t), (t) (11)

the terminal state constraint

φ = [x − xf , h− hf , z− zf , γ − γf ]T = 0 (12)

the control constraints

αmin ≤ α ≤ αmax, β = 0 (13)

and the constraints

q ≤ qmax (14){
Qrate = Cρ0.5V 3.07qα ≤ {Qrate}max

qα = h0 + h1α + h2α2 + h3α3
(15)∣∣ny∣∣ = |(L cosα + D sinα)/(mg)| ≤ {ny}max (16)

where the states X(t) = [x, h, z,V , γ, ψ]T , and the inputs
u(t) = [α, β, σ ]T . J is the index criterion, and the subscript
f denotes the final value of the variables. Eq. (11) is derived
from Eqs. (1)∼(6). Qrate is the heating transfer rate, and ny is
the normal overload of themissile. The parameters in Eq. (15)
are given as follows [23], [37]: C = 9.289 × 10−9BTU ·
s2.07/(ft4.07 · slug0.5), h0 = 1.067, h1 = −1.101, h2 =
0.6988, h3 = −0.1903.

III. DESIGN OF THE ALGORITHM
In this section, an improved hp-adaptive pseudospectral
method is introduced to solve the trajectory optimization
problem described as Eqs. (10)∼(16). Firstly, the trajectory

optimization problem is transformed to the discrete bolza
optimal control problem in a mesh M . Then, a mesh refine-
ment method is designed to solve the transformed NLP
problem. Different from the traditional hp-adaptive pseu-
dospectral method, themesh scale can be reduced by reducing
the number of collocation points and merging adjacent mesh
intervals. Finally, the algorithm for solving the trajectory
optimization problem is summarized.

A. BOLZA OPTIMAL CONTROL PROBLEM
The trajectory optimization for the hypersonic missiles in
dive phase is a non-smooth optimization problem under mul-
tiple constraints. If we adopt the indirect method to solve this
problem, the description in analytical form is very compli-
cated. Fortunately, the GPM provides an effective method
to deal with the optimal problem with multiple constraints.
The disadvantage of the GPM is that we have to increase the
number of the discrete points, which reduces the computa-
tional speed. In order to overcome the above disadvantage,
a hp–adaptive strategy [21], which obtains better perfor-
mance by dividing the time interval into several subintervals,
is widely used to reach the demand of solution precision and
convergence speed. In order to facilitate the description of a
mesh refinement method in the latter section, we firstly trans-
form the trajectory optimization described as Eqs. (10)∼(16)
as the discrete bolza optimal control problem.
The time domain of the trajectory optimization problem is

[t0, tf ]. However, the discrete points of theGauss pseudospec-
tral methods are distributed in [−1,+1]. Thus, the time inter-
val t ∈ [t0, tf ] is firstly transformed to the time interval
τ ∈ [−1,+1]. Assume that the time interval τ ∈ [−1,+1]
is divided into a mesh comprising K mesh intervals Sk =

[Tk−1,Tk ], where −1 = T0 < T1 < · · · Tk = +1,
K⋃
k=1

Sk =

[−1,+1], k = 1, . . . ,K . By introducing Nk Legendre-
Gauss-Radau (LGR) collocation points, the continuous-time
states X(k)(τ ) and control inputs u(k)(τ ) in Sk are approxi-
mated as X̄(k)(τ ) and ū(k)(τ ), respectively. The trajectory opti-
mization described as Eqs. (10)∼(16) is rewritten as follows.
Minimize the cost functional

J = φ(X̄(1)
1 , t0, X̄

(K )
NK+1

, tf ) = tf (17)

subject to the dynamic constraint
Nk+1∑
j=1

D(k)
ij X̄(k)

j =
tf − t0

2
f (X̄(k)

i , Ū
(k)
i , t(τ

(k)
i , t0, tf )),

i = 1, . . . ,Nk (18)

the path constraints

C(X̄(k)
i , Ū

(k)
i , t(τ

(k)
i , t0, tf )) ≤ 0, i = 1, . . . ,Nk (19)

and the boundary condition

ψ(X̄(1)
1 , t0, X̄

(K )
NK+1

, tf ) = 0 (20)

where the path constraints consist of the constraints described
as Eqs. (13)∼(16) and the boundary condition is equivalent
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to Eq. (12); D(k)
ij is the element of the Nk × (Nk + 1) LGR

differentiation matrix [38].

B. ALGORITHM FOR TRAJECTORY OPTMIZITION
In the previous section, the continuous-time trajectory opt-
mizition problem has been discretized into a mesh M which
consists of K mesh intervals Sk = [Tk−1,Tk ], k = 1, . . . ,K ,
with Nk collocation points in each Sk . In order to meet the
requriments of the accuracy tolerance, one solution is to set
the number of the mesh intervals and the collocation points
as much as possible. However, this solution will significantly
increase the computation burden. Thus, the key problem is
to design a mesh refinement method to meet the accuracy
requriments with a small mesh scale.

Firstly, the solution relative error on current mesh M is
estimated according to the approach in [27]. Assume that
the number of the collocation points in the mesh interval
Sk has increased, i.e., there are Mk = Nk + 1 LGR points(
τ̂
(k)
1 , . . . , τ̂

(k)
Mk

)
in Sk , where τ̂

(k)
1 = τ

(k)
1 = Tk−1, τ̂

(k)
Mk
= Tk .

The relative error in the ith component of the states is defined
as

e(k)i
(
τ̂
(k)
l

)
=

E (k)
i

(
τ̂
(k)
l

)
1+ max

j∈[1,...,Nk+1],k∈[1,...,K ]

∣∣∣X (k)
i

(
τ
(k)
l

)∣∣∣ ,
l = 1, . . . ,Mk + 1, i = 1, . . . , nx (21)

with

E (k)
i (τ̂ (k)l ) =

∣∣∣X̂ (k)
i (τ̂ (k)l )− X̄ (k)

i (τ̂ (k)l )
∣∣∣ (22)

where nx is the number of the states X(k)(τ ).
The maximum relative error in Sk is defined as

e(k)max = max
i∈[1,...,nx ],l∈[1,...,Mk+1]

e(k)i (τ̂ (k)j ) (23)

Afterwards, the mesh refinement method is designed in the
following two aspects: (i) e(k)max > ε, (ii) e(k)max ≤ ε,where ε
denotes the mesh refinement accuracy tolerance which is set
by user.

When the error tolerance is not satisfied, i.e., e(k)max > ε,
the relative error is reduced by dividing the mesh interval
or increasing the number of collocation points in the mesh
interval. If there are non-smooth points in the mesh interval
Sk , the method of dividing the mesh interval is adopted;
otherwise, themethod of increasing the number of collocation
points is used.

The non-smooth points are determined according to [29].
Assuming that there areHi non-smooth points in Sk , the mesh
interval Sk is divided into Hk + 1 subintervals. In order to
avoid excessive mesh scales, the number of the subinterval is
limited to Hmax. As a result, the number of the subinterval is
determined by

S = min(Hk + 1,Hmax) (24)

If there are not non-smooth points in the mesh interval
Sk , we improve the accuracy by increasing the number of

collocation points. To satisfy e(k)max ≤ ε, the relative error e
(k)
max

should be multiplied by the factor ε/e(k)max. The increase in the
number of collocation points Pk is determined by [30]

Pk = logN (M )
k

(
e(k)max

ε

)
(25)

Because the Pk defined by Eq. (25) may not be an integer,
we have

N (M+1)
k = ceil

[
N (M )
k + logN (M )

k

(
e(k)max

ε

)]
(26)

where ceil [·] denotes the argument with the next highest
integer.

When the error tolerance is satisfied, i.e., e(k)max ≤ ε,
the mesh scale is reduced by reducing the number of collo-
cation points in a mesh interval and merging adjacent mesh
intervals. Let µk = (Tk−1 + Tk )/2, and hk = (Tk − Tk−1)/2
be the midpoint and half-width of the mesh interval, respec-
tively. The ith component of the state approximation is given
as

X (k)
i (τ ) =

Nk+1∑
j=1

Xij`j

(
τ − µk

hk

)
, `j(s) =

Nk+1∏
i = 1
i 6= j

(
s− si
sj − si

)

(27)

where −1 = s1 < s2 < . . . < sNk < sNk+1 = 1 are the
collocation points.

The polynomial `j(s) is rewritten as

`j(s) =
Nk∑
l=0

aljsl (28)

where alj depends only on the collocation points.
Substituting (28) into (27), we have

X (k)
i (τ ) =

Nk∑
l=0

bij

(
τ − µk

hk

)l
, bij =

Nk+1∑
j=1

Xijaij (29)

The quantities which are difined to normalize the coeffi-
cients bij are given as

βij = 1+ max
k∈[1,...,K ]

max
τ∈Sk

∣∣∣X (k)
i (τ )

∣∣∣ , (i = 1, . . . , nx) (30)

According to the difinition of µk and hk , the ineqality
|τ − µk | /hk ≤ 1 holds for τ ∈ Sk . if the N th

k degree term
in Eq. (29) is removed, the maximum relative error in Sk
is
∣∣biNk ∣∣ /βij. All terms in Eq. (29) are removed from high

degree to low degree until
∣∣bij∣∣ /βij > ε. For all components

of the state i ∈ [1, . . . , nx], the process mentioned above
is repeated, resulting in the reduced polynomial degrees(
N (k)
1 , . . . ,N (k)

nx

)
. The number of collocation points in Sk is

selected as the maximun of
(
N (k)
1 , . . . ,N (k)

nx

)
.

As for merging adjacent mesh intervals, the conditions are
given as follows: (i) two mesh intervals are adjacent, and
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Nk+1 = Nk ; (ii) the relative errors of two mesh intervals are
not greater than the error tolerance ε; (iii) the relative error of
the merged mesh interval are not greater than ε.

The algorithm for solving the trajectory optimization prob-
lem is summarized as follows.

Step 1: Transform the trajectory optimization problem
described as Eqs. (10)∼(16) into the bolza optimal control
problem described as Eqs. (17)∼(20).
Step 2: Supply an initial mesh M comprising K mesh

intervals Sk = [Tk−1,Tk ], k = 1, . . . ,K , with Nk collocation
points in Sk .

Step 3: Solve the bolza optimal control problem described
as Eqs. (17)∼(20) using the NLP solver SNOPT in [39].

Step 4:The maximum relative error e(k)max, k = 1, . . . ,K ,
on current mesh M is estimated using the Eq. (23).
Step 5:If the inequality e(k)max ≤ ε holds for all k =

1, . . . ,K , then quit. Otherwise, proceed to Step 6.
Step 6:Get a refined meshM+1. For every mesh intervals

Sk = [Tk−1,Tk ], k = 1, . . . ,K , (a) if the error tolerance
is not satisfied, i.e., e(k)max > ε, divide the mesh interval (by
Eq. (24)) or increase the number of collocation points(by
Eq. (26)). (b) If the error tolerance is satisfied, i.e., e(k)max ≤ ε,
reduce the number of collocation points and merge adjacent
mesh intervals.

Step 7:Return to Step 3.

IV. SIMULATIONS
This Section implements a simulation study to verify the per-
formance of the optimal maneuver trajectory proposed in this
paper. The simulation is carried out in three aspects. Firstly,
the performance of the improved hp-adaptive pseudospectral
method proposed in this paper is verified, by comparing
with the pseudospectral method in [27]. Secondly, an optimal
maneuver trajectory is obtained by solving the designed tra-
jectory optimization problem in Section II with the proposed
algorithm in Section III. In order to verify that the trajec-
tory obtained by the designed algorithm is in accordance
with the actual flight law, Runge-Kutta method is used to
solve the dynamic model described as Eqs. (1)∼(6) in which
the value of the control input corresponds to the optimal
trajectory. Finally, the effectiveness of the inverted flight is
verified by comparing the results of normal flight and inverted
flight.

A. RESSULTS OF MESH REFINEMENT METHOD
To test the performance of the mesh refinement method
proposed in Section III, the hypersensitive optimal control
problem [40] is considered. The objective is selected by
minimizing the cost functional

J =
1
2

∫ tf

0
(x2 + u2)dt (31)

subject to the dynamic constraint

ẋ = −x + u (32)

FIGURE 2. Exact solution to the hypersensitive problem with tf = 10000.
(a) State vs. Time. (b) Control vs. Time.

and the boundary conditions

x(0) = 1.5, x(tf ) = 1 (33)

where tf is fixed.
The parameter M is the number of mesh refinement itera-

tions, and M = 0 denotes the mesh initialization. The fixed
terminal time tf is selected as 10000 because the solution to
the problem described as Eqs. (31)∼(33) exhibits a so-called
take-off, cruise, and landing structure for a sufficiently large
value of tf . The initial mesh M = 0 consisting of 10 evenly
distributed mesh intervals, with 2 collocation points in mesh
interval. The error tolerance ε = 10−6. The simulation results
are depicted in Figs. (2)∼(3).
Fig. 2 shows the exact solution to the hypersensitive

problem described as Eqs. (31)∼(33). It can be seen from
Fig. 2 that the state and control change greatly near the ends
of time, while the changing trend is relatively smooth in
the middle of time. When using the collocation method to
solve this hypersensitive problem, it can be concluded that
more collocation points are needed near the ends of time,
and the number of collocation points required in the middle
of time is relatively smaller. The above characteristics of
the solution are suitable for testing the effectiveness of the
designed algorithm.

Themesh refinement history of themethod in [27] is shown
in Fig. 3(a), and the result of the method proposed in this
paper is shown in Fig. 3(b). For this two methods, the results
show that the collocation points are mainly ditributed
near the ends of time, which is consistent with the exact
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FIGURE 3. Mesh refinement history with the error tolerance ε = 10−6.
(a) Mesh refinement history by the method in [27]. (b) Mesh refinement
history by the proposed method.

solution in Fig. 2. In Fig. 3(a), the number of the collocation
points increases as M increases. Different from the results
in Fig. 3(a), it can be seen from the Fig. 3(b) that the number
of the collocation points decreases asM increases whenM ≥
3. The result in Fig. 3(b) indicates that the proposed mesh
refinement method can significantly reduce the mesh scale
with a satisfactory accuracy.

B. RESULTS OF OPTIMAL TRAJECTORY
The model parameters for hypersonic missile are selected
according to [33], and the parameters for atmosphere
model [34] are selected as ρ0 = 6.7429 × 10−5slugs · ft−3,
h0 = 85000ft, hs = 21358ft. The initial value of the states are
given as follows: x0 = 0, h0 = 85000ft, V0 = 7700ft/s, γ0 =
0. The terminal state constraints are given by xf = 4× 105ft,
hf = 0, γf = −65o. The maximum values of the dynamic
pressure, heating transfer rate, and normal overload are given
as follows: qmax = 3.1315 × 104lbF/(ft2), {ny}max = 10,
{Qrate}max = 200BTU/(ft2 · s). The maneuvering form is
selected as inverted flight.

Because the hp–adaptive Gauss pseudospectral methods
obtain the approximation of states by theGauss-Lobatto poly-
nomial interpolation, rather than by the numerical integra-
tion, it is necessary to compare the results of optimization
algorithm with the results of numerical integration. The con-
trol α of the optimal trajectory is taken as the input of the

FIGURE 4. Curves of the angle of attack.

FIGURE 5. Curves of the trajectory.

model differential equations described as Eqs. (1)∼(6), and
the results of numerical integration are obtained by Runge-
Kutta method. The simulation results are depicted in Figs.
(4)∼(10).
Figs. (4)∼(7) show the curves of the angle of attack,

trajectory, velocity, and flight path angle, respectively. The
results by the proposed trajectory optimization algorithm
are depicted as the dotted lines, and the results by numer-
ical integration as the solid lines. By contrast, we can see
that the results of the proposed trajectory optimization algo-
rithm is consistent with those of numerical integration. it can
be concluded that the proposed optimization algorithm can
reflect the actual motion law of the hypersonic missile with a
high accuracy. Moreover, the results indicates that the whole
maneuvering trajectory is smooth.

Next, we analyze the characteristics of the trajectory
obtained by the proposed trajectory optimization algorithm.
As shown in Fig. (4), the control input, namely the angle of
attack, is within a reasonable range (α ∈ (0, 30◦)). In Fig. (5),
the optimal maneuver trajectory indicates that the hypersonic
missile reaches the location of the target. It can be seen from
Fig. (6) that the velocity is a downward trend, which is is
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FIGURE 6. Curves of the velocity.

FIGURE 7. Curves of the flight path angle.

FIGURE 8. Curve of the dynamic pressure.

caused by the constraints of heating transfer rate and dynamic
pressure. Fig. (7) shows that the terminal flight path angle
achieves a preset value. Figs. (8)∼(10) show the curves of the
dynamic pressure, heating transfer rate, and normal overload,
respectively. The results reveal that the dynamic pressure,

FIGURE 9. Curve of the heating transfer rate.

FIGURE 10. Curve of the normal overload.

TABLE 1. Maneuvering forms and terminal flight path angles.

heating transfer rate, and normal overload are within their
constraints throughout the whole flight.

C. COMPARISON OF NORMAL FLIGHT AND INVERTED
FLIGHT
To verify the effectiveness of inverted flight, the following
simulation is carried out. The maneuvering form and terminal
flight path angle are selected as Table 1, and other conditions
are set to the same as those in the section B. The simulation
results are given in Fig. (11)∼(12).
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FIGURE 11. Curves of the trajectory.

FIGURE 12. Curves of the normal overload.

Fig. (11) shows the trajectory curves of Tra 1∼Tra 6. It can
be seen that the trajectory curve of the inverted flight has a
shape of approximate parabola, and are smoother than that of
normal flight. In the process of simulation, we found that it
is relatively easy to obtain an optimal trajectory under a large
terminal flight path angle by using inverted flight. However,
a large preset terminal flight path angle under normal flight,
with the same parameter settings, will cause the result to
diverge.

The normal overload curves of Tra 1∼Tra 6 are given
in Fig. (12). It can be seen that the normal overload curves
of the normal flight are not satisfactory. The saturation time
of normal overload becomes longer when the preset terminal
flight path angle increases. Long saturation time of normal
overload will increase the difficulty of controller design and
even lead to the loss of control. In contrast, the normal
overload curves of the inverted flight are always within the
constraint, even when the preset terminal flight path angle is
relatively larger. Thus, it can be concluded that the inverted

flight has more advantages for the hypersonic missiles in
dive phase. By contrast simulation, the effectiveness of the
inverted flight is verified.

V. CONCLUSION
An optimal maneuver trajectory is presented for the hyper-
sonic missiles in dive phase in this paper. Compared with
previous studies, a maneuvering form named the inverted
flight is first applied to the hypersonic missiles. Furthermore,
an improved hp-adaptive pseudospectral method with mesh
size reduction is designed to solve the trajectory optimization
problem. Simulation results show that the proposed algorithm
can significantly reduce the mesh scale with a satisfactory
accuracy, and the effectiveness of the inverted flight is ver-
ified by comparative simulation. The work in this paper
provides a maneuver strategy for the hypersonic missiles in
dive phase to break through enemy’s air defense system and
maximize target penetration.

APPENDIX
The CFM [33] used in this paper is summarized in this
section. The expressions of CL , CD and CN are given as
follows.

CL = CL,Ma ·Ma,L + CL,α · αL

=


−0.081929
0.0470142
−0.00919
0.000774
−0.0000293
0.000000412



T 

M0
a

M1
a

M2
a

M3
a

M4
a

M5
a



+


1.07727− 0.0265Ma
−0.49898+ 0.0019M2

a
0.76741107
−4.21373565
8.02706009


T 

α

α2

α3

α4

α5

 (34)

CD = CD,Ma ·Ma,D + CD,α · αD

=


0.08883096
−0.03339562
0.005044728
−0.0003658
0.00001274
−0.00000017



T 

M0
a

M1
a

M2
a

M3
a

M4
a

M5
a



+


0.183− 0.00716Ma
−3.587+ 0.0005M2

a
59.71887625
−321.68800332
603.01745298


T 

α

α2

α3

α4

α5

 (35)

CN = CN ,Ma ·Ma,N · β + CN ,α · αN · β

=


−0.29253
0.054822
−0.0043203
0.00015495
−0.0000020829


T 

M1
a

M2
a

M3
a

M4
a

M5
a

β
VOLUME 7, 2019 63501



S. Tan et al.: Optimal Maneuver Trajectory for Hypersonic Missiles in Dive Phase Using Inverted Flight

+


0.16502903− 0.01658312Ma
2.41401+ 0.01516821M2

a
−70.3554194

303.723− 0.2228107M2
a

−321.59490071


T 

α

α2

α3

α4

α5

β
(36)

where α is the angle of attack, and β is the sideslip
angle. Ma denotes the velocity of the hypersonic missile in
Mach.
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