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ABSTRACT Dimensional emotion recognition is currently one of the most challenging tasks in the field
of affective computing. In this paper, a novel three-stage method is proposed to learn hierarchical emotion
context information (feature- and label-level contexts) for predicting affective dimension values from video
sequences. In the first stage, a feed-forward neural network is used to generate a high-level representation
of the raw input features. Then, in the second stage, the bidirectional long short-term memory (BLSTM)
layers learn the context information of the feature sequences from the high-level representation and get the
initial recognition results of the input. Finally, in the third stage, a BLSTM neural network is used to learn
the context information from emotion label sequences by an unsupervised way, which is used to correct
the initial recognition results and get the final results. We also explore the influence of different sequence
lengths by sampling from the original sequences. The experiment performed on the video data of AVEC
2015 demonstrates the effectiveness of the proposed method. Our framework highlights that incorporating
both feature/label level dependencies and context information is a promising research direction for predicting
the continuous dimensional emotion.

INDEX TERMS Affective computing, emotion dimension, hierarchical emotion context learning, video
expression, BLSTM.

I. INTRODUCTION
Emotional states play a fundamental and important role
in human communication. Understanding human emotional
states are important for human-human interaction and social
contact. Hence automatic emotional state recognition has
been an active research area in the past years [1]–[3].

According to theories in psychology research [4], [5],
there are three emotion theories to model the emotion state:
discrete theory, appraisal theory and dimensional theory. The
discrete theory claims that there exists a small number of
discrete emotions (i.e., angry, disgust, happiness, neutral,
sadness, afraid, and surprise) that are basic in our brain and
recognized universally [6]. In research on automatic emo-
tional state recognition, this intuitive and simple theory inter-
preting emotional states as basic categories has been the most
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commonly adopted approach. However, people exhibit non-
basic, subtle and complex emotional states like depression.
Therefore, basic discrete classes may not reflect the complex-
ity of the emotional state expressed by human. Hence, many
researchers advocate the use of dimensional theory. In the
appraisal theory, emotions are generated through continuous,
recursive subjective evaluation of both our own internal state
and the state of the outside world [6]. However, this theory is
still an open research problem on how to use it for automatic
measurement of emotional state. Dimensional theory claims
an emotional state as a point in a continuous space. Hence,
this dimensional theory can model the subtle, complicated
and continuous emotional state.

In recent years, there has been a shift towards predicting
emotion in continuous dimensional space from recognition
of discrete emotion categories. Many researches have been
investigated on video sequences to get continuous recognition
in the dimensional space [7]–[10]. Typically, valence (V) and
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arousal (A) dimensional space is one of the most popular
continuous emotional model. The valence dimension refers
to how positive or negative the emotion is, and range from
unpleasant to pleasant. The arousal dimension refers to how
excited or apathetic the emotion is, and it ranges from sleepi-
ness or boredom to frantic excitement [11].

For continuous dimensional emotion recognition, the chal-
lenge is to build systems that can continuously (i.e., over time)
analyze and predict affective emotion in dimensional space.
The survey by Sariyanidi et al. [12] highlighted the impor-
tance tomake better use of the context information on sequen-
tial data. Context information is very useful because the target
dimensional values are continuous and have a short time
gap between two adjacent predictions. In a video sequence,
an emotional expression of a video frame is recognized by
taking into account not only the input feature describing that
frame, but also the input features describing the previous
frames and the future frames, i.e., how the expression evolved
over time to the current state, how the expression evolve from
current state to future state [8].

Some previous work which are able to make use of context
information, but they are very tied to the feature level. As sug-
gested in [12], there is a significant gap between feature level
and semantic emotion level (label level) in sequential data.
For example, face images can change fast and dramatically in
videos, even if the emotional state of the person will change at
a slower speed [8]. And there are much irrelevant information
(e.g., head pose, illumination) at the feature level. When
those irrelevant information change fast and dramatically,
the context information between the feature sequence can
be very destructive to emotional recognition. And there is
another problem between feature level and label level which
is that the emotional values are annotated by human person.
When annotators make the decision based on vocal and visual
signals, there is an inherent annotation delay between their
observations and decisions. Thus, it is important to explore
new strategies that can exploit the context information at both
feature level and label level, and the same important as han-
dling with the high variability of the feature sequence [13].
Therefore, it is necessary to carry out dimensional emotion
recognition based on context information.

In this paper, we use the three-stage framework based on
BLSTM, we tackle the problem of continuous dimensional
emotion recognition by learning hierarchical emotion context
information at feature level and label level. In the approach,
context information at feature level is firstly used to do soft
emotion recognition and get the initial emotion recognition
result, which will be corrected by using the emotion context
information of label level in the third stage. The major con-
tributions of this paper are:
1) We proposed a model combined with feed-forward

neural network and BLSTM networks to capture
context information on the feature sequence. The
feed-forward neural network is used to generate a
high-level representation of the raw input features, and
then BLSTM learns the context information of feature

sequences from the high-level representation. It will
reduce the affection of useless factors for emotion
recognition.

2) A novel three-stage framework based on BLSTM is
proposed to learn the hierarchical emotion context
information, namely high-level feature representa-
tion learning, feature-level emotion context learn-
ing (FLECL) and label-level emotion context learning
(LLECL). Specifically, we will get the initial recog-
nition result at the second stage by making use of
the feature-level context information. And at the third
stage, the final recognition result is got by using the
label-level emotional context information learned from
the emotion label sequences.

3) We explore the influence of the sequence length by
sampling different lengths of sequences from the orig-
inal sequences, and then find the appropriate length
for emotional context learning for continuous emotion
recognition.

The rest of the paper is organized as follows. We intro-
duce the related work in Section II. Section III presents
our BLSTM-based hierarchical context learning algorithm in
detail. Section IV describes datasets and reports our exper-
imental results. Conclusions and future directions are dis-
cussed in Section V.

II. RELATED WORK
A. DIMENSIONAL EMOTION RECOGNITION
Dimensional space is able to represent a wide range of sub-
tle and complicated emotions, especially those spontaneous
non-prototypical ones in real-life data [10]. Various contin-
uous dimensional emotion recognition systems have been
built. The typical approach is to take every single data as a
single unit (e.g., a frame of a video sequence) independently.
It can be made as a standard regression problem for every
frame using the so-called static (frame-based) regressors.
Gunes and Pantic in paper [14] focus on dimensional recogni-
tion of emotions from head gestures using the Support Vector
Machines for Regression (SVR). Another more interesting
approach uses the temporal relationship between different
continuous data to make a better recognition of emotions.
In [29], authors use both CNNs and RNNs to set up a system
that performs emotion recognition on video data. The system
with the dimensional approaches can model truly the emotion
over time so that can output time-continuous labels.

B. CONTEXT LEARNING FOR DIMENSIONAL
EMOTION RECOGNITION
As discussed in section I, context information is very impor-
tant for continuous dimensional emotion recognition. Many
researchers explored techniques to take advantage of this
information. In [15], authors use spatiotemporal representa-
tions by computing features over a temporal window rather
than a single frame. But there is a common assumption that
within a window of expression there are no head pose varia-
tions but only facial activity changes which are not common
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in real-life data [8], [12]. Another typical method makes use
of context information is Hidden Markov Model (HMM).
It has been applied for facial expression recognition [16],
speech emotion recognition [17], and audio-visual affect
recognition [18]. In the following, we will take a short review
of the feature-level and label-level emotion context learning
respectively.

1) FEATURE-LEVEL EMOTION CONTEXT LEARNING
Long Short Term Memory (LSTM) [19] has been success-
fully used for modeling the context information. LSTM
is one type of recurrent neural network (RNN), has been
proven to be effective for modeling the relationship between
sequential observations by making use of past information.
This method outperformed techniques such as support vector
regression (SVR) [20]. Many researchers used it to learn
the feature-level context information on audio/video data
and the results showed its promising performance [20]–[22].
Wöllmer et al. [23] first proposed a method based on LSTM
recurrent neural networks for continuous emotions recog-
nition that includes modeling of long-range dependencies
between observations. In [9], authors use Bidirectional Long
Short Term Memory (BLSTM) to do affective dimension
recognition. BLSTM can model long-range temporal depen-
dencies on sequential observations by using past and future
contexts. In this study, we chose an approach based on
BLSTM recurrent neural network because it is capable of
modeling time series with contextual dependencies.

2) LABEL-LEVEL EMOTION CONTEXT LEARNING
The problem of synchronization of the feature level and
emotion level (label level) has been investigated in the lit-
erature. In [24], Hung et al. investigated annotation delay
compensation by applying temporal shifts and smoothing
filters. Temporal shifts is a way to realign the feature with
the ground truth. Smoothing filter is to realign the recognition
results. Many researches use the two techniques to deal with
delay problems [9], [20], [24], but it is difficult to decide how
many frames should be shifted or the length of the filter.
In [9], authors used a deep BLSTM recurrent neural network
to get initial recognition results and then they adopted two
Gaussian smoothing methods: one with window of fixed
length (120 frames), the other with windows of variable
length.

In [8], [25]–[27], multistage approaches have been
proposed to learn the information in different levels.
Graves et al. [7] trained a two-stage system for classifying
every individual video frame, one stage is a traditional regres-
sion method, and another is a time-delay neural network
for temporal relationships between consecutive recognition
results. Meng and Bianchi-Berthouze et al. [27] trained
a multi-layer hybrid framework composed of a tempo-
ral regression layer for recognizing emotion dimensions,
a graphical model layer for modeling valence-arousal corre-
lations, and a final classification and fusion layer exploiting
informative statistics extracted from the lower layers. In [25]

and [27], a multi-stage approach was proposed to separate
the feature level and the decision level. In the feature level,
traditional classification methods were used to predict the
emotion labels. In the decision level, the transitions (over
time) between consecutive affective dimension levels were
modeled as a first-order Markov model. The main limitation
of current multistage approaches is that they do not make use
of connections between feature level and label level. They
used traditional classification methods (e.g., SVM, SVR,
and KNN) in the feature level, and then analysis temporal
information in the label level or decision level separately.

In this paper, our model to learn hierarchical emotion
context information mainly based on BLSTM. There are
several studies that make use of LSTM variants for dimen-
sional emotion recognition [20]–[22], whereas these previous
works mainly focus on learning the context information at the
feature level. In this paper, we introduce a hierarchical con-
text learning framework for continuous dimensional emotion
recognition by usingBLSTM, inwhichwe deal with the prob-
lem of learning the context information at both feature level
and label level through a novel three-stage framework. When
learning the context information of feature level, instead of
inputting the raw feature into BLSTM layer directly, we use
the features learned by the feed-forward neural network first
as the input of the BLSTM layers. And when learning the
context information of label level, we use the emotion labels
to train the BLSTM network in an unsupervised way. We also
compare our model with several studies that make use of
LSTM variants. And we also explore the influence of the
different lengths of sequences by sampling. During sampling,
we also explore the proper sampling step length according to
the emotion duration.

III. LEARNING THE HIERARCHICAL CONTEXT AMONG
FEATURES AND LABELS FOR CONTINUOUS
DIMENSIONAL EMOTION RECOGNITION
In this section, we first describe the overall architecture, and
then present the algorithms used in this paper.

A. SYSTEM ARCHITECTURE
Fig. 1 shows the architecture of the proposed continuous
dimensional emotion recognition system, which has one hid-
den layer for the High-Level Feature Learning(HLFL), three
BLSTM layers for Feature-Level Emotion Context Learn-
ing (FLECL) and one BLSTM layer for Label-Level Emo-
tion Context Learning (LLECL). The input of our model is
the appearance feature vectors extracted from each frame
intercepted in video. We first use the low-level video fea-
ture sequences as the input of the hidden layer to learn the
high-level representation of the input video. Then BLSTM
is adapted to learn the feature-level emotional context from
the high-level feature representation, and then give the initial
emotional dimension label recognition. Finally, the initial
emotional dimension label recognition results are used as the
input of the BLSTM at third stage to be further corrected by
using the label-level emotional context information, and get
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FIGURE 1. System architecture.

the final emotion recognition results. Specifically, the training
can be broken into the following three stages:
• High-level Feature Learning: At this stage, the raw
feature sequences are fed into the hidden layer to learn
high-level representations since the high-level represen-
tation of the raw features can reduce the variability of
feature sequences, which makes context learning more
easily.

• Feature-level Emotion Context Learning: The
high-level feature representations learned at the first
stage are fed into the BLSTM network to the learn
feature-level context. This stage and the first stage are
trained together with a connected neural network by the
supervised way. And the output of this stage is the initial
recognition of emotion values.

• Label-level Emotion Context Learning: At this stage,
we use BLSTM network to learn the emotional context
of the label level. Specifically, we train this BLSTM net-
work in an unsupervised way. The input and output are
both ground truth emotion value sequence.We apply it to
capture the changing pattern of emotion state sequences.
The initial recognition emotion results of the second
stage are used as the input of this stage to be corrected
further. The output of this stage is the final recognition
results.

B. HIGH-LEVEL FEATURE REPRESENTATION LEARNING
Instead of inputting the raw feature into BLSTM layer
directly, we put the low-level feature into the feed-forward
neural network first, and the output of which is fed into the
BLSTM layers. We use the feed-forward neural network to
learn a high-level feature from the input feature sequence.
Given an input feature sequence X = (x1, x2, . . . , xT ), xt is
the t-th feature in that sequence, and xt represents the input
feature at time t . The output of this network is the high-level
feature sequence X ′ = (x ′1, x ′2, . . . , x ′T ). We use the sig-
moid function as the activation function and the formula of
one layer is as follows:

zt = Wxt + b,

x ′t =
1

1+ e−zt
, (1)

where W is the weight matrix of that layer, b is the bias.
In our experiments, we use more than one layer to learn
the high-level feature. The feature dimension of xt is 84.
We set the layer with 64 hidden units, so the dimension
of W is 84*64, and the feature dimension of the high-level
feature x ′t is 64.

C. FEATURE-LEVEL EMOTION CONTEXT LEARNING
This stage focuses on the feature-level context learning (the
video feature sequence) by using BLSTM. It performs a
typical supervised training process with a neural network to
produce an initial recognition for each video frame.

More specifically, a standard LSTM layer computes the
hidden state sequences h = (h1, h2, . . . , hT ) by iterating the
following equations from t = 1 to T .

it = σ (Wxix ′t +Whiht−1 + bi)

ft = σ (Wxf x ′t +Whf ht−1 + bf )

ct = ft ∗ ct−1 + tanh(Wxcx ′t +Whcht−1 + bc)

ot = σ (Wxox ′t +Whoht−1 + bo)

ht = ot ∗ tanh(ct ), (2)

where σ is the sigmoid function, i, f , o and c denote the input
gate, forget gate, output gate and cell activation respectively,
W is the weight matrices. Here, we use H to denote LSTM
layer operation, which is

(ht , ct ) = H (x ′t , ht−1, ct−1). (3)

In a BLSTM layer, there are two directional operations,
the past and the future time direction, which make it capture
available context information in both the past and the future of
a specific time frame in a sequence. We use the output x ′t of
the hidden layer as the input of BLSTM network. Consider
that there are N layers (without input layer) in the network
and the length of an input sequence is T , then the operations
of the network are as follows:

(
−→
h n
t ,
−→c n

t ) =
−→
H n(
−→
h n−1
t ,
−→
h n
t−1,
−→c n

t−1),

(
←−
h n
t ,
←−c n

t ) =
←−
H n(
←−
h n−1
t ,
←−
h n
t−1,
←−c n

t−1), (4)

y′t = W−→
h N−1y

−→
h N−1
t +W←−

h N−1y

←−
h N−1
t + by, (5)
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where t = 1 to T , n = 2 toN−1,
−→
h 1
t = x ′t ,

←−
h 1
t = x ′t , and xt

the input, y′t the output.
−→
h n

0,
←−
h n

0,
−→c n

0 and
←−c n

0 are randomly
initialized for all BLSTM layers. Equation(1) is the operation
of the multi-layer perceptron. Equation(4) is the operation of
the multi BLSTM layer. Notice here in (4), when the hidden
state feed forward into the next layer, it only feeds into the
layer which has the same direction (positive or negative time
direction) with current layer. Equation(5) is the operation of
the linear regression layer. The output is calculated by taking
into account of both directions (positive and negative time,
or, past and future).All the operations in (1), (4), and (5) are
done iteratively from t = 1 to T .
Assume y′ denotes the estimation result of the dimensional

emotion value y and T is length of sequence, then Root Mean
Square Error (RMSE) is defined as:

RMSE =

√√√√ 1
T

T∑
1

(yt − y′t )2. (6)

We choose the RMSE as the loss function of the
feature-level emotion context learning stage and the
label-level emotion context learning stage.

By combining the feed-forward neural network layer and
the BLSTM layers, the model will firstly use the regression
layer to generate a high-level representation of the raw input
features, then the BLSTM learn the context information from
the high-level representation. When the basic hidden layer’s
outputs are fed into BLSTM layer, this method will reduce
the feature dimension which makes BLSTM’s computation
become easy.

D. LABEL-LEVEL EMOTION CONTEXT LEARNING
This stage focuses on the label-level emotion context learn-
ing. After the second stage, we can get the initial predicted
dimensional emotion sequence Y ′ = (y′1, y′2, . . . , y′T )
from feature sequence. We also have the ground truth label
sequence Y = (y1, y2, . . . , yT ). As discussed above, there is
a gap between the context of the feature level and the label
level( Y ′ and Y ). We invested our work in overcoming this
problem.

In order to capture the label-level emotional context infor-
mation from the continuous emotion label sequence, in this
stage of training, we use the continuous emotion label
sequence as the input to train the BLSTM network with the
capacity of reconstructing the given input sequence. The input
and output both are the ground truth of the emotional value.
The whole this training stage is similar to an autoencoder,
we regard the ground truth of the emotion value as the ‘‘unla-
beled features’’ to learn the emotional context information,
hence, we consider the whole process is in an unsupervised
way. The ground truth of the emotion value is used as the input
feature of the BLSTM network by reconstructing to learn the
label-level emotional context information from the ground
truth of emotion label sequence. Our purpose is to use the
training method of regression to learn the context information
of label-level. In our experiments, a multi-layer architecture

did not improve the performance. Hence a BLSTM layer
followed by a linear regression layer is adapted to reconstruct
the input sequence. We use Ŷ = (ŷ1, ŷ2, . . . , ŷT ) to denote
the output and the RMSE between Ŷ and Y as the loss
function of this stage. The main purpose of this stage is to
let the output Ŷ get close to the ground truth of emotion
labels Y . Thus, our model can learn the label-level emotional
context information. When testing, our purpose is using this
label-level emotional context to correct the initial recognition
results Y ′ got in the second stage. Then we take the output of
the third stage as the final emotion recognition results.

IV. EXPERIMENTS & RESULTS
A. DATA SET & EXPERIMENTAL SETUP
We use the dataset provided by the AVEC2015 challenge [20]
to evaluate the performance of our method. This dataset is
a subset of Remote Collaboration and Affective Interaction
(RECOLA) [28]. Spontaneous and naturalistic interactions
were collected during the resolution of a collaborative
task through video conference. The dataset is annotated in
two emotion dimension, arousal and valence, by 6 French
speakers in scales [−1, 1] for every 40ms. Data was
recorded by audio, video, electro-cardiogram (ECG) and
electro-derma (EDA) modalities. Due to our research inter-
est, we only use the information on the video. Local Gabor
Binary Patterns from Three Orthogonal Planes (LGBP-TOP)
using in AVEC challenge is used as the appearance features
of our experiment. Then Principal Component Analysis is
performed on the LGBP-TOP, resulting in 84 dimensional
feature vectors with the frame rate of 25 frames/s. The
dataset is equally divided into three partitions: training set,
development set and testing set, each having 9 recordings
of 5 minutes.

Since we do not have the ground truth labels of the test set,
we sampled sequences from the training set as our training
samples, the original training set is used as the validation set,
and the original development set is used as our testing set.
Therefore, the experiment results in this paper are reported
on the original development set which we use as the testing
set.

We evaluate our hierarchical emotion context learning
method based on the RMSE and CCC, and compare the per-
formance of our model in different cases: 1) with and without
label-level emotion context learning and 2)with and without
feed-forward neural network layer in feature-level emotion
context learning. Finally, we give intuitive recognition exam-
ples compared with the ground truth for three cases of our
system: 1) with and without the high-level feature learning
stage; 2) feature-level emotion context learning trained with
original sequences and sampled sequences; 3) with and with-
out label-level emotion context learning.

To further evaluate the performance of the proposed
method, we compared ourmethodwith other well-established
methods in paper [9], [20]–[22], [29]. The baseline 1 in
paper [20] used a hybrid decision-fusion network based on
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Support Vector Regression (SVR) and Neural Network. For
SVR, they used a linear kernel. For the neural network,
they used three setups: feed-forward, LSTM and BLSTM.
And they applied a median-filtering with window size in
[0.2− 20]s. Baseline 2 provides the CCC metric obtained
by LSTM neural network which got the best performance
in their experiments, and the LSTM network has two lay-
ers with 90 and 60 hidden units respectively. The work
of Chao et al. [21] used LSTM layers combined with hid-
den layer and temporal pooling layer to smooth the feature
sequence. The system has two LSTM layers and each layer
has 64 hidden units, and they used the mean pooling in
temporal pooling layer. Chen et al. [22] used a two-hidden
layer LSTM model and they adopt MSE as the loss function.
He et al. [9] used a Deep Bidirectional Long Short-Term
Memory recurrent neural networks (DBLSTM) to get the ini-
tial emotion recognition results, and adopt Gaussian smooth-
ing method with the moving window of fixed length to
smooth the initial recognition results. Before features are
input into the DBLSTM model, they offset the feature
sequence and the label sequence. Khorrami et al. [29] used
two models to recognize valence emotion: single frame CNN
model with dropout and CNN + RNN model. The CNN
model they used has 3 convolutional layers consisting of 64,
128, and 256 filters respectively, the size of which is 5 × 5.
The first two convolutional layers are followed by 2 × 2
max pooling whereas the third layer is followed by quadrant
pooling. The convolutional layer is a fully-connected layer
with 300 hidden units, and a linear regression layer is used to
estimate the valence label. The RNN model they used has a
single layer RNN with 100 units in the hidden layer.

We implemented our model based on Theano [30]. The
model is trained with Adadelta optimization algorithm.
In order to speed up the convergence and increase the gener-
alization ability, we adopt an early stop strategy. The param-
eters of the machine the experiments used are Intel Core
i7-4790 CPU, 16G RAM and NVIDA GTX 780Ti.

B. EVALUATION METRICS
The performance is reported in terms of RMSE (shown in
Equation 6) and Concordance Correlation Coeffcient (CCC).
CCC is defined as:

CCC =
2ρδyδy′

δ2y + δ
2
y′ + (µy − µy′ )2

(7)

where ρ is the Person correlation coefficient (CC) between
two time series (e.g., recognition and ground truth), and
δy and δy′ are the variance of every time series. µy and µy′ are
the mean value of each time series. Since it combines the CC
and the mean square error (MSE), CCC is more reliable for
the evaluation of the regression problem. Therefore, recogni-
tion well correlated with the ground truth but shifted in value
are penalized in proportion to the deviation.

From the definition of RMSE and CCC, we can see that
the model with smaller RMSE and higher CCC has better
performance.

C. PARAMETER SELECTION
1) PARAMETER SELECTION OF NETWORK
We conducted experiments with the number of feed-forward
neural network layer and BLSTM layer range from 1 to 8with
step 1, and the number of hidden units range from 0.25×M to
1.25 ×M with step 0.25 ×M respectively on the validation
sequences, where M is the dimension of the input feature.
The parameters that give the best results on the validation set
are chosen as the final parameters. Finally, our model has
1 feed-forward neural network layer, 3 BLSTM layers for
feature-level context learning, 1 BLSTM layers for label-level
emotion context learning and 1 linear regression layer for
recognition. The number of hidden units for each layer is
chosen as [64, 64, 64, 64, 1].

2) SEQUENCES SAMPLING
In this section, we conduct the experiment to explore the best
length of the video sequence by sampling different length of
sequences. Assume that the length of the original sequence
is T , the length of the sampled sequence is T ′, and T ′ = α×T .
We use a step β to sample the sequence. Specifically, the first
sampled sequence is [0, . . . , 0+ T ′], the second sequence is
[β, . . . , β+T ′]. By doing so, we can get n sequences from one
original sequence, where n×β <= T −T ′ and (n+1)×β >
T − T ′. In addition, by using this sampling method, we will
get more training data to train the model.

In our experiments, we conduct experiments with value
of α ranges from 0.5 to 0.95 with step 0.05 and β is in
[100, 125, 150]. The overall duration of emotion is supposed
to fall between 0.5 and 4 seconds.When we sampled the short
sequence with step β we want every sampled sequence to
begin with a new emotion. The features are extracted every
40ms, and we sample sequence every 4s at least to make sure
that every sampled sequence may begin with a new emotion.
Hence, the value of β is large than 100 (4s/40ms).
The results at the FLECL stage are shown in Fig. 2. We can

see that the sequenceswith a large step value (β) can get better
performance. When α = 0.75 and β = 150, the CCC is
0.5627 and the RMSE is 0.1628 on the arousal dimension
and when α = 0.6 and β = 150, the CCC is 0.5777 and
the RMSE is 0.1025 in the valence dimension. Thus, we fix
α at 0.75 in the arousal dimension, α at 0.6 in the valence
dimension and β at 150 in both dimension at the FLECL
stage.

We also conduct the experiments with the same configura-
tion at the LLECL stage.When α is 0.95 and β is 125, the best
performance is obtained in both arousal and valence dimen-
sion at the LLECL stage. Therefore, we fix α as 0.95 and β
as 125 in the LLECL stage in the following experiments.

D. PERFORMANCE EVALUATION
1) COMPARISON WITH THE METHODS WITH AND
WITHOUT HIGH-LEVEL FEATURE LEARNING
In order to evaluate the performance of the high-level fea-
ture learning(HLFL) stage in our method, we compare our
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FIGURE 2. Performance with different α and β in arousal and valence recognition. (a) RMSE on arousal with different α
and β. (b) CCC on arousal with different α and β. (c) RMSE on valence with different α and β. (d) CCC on valence with
different α and β.

TABLE 1. Comparison results of the methods with/without high-level
feature learning. The highest CCC and the smallest RMSE and training
time are highlighted in bold.

proposed model with the network without HLFL stage. The
model without HLFL has 4 BLSTM layers and our model
with HLFL has 1 hidden layer 3 BLSTM layer. The com-
parison results are shown in Table 1. From Table 1, we can
see that the proposed network has a significant improvement
on RMSE and CCC in both arousal and valence dimension.
We also compare the training time of one epoch of these
two methods. We can see that the proposed method takes
less training time compared with the basic 4 BLSTM layers
network. The result shows that by introducing the high-level
feature learning stage, the model can learn the feature context
much better and easier.

2) COMPARISON WITH THE METHODS WITH AND WITHOUT
LABEL-LEVEL EMOTIONAL CONTEXT LEARNING
In order to evaluate the performance of label-level emotional
context learning, we conduct the experiments by using the
methods with and without the LLECL stage. The results are
listed in Table 2. Table 2 clearly shows that the proposed
method in this paper outperforms the model without LLECL

TABLE 2. Comparison results of the methods with and without
label-level emotion context learning. The highest CCC and the
smallest RMSE is highlighted in bold.

stage, and gets an obvious increase for the CCC value and
a little increase for the RMSE value. As mentioned above,
the model with smaller RMSE and higher CCC has better
performance. Our model gets an obvious increase in per-
formance for the CCC metric and a litter decrease for the
RMSE metric. CCC combines the CC and the mean square
error (MSE), it is much more reliable for evaluating the
regression problem. Hence, the LLECL stage can improve the
performance of our method.

3) COMPARISON WITH OTHER WELL-
ESTABLISHED METHODS
To further evaluate the performance of the proposed
method, we compared our method with the other seven
well-established methods early discussed in the third para-
graph of Section IV.A. The comparison results are listed
in Table 3. Except for the method in paper [29], the fea-
ture set used in this comparison experiment is the video
appearance feature set provided by AVEC2015. The method
in paper [29] used their own feature set, and the authors
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FIGURE 3. Valence recognition: With and without high-level feature learning stage.

FIGURE 4. Valence recognition: FLECL trained with original sequences and the sampled sequences respectively.

also compared the same models as we compared with.
In order to clearly describe the compared methods in Table 3,
we use the logogram to replace the whole name of models
in paper [29]. The detailed information is single frame CNN
model with dropout(Khorrami et al. 1) and CNN + RNN
model(Khorrami et al. 2). Therefore, we use the experiment
results listed in paper [29] directly to compare. The results
reported in Table 3 are all on the development set provided
by AVEC2015. From the comparison, we can see that our
model gets the superior/highly-competitive performance on
both RMSE and CCC metrics when compared with the other
well-established methods.

4) RECOGNITION VISUALIZATION
In order to show the performance of our method intuitively,
in this section, we provide three examples of valence dimen-
sion recognition on the dev_9 video file respectively for the
comparison of FLECL with and without high-level feature
learning, FLECL trained with original sequence and sampled
sequences, the methods with and without LLECL stage.

Fig. 3 provides the recognition results made by FLECL and
without high-level feature learning stage. From Fig. 3, it can

TABLE 3. Comparison with the other well-established methods. The
highest CCC and the smallest RMSE are highlighted in bold. The CCC of the
arousal and the valence for each method are averaged in the last column.

be seen that the FLECL with HLFL has a better recognition
result compared with the method without HLFL. Moreover,
the recognition of themethodwithHLFL ismore smooth than
the method without HLFL, and is more close to the ground
truth labels. Since the raw input feature sequence may have
a high variability which is bad for BLSTM. By learning a
high-level feature, it can reduce the feature variability.

Fig. 4 provides the comparison results of the recognition
made by the FLECL stage trained with original sequence
and sampled sequences. Fig. 4 clearly shows that, with the
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FIGURE 5. Valence recognition: With and without LLECL stage.

sampled sequences, the recognition results are more close to
the ground truth values. And the recognition results made
by the method trained with the original sequences change
very fast, whereas the recognition results made by the method
trained with the sampled sequences are much smooth.

Fig. 5 provides the comparison results of the methods with
and without LLECL stage. From Fig. 5, we can see that the
recognition results made by the methods with and without
LLECL stage are similar when valence values are larger
than 0.1. However, when the valence values are less than 0.1,
the recognition results of the method with LLECL are more
close to the ground truth. The reason is that the method with
LLECL stage learns sufficiently emotion context information
in this situation which leads to the improvement of the recog-
nition accuracy. Combining with the results in Table 1, it can
further confirm that the model with feature-level context
and label-level context gets better results compared with the
model only learning feature level context.

V. CONCLUSION & FUTURE WORK
In this paper, we present a novel hierarchical method to
learn feature-level and label-level emotional context for pre-
dicting affective dimension values from video sequences.
Experiment results demonstrate the promising performance
of our model. Recognition performance can be significantly
improved with the proposed feature-level emotional context
learning stage combined with the high-level feature learning
stage. And the recognition is smoother by exploring sampled
sequence from the original sequence. With the label-level
emotional context learning stage, our model can get a more
accurate recognition result. In the future, we plan to explore
the context information between different modality (e.g.,
video, audio, and electrocardiogram) so that our model can
learn more context information to improve the recognition
performance.
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