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ABSTRACT The performance of visual odometry is dependent upon the quality of features selected for com-
puting the frame-to-frame transformation. In order to ensure the quality of selected features, conventional
approaches consider the spatial distribution of the selected features, in addition to their counts and matching
scores, in which a small number of features are selected randomly from each of the uniformly distributed
buckets. In this paper, we show that features can be selected optimally, rather than randomly, using a well-
defined mathematical formalism. The proposed method of optimal feature selection minimizes the degree
of uncertainty in estimating the essential, fundamental, or homography matrix involved in visual odometry
by maximizing the orthogonality index of individual equations and constraints associated with computation.
We found that, at a constant noise level, the mean of the residual error and the variance of an estimated
essential, fundamental, or homography matrix decrease monotonically with increasing orthogonality index.
The simulation validates the increased accuracy of the feature selection based on the proposed orthogonality
index compared with the conventional random selection. For instance, it enhances accuracy by as much as
35% when a small number of feature sets, say, 20 feature sets, are used. The experiments using the KITTI
and Devon Island datasets further reinforce the performance enhancement of simulations by 9% and 20%,

respectively.

INDEX TERMS Visual odometry, ego-motion estimation, feature selection, orthogonality index.

I. INTRODUCTION

Visual odometry (VO) [1], which involves estimation of the
relative motion based on a sequence of captured images,
plays a crucial role in autonomous navigation. The ego-
motion is estimated between current and previous images by
resolving geometric constraints. Subsequently, the full cam-
era trajectory is recovered via accumulation of these single
movements. Therefore, VO is known as a dead-reckoning
technique [2], indicating that it is subject to cumulative errors.
Based on vision-based odometry, recent surveys [3]-[4] clas-
sified VO into feature-based, appearance-based, and a hybrid
of feature- and appearance-based approaches. The feature-
based VO is a geometric approach of extraction as well as
matching of image features such as corners, lines, and curves
in a sequential frame of images, and estimation of the motion.
Appearance-basedVO is another geometric approach that uti-
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lizes information extracted from the pixel intensities within
a whole image. The camera ego-motion can be estimated
by changes in optical flow, which leads to robust pose esti-
mation despite low-textured environments. Scaramuzza and
Fraundorfer conducted a comprehensive review of feature-
based VO [5], [6]. Accordingly, three major approaches
were used to estimate the relative ego-motion between
two frames:
o 2D-t0-2D: Relative pose is estimated directly from
2D features.
e 3D-to-3D: Relative pose is estimated directly from
3D features.
o 3D-t0-2D: Relative pose is estimated by re-projecting
3D features in one camera frame to another.
The 3D-to-3D and 3D-to-2D methodologies require triangu-
lation of 3D points via intersection of back-projected rays
from 2D image correspondence of at least two image frames.
However, uncertainties in feature measurement and imper-
fect calibration prevent intersection. Therefore, these two
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approaches we’re considered less accurate than the 2D-to-2D
method in the VO survey of Scaramuzza and Friedrich [5].
Nistér [7] proposed an efficient state-of-the-art solution for
2D-to-2D relative pose estimation in the presence of out-
liers for the minimal case involving the five-point-problem.
It is used to estimate the geometric relationship between two
calibrated camera frames, which is designated as the essential
matrix E, despite the five co-planar points. E accommodates
the camera pose parameters up to an unknown scale fac-
tor for translation. In order to retrieve the full trajectory,
the absolute translational scale for every single movement is
calculated, and is possibly determined by the corresponding
3D points [1]. As it is impossible to observe 3D points with
triangulation based on the two mono-camera views, at least
three frames should be used. However, using multiple views
does not completely solve the scale problem. Therefore, most
studies recommend using stereo-cameras with well-defined
baselines.

The performance of pose estimation not only depends
upon the methods for computing ego-motion but also on
feature selection. Current approaches for feature selection
are summarized in [3], [4]. Three critical issues have been
considered: feature detector, outlier removal, and feature dis-
tribution.

In the literature, a variety of feature extractions and match-
ing methodologies have been used in VO, including corner
detector [8]-[11], SIFT [12], SURF [13], and ORB [14].
Several studies reported the methodological robustness in
image variation and performance of VO involving feature
detector/descriptor pairs [15], [16]. In terms of VO perfor-
mance, SURF-based VO yields the maximal accuracy while
ORB-based VO is computationally inexpensive but results
in decreased accuracy. However, fast detector/descriptor
pairs are preferred for autonomous driving applications,
which require high speed. Results of such features including
corners [8]-[11], and ORB [14] in KITTI datasets still
contribute to increased accuracy. Since the corresponding
features of the two frames are detected via matching, the pres-
ence of outliers is still attributed to image noise, similar pat-
terns, occlusion, and blurring in viewpoints. Because wrong
matches lead to erroneous estimation, an outlier removal is
a mandatory step. Random sample consensus (RANSAC)
[17]is a well-known approach to eliminate outliers exploiting
geometric constraints. Specifically, RANSAC finds the con-
sensus set from random samples and re-estimate the model
based on the consensus set. Kitt et al. [9] employed an Iterated
Kalman Filter directly incorporating RANSAC-based outlier
removal based on the trifocal geometry in image triples.
For a stereo camera, where each frame comprises two left-
right images, a robust loop chain matching scheme between
two pairs of stereo images was proposed in VISO2-S [10],
in order to extensively improve the matching performance.
Fanfani et al. [11] further improved the loop chain quality
using a more robust detector/descriptor with high temporal
and spatial disparities.
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Feature distribution has been considered in addition to
outlier removal. Bucketing technique [10] is frequently used
to reduce the computational complexity and to improve accu-
racy. Specifically, the image is divided into M x M grids,
and only a limited number of features are selected for further
processing. This process not only reduces the total number of
features, but also distributes the selected features uniformly,
resulting in improved efficiency and accuracy. In addition to
using bucket technique, Cvisic and Petrovic [8] proposed that
careful selection and tracking for the classification of features
into different categories and selection of longer age for pose
estimation. The features tracked longer were considered more
reliable, with a lower probability of being outliers. As aresult,
the older features should always be selected for subsequent
steps. Buczko and Volker [18] showed that inclusion of the
far and near features also enhanced the accuracy of estimating
transformation. Furthermore, Badino et al. [19] refined the
position of 2D features based on the overall history frames,
and used the integrated features to improve ego-motion accu-
racy. The aforementioned approaches of feature selection
focused on strong and stable features as well as on feature
distribution to improve accuracy and efficiency. However,
these approaches are inherently based on heuristics while the
selection of minimum features needed for fitting model is
rather random.

Instead of adopting traditional approaches for random
selection of five-point feature sets, we present an optimal
feature selection with a mathematic formalism based on
orthogonality index to develop a stereo-visual odometry
framework. The five-point algorithm [7] is used to obtain
frame-to-frame relative orientation as well as translation vec-
tor, whereas the translational scale is based on resolving
the linear closed-form equation, followed by inexpensive
re-projection minimization. The stereo-visual odometry
framework is summarized in Fig. 1.

The main contributions of this paper are summarized as
follows:

> A mathematical formalism of optimal feature selection
based on the orthogonality index is proposed.

> The proposed optimal feature selection results in a
smaller mean residual error in VO estimation than ran-
dom selection. The larger the noise level in feature
measurement, the more the proposed method gains in
error reduction over random selection with a minimal
overhead in computation.

According to the publicly available KITTI leaderboard,
the proposed method ranks among the top stereo VO filter-
free methods such as bundle adjustment or Kalman Filter,
with an average translational error of 1.13% and a rotational
error of 0.003 deg/m. The experimental results of Devon
Island show an average translational error of 0.9%.

The remainder of the paper is organized as follows. After
an introduction, we discuss the problem definition and pro-
posed an approach in Section II. Section III describes the key
contribution of this paper, which is related to feature selection
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FIGURE 1. Visual odometry framework with feature selection based
orthogonality index.

based on the proposed orthogonality index. We verified the
proposed approaches via simulations in Section IV. Finally,
the experimental results with KITTI and Devon Island are
highlighted in Section V.

Il. PROBLEM DEFINITION AND PROPOSED APPROACH
A. PROBLEM DEFINITION

Estimating ego-motion from two camera views presents
a classical problem in computer vision, especially for
autonomous navigation. Feature selection plays a critical role
in the performance of VO. Conventional VO approaches
have focused on qualitative subset features and their distri-
bution from the full feature set to improve the accuracy of
pose estimation as well as the computational time. Towards
this end, the bucketing technique is preferred to ensure uni-
form distribution of strong and stable features. However, the
random selection of samples, minimum features required to
estimate the pose, presents an ad-hoc approach without a
mathematical formalism for optimality, and therefore, does
not always guarantee the minimum error of pose estimation.
The accuracy of the estimated relative poses depends on
the uncertainty of the selected points and their distribution.
In order to obtain reliable results without resorting to a for-
mal method, conventional approaches often rely on a large
of number of randomly selected samples. A large number
of samples improve accuracy at the cost of computational
complexity. The goal of VO is to increase the precision while
reducing the computational time. An optimal feature selec-
tion that is based on a mathematical formalism may require a
smaller number of samples for the required accuracy.

B. PROPOSED APPROACH

The proposed approach for optimal feature selection is based
on the selection of a set of features that minimizes the error
in solving the equations associated with VO in the pres-
ence of feature noise. Specifically, the selected features are
designed to determine the parameters associated with a set of
equations,

Ei =fg (pi + Apingi), i:1~m, (1
and constraints,

Ci=fc(q), j:1~1, 2)
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where p and g represent, respectively, the parameters deter-
mined by the selected features and the variables to be solved
for VO. The solution represents the intersection of such
sets of equations and constraints. Due to feature noise,
the true parameters of a VO equation are probabilistically
distributed or lie within a specific range around the nominal
values, as represented by Ap;, such that the true solution
resides in a hyper-volume, S, around the intersection of the
VO equations and constraints with nominal parameters:
jil~l

S =\, Er C) @3)
Because the hyper-volume also represents the volume of
error, the optimal feature selection proposed is designed for
feature selection that minimizes this hyper-volume, S. The
minimum hyper-volume can be achieved by selecting a set
of features to ensure orthogonality of individual equations
and constraints associated with VO. To this end, we defined
the orthogonality index associated with a set of features
to measure the degree of orthogonality of the individual
VO equations and constraints with respect to each other for
the selected set of features. In the follow section, we present
the details of optimal feature selection based on the proposed
orthogonality index for various cases of VO.

Ill. OPTIMAL FEATURE SELECTION BASED ON
ORTHOGONALITY INDEX
A. ESSENTIAL MATRIX-BASED VISUAL ODOMETRY

The essential matrix-based VO is used to estimate the 3 x 3
essential matrix, E, from the epipolar constraints, pTEq =0,
to compute the translation and rotation between a pair of cam-
era frames, where p and g represent the image coordinates of a
feature in the respective camera pair. The epipolar constraint,
pTEq = 0, can be rewritten as follows:

VE =0, “)
where

V =[P4y, P2q1> P391> P192> P22 P3925 P13
Pz‘]3,p3613] 5)
and E = [Eyy, E12, E13, Ea1, Ea, E2z, E31, Ex2, Ez3]T (6)

Note that v is determined by selected features while E is
estimated using equation (4) together with the following
additional constraints in E:

det(E) =0 @)
2EETE — tr (EET) E=0 8)
It is known that E is determined by (4), (7) and (8) with

five pairs of corresponding feature points [7] that define the
following 5 x 9 matrix equation:

AE =0, ©
where A = [v1v2v3v4v5]T (10)

Note that the increased error volume to be minimized is
defined by the intersection of the two individual manifolds:
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FIGURE 2. An orthogonal basis of constraint vectors.

one derived from (9) and the other from (8) and (7). Since the
manifold obtained from (7) and (8) is fixed, the minimiza-
tion of the intersection of two manifolds depends upon the
manifold from (9) defined by the five pairs of correspond-
ing features. To minimize the intersection, it is necessary
to minimize the extent of uncertainty associated with the
manifold from (9) while ensuring the correct intersection with
the manifold from (7) and (8), where the extent of uncertainty
in (9) is attributed to errors involved in selected features. First,
to minimize the extent of uncertainty associated with the
manifold derived from (9), we created five orthogonal vectors
of (9),v,v,v3v,vs, by selecting five pairs of corresponding
features appropriately. Second, to ensure the accuracy of
intersection with the manifold from (7) and (8), we searched
for the minimum error solution among the multiple options of
five orthogonal vectors obtained from different combinations
of five feature pairs.

B. OPTIMAL SELECTION OF MULTIPLE SETS OF FIVE
FEATURE PAIRS THAT MAKE vv,vsvavs AS

ORTHOGONAL AS POSSIBLE

The orthogonality of the five vectors, v v,v;v,vs, can be
measured based on their fit with the bases of an orthogonal
frame, as shown in Fig 2. To reduce the ambiguity caused
by vector length, the five vectors should be normalized.
For mathematical representation, we defined the following
orthogonality index:

5
Score = E ‘ ld()f(ei, Vi), (1D
=

where an orthogonal frame e e,e;e,es is a result of
QR factorization, such as the Gram Schmidt orthogonaliza-
tion [20], with the first vector, e; = v;.

Based on the foregoing analysis, our goal was to select
sets of five corresponding pairs, which provide the highest
orthogonality indices for estimation of the essential matrix.
The feature selection based on the proposed orthogonality
index is described as follows:
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Algorithm 1 Orthognality Index Based Optimal Feature
Selection
Input: Correspondence pairs
Output: L five-point sets with the highest indices
Step 1: Random selection of Ksets of five points.
Step 2: For each set, an orthogonal frame was built using
Gram-Schmidt orthogonalization followed by the calcula-
tion of the orthogonality index.
Step 3: The K sets were reordered using their orthogonality
indices ranging from the maximum to the minimum value.
Step 4: The L sets were selected with the highest indices.

This orthogonal selection algorithm can be used for opti-
mal selection of features in other methods of VO such as
fundamental and homography matrix. The determination of
the orthogonal score for all possible combinations is impos-
sible due to the computational cost entailed. For a trade-off
between efficiency and accuracy, we only selected a defined
number of five-point K sets. The L sets with highest orthog-
onality indices are used to estimate the essential matrix.
Optimal values of K and L are explained comprehensively
using the results of simulations and real experiments.

C. FUNDAMENTAL AND HOMOGRAPHY MATRIX-BASED
VISUAL ODOMETRY

Optimal feature selection based on the proposed orthogonal-
ity index is generally applicable to other methods of VO,
including those based on fundamental and homography
matrices.

1) FUNDAMENTAL MATRIX

Similar to the essential matrix, the 3 x 3 fundamental
matrix, F, a pair of corresponding feature points (p, g) are
related based on epipolar constraint:

p'Fg=0 (12)
The constraint (12) can be rewritten in vector form as follows:
VE =0, (13)
where
V= [p14y. P2q1 P341> P192s P2425 P392: P19535

D293, P393] (14)
and F = [fi1, fi2, fiz, o1, o2, Po3. o, o 3317 (15)

It is known that the fundamental matrix can be estimated
based on eight pairs of the corresponding feature points [21]:

AF =0, (16)
where A = [V1V2V3V4V5V6V7V8]T 17)

Note that the solution to the homogenous system (16) is
the eigenvector corresponding to the smallest eigen-value of
matrix A. It is adequate to minimize the extent of uncertainty
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associated with the solution of (16) based on the maximiza-
tion of the orthogonality index associated with the eight vec-
tors of (17). As indicated before, the orthogonality index of
eight vectors can be measured using the following equation:

8
Score = E ‘ ldOt(Ei, Vi), (18)
=

where [e1erezeqesecereg] represents an orthogonal frame
derived from Gram-Schmidt orthogonalization. The optimal
feature selection for the fundamental matrix-based VO can
be performed using the same Algorithm I except for random
selection of K sets involving eight-point features in Step 1 and
calculation of orthogonality index using equation (18).

2) HOMOGRAPHY MATRIX

In case feature pairs selected are placed on the corresponding
planar surfaces, a pair of corresponding feature points, (p, )
satisfies the following 3 x 3 homography matrix equation:

q = Hp (19)
(19) can be expressed as

|:P1 p2 10 0 0—piq

— P21 —q1 | p
H=0 (20
0 0 0p1 p21-—pigp ] 20)

— D292 —q2

with H representing a nine-dimensional vector. It is
known that four corresponding (p, g) pairs are sufficient to
solve (20), resulting in

AH =0 1)

With A = [vq, V2, v3, va, vs, ve, V7, v3]T representing an
8 x 9 matrix, where the solution corresponds to the smallest
eigenvector of A [22]. Optimal feature selection to mini-
mize the extent of uncertainty is based on maximizing the
orthogonality index associated with vy, v2, v3, v4, Vs, Vg, V7,
Vg vectors.

D. STRUCTURE FROM MOTION-BASED VISUAL
ODOMETRY

The proposed optimal feature selection based on orthogonal-
ity index is applicable to the structure from motion-based VO.
Note that StM minimizes the re-projection error, RE:

RE=) Z;":l (xj —

where X is the jth 3D feature point, P; represents projection
matrix of the i camera, and x;; denotes the 2D image point
of Xj in the ith camera. We conjecture that the optimal fea-
tures selected based on the orthogonality index used in the
fundamental matrix-based VO lead to minimize re-projection
error in SfM, since the minimum extent of uncertainty asso-
ciated with the fundamental matrix equation represents the
minimum VO error. We validate this conjecture by simulation
in the following section.

Pi (X)) (22)
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FIGURE 3. Mean/Std residual error with respect to orthogonality index.

IV. VALIDATION BY SIMULATION

This section validates the role of orthogonality index-based
optimal feature selection proposed in the previous Section by
comparing with the conventional random selection. The val-
idation was performed for different methods of VO such as
essential, fundamental, and homography matrices as well as
StM using the same configuration. With the known intrinsic
parameters of the camera, we generated a transformation
C ICO T based on the camera frame,Cy, to another, C1, as well
as N random 3D feature points in Cy. These 3D points
were projected onto 2D camera image planes. All projections
considered a noise level of 0.5 pixels.

A. ESSENTIAL MATRIX-BASED VISUAL ODOMETRY

1) ORTHOGONALITY INDEX VS. RESIDUAL ERROR

In order to demonstrate the benefit of the proposed orthog-
onality index, we conducted a statistical analysis to show
the dependency of the residual error, number of inliers, and
epipolar scores on this index. Multiple solutions are known
for each five-point set. Since the essential matrix is defined
only up to scale factor, the residual error was expressed as

follows:
E E; E
mn mn(H G ! i H) (23)
*lf" IEl IIEGTII

The simulation can be described specifically as follows:

o Step 1. Random generation of M five-point sets;

o Step 2. Estimation of the essential matrices and calcula-
tion of the number of inliers, epipolar scores, residual
errors, and orthogonal scores, and assignment of the
set to the corresponding bin based on their orthogonal
scores.

o Step 3. Measurement of the mean/standard of residual
error, the number of inliers, and the epipolar score for
each orthogonal score bin.

The above measurements related to the orthogonality index
are shown below in Fig. 3, Fig. 4, and Fig. 5. The hor-
izontal axis represents the increased orthogonality index.
At each orthogonal score bin, the circle and black bar rep-
resent the means and standard deviations of measurements,
respectively.

In Fig. 3, the mean of residual error was diminished almost
linearly. Fig. 4 displays the increase in the inlier number.
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FIGURE 6. Mean residual error of the estimated essential matrix with
respect to orthogonality index of the three fixed noise levels.

Fig. 5 represents a steady downward trend in the epipolar
score. Addition of the standard deviation yielded similar
trends. The standard deviation (std) of residual error and
epipolar score was also reduced, which suggests that the
five-point feature sets with higher orthogonal scores possibly
provide higher reliability of estimation in the essential matrix.

We also measured the correlation between the mean/std
residual error and orthogonality index of the different noise
levels at 0.1, 0.5, and 1.0 pixels. The five-point feature set
with the higher orthogonal score was minimally dependent on
the noise levels. In particular, as shown in Fig. 6 and Fig. 7,
both mean/std residual error decreased gradually with respect
to the orthogonality index. Reduced noise level yielded lower
mean/std residual error.

2) PERFORMANCE COMPARISON OF RANDOM- AND
ORTHOGONAL-SELECTION

We compared the orthogonal- with the random-selection
approaches for the selection of a varying number of five-
point sets L, such as 10, 20, 50, 100, 200, and 400, to obtain
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the essential matrix. In order to eliminate bias, the selected
L sets were repeated 5000 times. The average residual error,
as well as the average inlier/epipolar scores were computed
and shown in Fig. 8, Fig. 9, and Fig. 10. These figures indicate
that, regardless of the use of random-selection or orthogonal-
selection, the higher number of sets reduce the residual error
and the epipolar score, as well as increase the number of
inliers, on average.
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FIGURE 11. Residual error distribution of estimated essential matrix with
respect to the number of five-point feature sets in two approaches.

Specifically, Fig. 8 reveals a downward trend in residual
errors between the orthogonal and random selections. The
residual error in orthogonal selection was obviously lower
than in the latter. The inlier number indicated in Fig. 9 shows
a rising trend. The proposed method yields a higher num-
ber than the conventional one with all numbers of L sets.
Conversely, the epipolar score, as shown in Fig.10, reveals
a decreasing tendency. The epipolar score in our orthogo-
nal selection method was always smaller than in random
selection.

In general, the accuracy of orthogonal-selection is better
than that of random-selection for the estimation of essential
matrix. A small number of five-point sets (for instance, 20)
enhances the accuracy to around 35%. We also found that
orthogonal selection using 10 to 20 sets yielded similar inlier
numbers and epipolar scores, as well as residual errors asso-
ciated with random selection of 50 to 100 sets, respectively.
The finding suggests that orthogonal selection guaranteed the
success of essential matrix estimation using a small number
of sets.

Additionally, Fig. 11 shows the distribution of residual
errors when the selected L sets are repeated 5000 times.
The horizontal axis represents the residual error and the
vertical axis the count numbers. The residual error distri-
butions of the proposed method and random-selection are
shown in red and blue, respectively. The bin closer to zero
represents smaller residual error, or highly accurate essential
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selections with respect to three noise levels.

TABLE 1. Computation time of orthogonal and randomselection with
respect to varying number of sets.

Number of sets 10 20 50 100 200 400
Random-Selection (ms) 14 18 31 54 95 180
Orthogonal-Selection(ms) 23 27 40 64 104 190
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—8— Orthogonal Selection

160
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2
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Num of sets

FIGURE 13. Computational time of the orthogonal- and random selection
with respect to the different number of sets.

matrix. By increasing the number of sets, the distribution
shifts gradually towards zero. With the same number of sets,
the orthogonal selection bin closer to zero is higher than that
of the random selection, while the orthogonal selection bin
farther to zero is lower than that of the random one. Thus,
the estimation of the essential matrix in orthogonal-selection
is more reliable than that of random-selection.

Fig. 12 shows the comparison of the mean residual errors
between orthogonal- and random- selections under three dif-
ferent noise levels in feature measurement. It indicates that
the larger noise levels, the larger was the mean residual
error.

Table 1 and Fig. 13 show the comparison of computation
time between orthogonal- and random- selections for the
estimation of an essential matrix. The orthogonal selection
costs an additional 9 ms in computation time. However, com-
bining the residual error of Fig. 12 and the computation time
of Fig. 13, for the same residual error, prolongs the random-
selection for the computation of an essential matrix compared
with the orthogonal-selection. For instance, for the noise level
of 0.5 pixels, the random-selection takes 54 ms, compared
with 27 ms for the orthogonal-selection.
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FIGURE 14. Residual error with different K and L.
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FIGURE 15. Computation time under different K and L.

3) ACCURACY AND EFFICIENCY TRADE-OFF

InAlgorithm I, K is the number of five-point sets that are gen-
erated randomly while L represents the number of selected
sets providing the highest orthogonality indices. The increase
in K or L in the orthogonal-selection improves accuracy at the
cost of computational complexity.

To determine the designed K and L for trade-off between
accuracy and efficiency, we tested orthogonal-selection with
different Ks and Ls. We measured the residual error and
computational time as shown in Figs. 14 and 15 with
K ranging from 500 to 5000 and L from 10 to 400. In gen-
eral, the higher K yields the lower residual error at higher
computation cost. The additional time needed for feature
selection increases linearly compared with the value of K
and a lower improvement in accuracy. The residual errors at
K over 1000 are quite similar and reduced with reference to
the number of L selected sets. However, the reduction varies
quickly with L from 10 to 50 and slowly from 50 to 400.
The time increase along L is larger than alongK . The residual
error of orthogonal-selection at L was 50, which was similar
to that of random-selection at L equal to 200. Computa-
tion time at L value of 50 was three time faster than at
an L of 200. Therefore, L values ranging from 50 to 100 and
K values around 1000 span a range of optimal values in terms
of accuracy and efficiency.
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FIGURE 16. The residual error of orthogonal and random-selection with
different set numbers.

B. FUNDAMENTAL AND HOMOGHRAPY MATRIX-BASED
VISUAL ODOMETRY

1) FUNDAMENTAL MATRIX

To evaluate the fundamental matrix, the residual error
described in (23) was slightly modified as follows:

i (|5#7 - e | ) e

IFI lIFerll

The residual errors of orthogonal and random selections were
measured under varying numbers of eight-point sets, with
L values such as 10, 20, 50, 100, 200, and 400. The blue curve
represents the residual error of the random selection while the
red curve represents the orthogonal selection errors. At each
number in the eight-point set, the residual error of the orthog-
onal selection was lower than in random selection, suggesting
that the orthogonality index-based feature selection improved
the VO accuracy.

F F
£ Far
IFI - IFerll

2) HOMOGRAPHY MATRIX
To evaluate the homography matrix, the residual error associ-
ated with the evaluation of the fundamental matrix (24) used
was as follows:

, ‘ ) (25)

. (H H Hgr
min —
7] lIHgrl
To guaranty the four selected features in a co-planar set,
the 3D points were generated on a plane. We compared the
orthogonal- and random- selections using different numbers
of the selected set L : 10, 20, 50, 100, 200, and 400.
Fig. 17 shows the residual errors of two approaches under
different sets selected. Notably, the residual error of the
orthogonal-selection was lower than in random-selection
with all set numbers.

H H
L Har
7] lHerll

C. STRUCTURE FROM MOTION-BASED VISUAL
ODOMETRY

Compared with other approaches, BA-based VO optimizes
iteratively the camera poses by minimizing the re-projection
error for a large number of points. Based on the results derived
from Algorithm I for selection of feature sets to estimate the
fundamental matrix, a sub-set including N pairs of features
for STM was gathered by gradually adding sets of eight points
providing the highest orthogonality index as follows.
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FIGURE 17. Residual error of homography matrix for orthogonal- and
random-selection with different number of sets.
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FIGURE 18. The residual error in the orthogonal-and random-selection
with respect to the varying number of sets using SfM.

- Step 0: The constraint vectors for all correspon-
dences were generated by equation (14) and the non-
selected status was marked for all the constraint vectors
generated.

- Step I: The K sets of eight random constraint vectors
were generated from non-selected-status vectors.

- Step 2: Orthogonality indices associated with K sets
were calculated, and the sets were sorted based on their
orthogonal scores from maximum to minimum values.

- Step 3: The set of eight vectors associated with the
highest orthogonality index was added to the selected
list and the selected status was marked.

- Step 4: The steps 1 to 3 were repeated until the number
of correspondences in the selected list was equal N.

Since the rotations and translations are refined by SfM,
we calculated the essential matrix and used the residual error
in (23) to compare the orthogonal selection with the random
selection. We measured the residual errors of two approaches
with N ranging from 8 to 64. As shown in Fig. 18, the residual
error in either random or orthogonal selection decreased with
the increase in the number of points. However, the resid-
ual error of orthogonal-selection was less than in random-
selection with the same number of points. The discrepancy
between two approaches is reduced along with the number of
points.

D. SECTION SUMMARY
Based on the above statistical analysis, we draw the following
conclusions:

1. The accuracy of essential matrix estimation depends
upon the noise level in feature measurements as well
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as the number and orthogonality indices of the selected
five-point feature sets.

2. Under a fixed noise level, the mean of the resid-
ual error and its variance of an estimated essential
matrix decrease monotonically with the increase in the
mean orthogonality index, as shown in Figs. 6 and 7.
As shown in Fig. 11, the distribution of the residual
error varies in 5000 tests involving different numbers
of five-point feature sets.

3. The mean of the residual error decreases with the
increase in the number of five-point feature sets for
random-selection, as shown in Fig. 8, reducing the gap
with orthogonal-selection. This decrease is attributed
to the increase in the number of five-point feature sets
in random-selection, and the increased probability of
selection of five-point feature sets with higher orthog-
onality indices.

4. As indicated in Fig. 8 a smaller number of five-point
feature sets selected using orthogonal-selection may
be associated with a mean residual error equivalent to
a larger number of five-point feature sets selected by
random-selection. For instance, 20 sets derived using
orthogonal-selection were commensurate with 100 sets
derived from random-selection.

5. The proposed optimal feature selection based on the
orthogonality index may be applicable to various
VO methods, such as those based on essential, funda-
mental, and homography matrices as well as the SfM.

V. EXPERIMENTAL RESULTS

A. STEREO-BASED VISUAL ODOMETRY

The stereo-based VO proposed here involves two steps. In the
first step, the five-point algorithm [7] was applied to a pair
of two left images, L1 and L, and another pair of first right
and second left images, Ry and L. This step resulted in the
estimation of rotation and translation up to the scale. In the
second step, the absolute scale was quickly estimated from
the loop closure formed by the two translation vectors and
the camera baseline vector.

1) FEATURE EXTRACTION

The input into our VO algorithm corresponds to features
correlating the four images in the previous and current stereo
camera frames. We adopted the feature detector and matcher
employed by Geiger in VISO-2 [10] due to its 36 ms speed
and feature repeatability. This feature detector enhanced the
performance of VO with KITTI dataset in [8] [10]. In partic-
ular, the corner features in images were extracted by utilizing
5 x 5 blob and corner masks. Additionally, the matching
was carried out using the sum of absolute differences (SAD)
error metric to compare 11x11 block windows of horizon-
tal and vertical Sobel filter responses to the two feature
points detected. To speed-up matching, Sobel responses is
quantized to 8 bits and the differences is summed over a
sparse set of 16 locations instead of being summed over the
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whole block window. The extracted features are assigned to
four classes (blob max, blob min, corner max, and corner
min) and the matching process is done on the same class
to reduce the computational time. At this stage, some of
the outliers were rejected by circular matching [10], sug-
gesting that each feature needs to be matched between left
and right images of two consecutive frames, requiring four
matches per feature. The remaining outliers were removed
by RANSAC [17]. Finally, the bucketing technique was used
to divide the corresponding features into 50 x 50 grids and
selecting only a limited number of features in each bucket.
This step guaranties uniform distribution of the selected
features.

2) ROTATION ESTIMATION

The parameter E represents a 3 x 3 matrix including eight
unknowns and an unobservable scale, which satisfies the five
epipolar constraints of five correspondences in equation (9).
Equations (7), (8), and (9) are extended to 10 cubic con-
straints, and then to a ten-degree polynomial. As a result,
a maximum of 10 essential matrix solutions was obtained for
any five-point set. The solution yielding the highest number
of inliers was selected as a set representative. In order to
guarantee success, multiple five-point feature sets were used
to generate hypotheses. The set with the best pre-emptive
score and the largest number of inliers was selected as the
optimal solution. The essential matrix obtained was decom-
posed into four rotation-translation pair solutions. The correct
pair reconstructed the maximum number of 3D points in the
front of both cameras. In order to improve the precision of
rotation estimation, a fusion step was added. Assuming the
rotation between the current frame in time ¢ and the frames
in times -1, -2 were denoted as t*~2¢ and t'~'g, which
were estimated from the five-point algorithm. The rotation
between the frames in 7-/ and -2, denoted as ¢ — 1’_2q,
was calculated in the previous step. The final rotation '~ !g
was refined via spherical linear interpolation (SLERP) [23]
using two measurements: directly calculated by #'~!¢' and

indirectly calculated via r'~1¢? = ::éq s« 1172q.

3) TRANSLATION ESTIMATION

The relative orientation between two frames was carried out
as above. Here, we introduce a novel method to estimate the
translation from two translational scales by solving the linear
equations. Assume that the five-point algorithm is applied
to two pairs of images, Ly — Ly and Ry — L3, in order to
obtain two normalized translations L;f;, and R;#;, where
thLz’thLz represent translation directions from L to L
and from L, to Ry, respectively. Here, we present a linear
approach to compute the absolute scale for these vectors.
Three cameras L1, L, and R; satisfy a closed-loop constraint,
as shown in Fig. 19.

In other words,

aty — Btr =B (26)
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FIGURE 19. Translation scale is estimated by a loop constraint between
three camera L,, Ry, L,.

where B is the baseline vector,t; = “'11,,6p = R'tL2
Equation (26) is rewritten in detail as
Hx oy b
alty [=B|ty =10 27
1z 5% 0

Equation (27) is expressed as a function of & and

Iy —Iox a b

ty —Iyy |:13i| =1(0 (28)
t1; —I;

Equation (28) is a linear equation with two unknown variables

X = [ozﬂ]T and

AX =b (29)

Thus, X is easily solved using the pseudo-inverse relationship
as follows:

X = (ATA>71ATb (30)

Equation (30) can be written in a closed form described as
follows:

;)

In order to further improve the accuracy of estimated transla-
tion, it was optimized by minimizing the re-projection error
with known rotation. The features in the previous frame were
reconstructed in 3D, and projected to the current frame using
estimated rotation and translation above. The re-projection
error in pixel between the projected point and the correspond-
ing observation was measured. The feature points with re-
projection errors under a defined threshold were selected.
They represent inputs for the refinement step, which was
carried out by minimizing the summation of re-projection
error with objective function:

I1x (tlzx +t12y+tlzz> — o (tixtox +tiytoy +115127)
tie (Bt +t1ytoy i) =213, 13, 413)
(3D

n 2 2
S (5= P R0) + (xf = PriX D)L (32)
where Py, Pg represent projection matrices obtained by the
estimated rotation and translation. The 3D point X} is the
reconstructed point in the previous frame. x,ﬁ, x,lc are the
observations in the frame.
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B. REAL DATASET EVALUATION

In order to consolidate the comparison by simulations,
we applied orthogonal and random selections to two pub-
licly available datasets: 1) the autonomous car driving KITTI
dataset [24], [25] and 2) the 10 km Devon Island dataset [26]
for space mission.

1) KITTI DATASET EVALUATION

The KITTI dataset was collected by driving under differ-
ent traffic scenarios, which are widely used for evaluating
autonomous driving algorithms. The 22 total sections were
equally divided into training and testing datasets. The training
dataset including 11 sections provides rotational/translational
ground-truth. The testing dataset containing the remaining
11 sections maintains the ground-truth private for fair and
public comparison. Both datasets accommodate challenging
aspects such as different lighting, shadow conditions, and
dynamic moving objects. We evaluated the proposed orthog-
onal selection compared with random selection in the train-
ing dataset with different numbers of five-point feature sets
associate with average rotational/translational errors. Subse-
quently, we showed in detail the errors of the 100 testing
datasets in terms of the path length provided by the
KITTI leaderboard.

In order to evaluate the performance of the VO approaches,
the KITTI benchmark provides a tool for measuring rota-
tional/translational error metrics [24]. RMSEs of ground-
truth are computed from all possible subsequences of length
(100,200. ... 800 meters) as defined in the paper [25].

2) EVALUATION OF KITTI TRAINING DATASET

We analyzed random and orthogonal selection using the train-
ing dataset with varying number of five-point sets such as
20, 50, and 100. The RMSE:s of all cases were computed and
displayed in Fig.20.

In general, the transformation errors of the two approaches
share a steady but significant decline from 20 to 100 sets. The
rotational/translational errors of orthogonal selection are less
than in random selection under all three cases. Specifically,
the proposed method enhances the accuracy of translation and
rotation by 9% and 16%, respectively, when 20 sets are used.
In addition, the errors of orthogonal selection using 20 sets
(1.0% /0.0033 deg/m) are equivalent to the errors of random
selection using 100 sets.

The differences in RMSEs between orthogonal and random
selection are highlighted with 20 sets in Fig. 21, which shows
the specific errors of the 11 individual training sections. The
RMSEs of orthogonal selection, shown in red, are lower
than in random selection, shown in blue, generally, for both
rotation and translation. The translational errors of the two
approaches at an individual section are around 1% except for
two sections: 1 and 8. Further, the rotational error of section
8 was also higher than that of the other. The errors in the two
sections are large due to the presence of challenging aspects,
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FIGURE 20. Average translational and rotational RMSEs of the KITTI
training dataset for the two approaches. (a) Average rotational error.
(b) Average translational error.
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FIGURE 21. Average translational and rotational errors of 11 training
sections for two approaches. The orthogonal selection errors are less
than in random selection at most sections. (a) Translation error.

(b) Rotation error.

such as the object movement and the extremely high speed up
to 100 km/h.

Based on the statistical data involving the training dataset,
it is obvious that the translational/rotational errors of the fea-
ture selection based on orthogonality index were fewer than
in the conventional approach. It enhanced the accuracy of
translation and rotation by around 9% and 16%, respectively.
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FIGURE 22. Computational time in orthogonal and random selection
under different K and L values.
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FIGURE 23. Average rotational errors of orthogonal- and random
selection under different K and L values.
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FIGURE 24. Average translational errors of orthogonal and random
selection with respect to different K and L values.

3) ACCURACY AND EFFICIENCY TRADE-OFF

To balance the accuracy and cost, we performed the stereo-
based VO with different numbers of generated sets Ks and
selected sets Ls:Kranged from 500 to 5000 and L is from
20 to 200. The computational time, rotational error and
translational error are presented in Figs 22, 23 and 24,
respectively. The selection of the highest orthogonality
indices ranged from 1 ms to 9 ms almost linearly with
the increase in K from 500 to 5000. Since K is larger
than 1000, the accuracy of rotation and translation did
not improve significantly. The computational time increased
gradually along with the number of selected sets L. How-
ever, the rotational/translational error was reduced exponen-
tially with the increased L. The reduction was rapid when
L ranged from 20 to 50 and was not significant when
L exceeded 100. A K value around 1000 and L ranging from
50 to 100 are trade-off points between the efficiency and
accuracy.
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FIGURE 26. Average rotational error with respect to the path length of
KITTI test dataset.

4) EVALUATION OF KITTI TESTING DATASETS

We applied VO supported by the proposed orthogonality
index in the KITTI testing dataset, and uploaded the estima-
tion of the complete trajectories onto the KITTI leaderboard
for evaluation. As shown in Figs. 25 and 26, the average trans-
lational and rotational errors varied along with the path length
from the KITTI webpage. The rotational and translational
errors were reduced from 1.3%/0.005 deg/m at 100 meters to
1%/0.002 deg/m at 800 m. Our approach yielded an average
translational/rotational RMSE around 1.13%/0.0030 deg/m
for all possible lengths.

In Table 2, we summarize our approach compared to other
popular approaches published in the KITTI leaderboard.

This table lists the translational and rotational errors of
the proposed and other approaches. The KITTI leaderboard
orders the methods based on translational error, resulting
in a 1.13% translational error with our approach, which
is less than in other popular VO approaches such as
ORB_SLAM2 with 1.15%, MFI with 1.3%, and VISO2
with 2.44%. Additionally, it was also better than SSLAM
that provides 1.57%, which used robust key points and
key-frame selection. Our approach was slightly less accu-
rate than SOFT at 1.03%, which carefully selects long life
and stable features and tracking based on four categories.
SOFT?2 represents an extended version of SOFT based on
additional closed-loop constraint to reduce the translational
error from 1.03% to 0.65%.

Fig. 27 visualizes the trajectory of section 12 of our
method compared with the ground-truth and other popular
approaches. Our trajectory almost overlaps with that of SOFT
and was closer to the ground-truth than the other approaches.
This trajectory is a representative example of the average
errors shown in Table 2.
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TABLE 2. Errors compared with conventional approaches.

Translational Error ~ Rotational Error

[ISRI_VO]Ours[27] 1.13% 0.0030(deg/m)
SOFT2[28] 0.65% 0.0014(deg/m)
SOFTIS8] 1.03% 0.0029(deg/m)
ORB_SLAM?2[14] 1.15% 0.0027(deg/m)
MFI[19] 1.3% 0.0030(deg/m)
SSLAM[11] 1.57% 0.0044(deg/m)
VIS02[10] 2.44% 0.0114(deg/m)
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FIGURE 27. Trajectory of section 12 in our method and other approaches
compared with ground truth. Our trajectory in red almost overlaps with
SOFT in blue, which is the closest to GT in black. VISO2 trajectory is the
furthest. SSLAM and MFI are close to each other.

5) DEVON ISLAND DATASET EVALUATION

The Devon Island dataset [26] spans a 10-km distance across
a Mars analog site containing 23 individual sections, each
approximately 500 m in length and located in the high Arctic
regions of Canada. The resulting images are coupled with
sun/inclinometer sensors and excellent ground-truth position.
At the starting point of each individual section, the rover stops
for several minutes to collect adequate sun/inclinometer data
to generate ground-truth orientation ranging from the camera
to the topo-centric frame. Thus, the rotations of complete
individual sections are calculated, without any orientation
information between two arbitrary camera frames. In order
to evaluate the proposed method with Devon Island data,
we conducted a comparison of the feature selections using
orthogonality index and the conventional one, and an addi-
tional comparison of the proposed VO with the Lambert’s
approach [13].

6) PERFORMANCE OF FEATURE SELECTION BASED ON
ORTHOGONALITY INDEX

A statistical comparison of rotational and translational errors
between random and orthogonal selections was performed in
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order to clarify the benefits of orthogonality index, using the
estimated frame-to-frame transformation with three different
sets of 20, 50, and 100. Because every single frame does
not have an orientation ground truth, excluding the starting
frame of each section, it is impossible to compare the relative
rotation between two arbitrary frames suggesting that the
error metric used to evaluate the KITTI benchmark cannot be
applied here. Therefore, we slightly modified the error metric
to fit the missing orientation. First, two different translational
metric errors were measured: the average translational error
covering the full path and the average translational error with
different lengths. Second, the average rotational error was
calculated. The average translational error over the full path
can be easily obtained using the following equation
Z?:glei

Cavg = 2—3 , (33)

in which e; is the location error of the last frame of section i
to the ground-truth position.

The average translational error with different lengths
based on individual sections, at stop points such as 100,
200...700 meters, was calculated using equation (34). N count
represents the sum of all possible stop points; e;; defines
the difference in meters between the estimated location and
ground-truth at the stop point.

2231 17 0{)009'

i= = 1

Cayg = — = 34)
“8 N count (

As mentioned previously, in the absence of orientation
ground at every frame, the rotational error was evaluated
based on the starting-frame ground truths, which specifi-
cally calculates the difference between the estimation and the
ground truth. The rotation ground-truth of section i, 8+1 Ror,
was calculated using two ground-truth rotations derived from
camera frames to the topo-centric frame. The camera frame
C; represents the first frame of section i. The rotation g£+1 Rvo
is estimated by accumulating single rotations. The rotational
error of section l is defined as R, = gﬂRGT ng R‘_,Cl). In the
ideal case, matrix R, is a 3 x 3 identity matrix. However,
in real-world situations, the rotational error can be expressed
as follows:

35
> (35
This rotation error metric was used to compare 22 individual
sections using two approaches, with no possible ground truth
calculation involving the last section. The average rotational
error was also computed as follows:

Orot — 1221 O?)t
avg 22
The three error metrics are discussed below.
As shown in Fig. 28, illustrating the average error covering
the full-length path, the horizontal axis represents the vari-
ation in the number of sampled subsets, while the vertical
axis carries the mean translational errors involving the two

(36)
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FIGURE 28. Average translational error with respect to the full-path
length of the Devon Island dataset.
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FIGURE 29. Average translational error with respect to the path lengths
of Devon Island dataset.

approaches. The random selection method using 20 sets dis-
plays the highest percentage of translational errors at 8.8%.
Using 50 and 100 sets, this error was reduced continuously
to 1.2% and 0.97%, respectively. Orthogonal selection also
showed a downtrend with the number of sampled sets. How-
ever, the largest percentage of translation error was only
0.93% considering 20 sampled sets, which decreased to 0.9%
and 0.85% with 50 and 100 sets, respectively. This result
suggests that the average translational error spanning the full
length of the random method was larger than that of the
proposed approach.

Fig. 29 illustrates the average translational errors with
different lengths. The translational error of random-selection
at 20 sets was 7.5%, which was reduced to 0.9% at 50 and
0.8% at 100 sets. These errors associated with orthogonal
selection were 0.72%, 0.71%, and 0.70%, respectively. The
trend in translational error with different lengths was similar
to the full-length in terms of downtrend, shape of the graph,
and other parameters

Fig. 30 shows the average rotational error. The largest
error of rotation still belongs to random selection using 20
sets with 0.027 deg/m, which was reduced to 0.005 deg/m
with 50 sets and to 0.044 deg/m with 100 sets, respectively.
The rotational error of orthogonal selection also showed a
downward trend; however, it was slower and more stable,
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FIGURE 30. Average rotational error with respect to the full path length
of Devon Island dataset.
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FIGURE 31. Comparison of XYZ error with respect to travel distance under
two approaches. (a) Conventional VO's XYZ error [13]. (b) Our XYZ error.

starting with 0.0045 deg/m at 20 sets and ending at 100 sets
with 0.0040 deg/m.

The above statistical results valid the theory discussed in
simulation, suggesting that the feature selection with orthog-
onality index was better than in random selection in terms of
accuracy, especially when using fewer sets. Random selection
with 20 sampled sets provides enormous amounts of transla-
tional and rotational errors due to the breakdown of essen-
tial matrix estimation at specific frames in certain sections.
This finding indicates that even with fewer sets, orthogonal
selection guarantees the success of estimation. Therefore,
when the errors over the full-path length are considered,
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the translational enhancement increased the accuracy of the
50 and 100 sets by 20% and 10%, respectively. The rotational
enhancement of 50 sets was 13%. Moreover, the accuracy of
orthogonal selection at 20 sets was similar to that of random
selection at 100 sets. The translational error of the proposed
method was 0.9% over the full-length path.

7) COMPARISON TO CONVENTIONAL APPROACH
A study reported from the top performance of the conven-
tional method [13] evaluated 23 individual sections with VO.
In order to show the benefit of the proposed method,
we followed the same strategy used by Andrew Lambert for
comparison, by measuring the translational error in XYZ
with regard to the distance traveled. Fig. 31(a) shows the
trends in Lambert’s VO translational error while Fig. 31(b)
describes our own. The translational errors for all sections in
the proposed method were always less than 10 m; otherwise,
these errors involving Lambert’s method were around 40 m
at 500 m. Clearly, the average translational error of Lam-
bert’s VO with 8% was higher compared with our method, at
around 0.9%.

VI. CONCLUSION

A new approach for the selection of optimal features in VO is
presented by introducing the orthogonality index associated
with a set of equations and constraints involved in VO.
Compared with the conventional methods that resort to a
large number of heuristically or randomly selected features,
the proposed method relies on a mathematical formalism by
minimizing the extent of uncertainty involved in estimating
the essential, fundamental or homography matrix for VO.
The effectiveness of the proposed method was verified via
statistical simulations, which demonstrated a definitive neg-
ative correlation between the orthogonality index and the
residual error estimated. The simulations also establish that
the proposed optimal feature selection reduced residual errors
significantly compared with conventional random selection
using various approaches based on VO utilizing the essential,
fundamental or homography matrix as well as the structure
derived from motion. Experiments with KITTI dataset show
that the proposed orthogonal selection outperforms the ran-
dom selection by nearly 10% for both rotation and trans-
lation estimation, resulting in an average translational error
of 1.13%. Experiments with Devon Island dataset for stereo-
visual odometry also indicate that our method based on the
proposed optimal feature selection resulted in an average
translational error of 0.9%, exceeding the top performance of
the conventional method [13]. In the future, we plan to widen
the scope of applications utilizing the proposed orthogonality
index-based optimal feature selection.
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