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ABSTRACT With the rapid development of the Internet of Things (IoT) network, the IoT devices need to
perform the artificial intelligence (AI) model to make decisions according to the specific service requirement
under a dynamic environment. However, the generation and usage of AI model typically requires a huge
amount of communication, computing, and caching resource. Thus, the construction of the network and the
scheduling of the limited network resources to realize the rapid generation and propagation of AI models
are critical. Therefore, we propose a software-defined Information Centric-Internet of Things (IC-IoT)
architecture to bring caching and computing capabilities to the IoT network. Based on the proposed IC-IoT
architecture, we design a joint resource scheduling scheme to uniformly manage the computing and caching
resources. The objective is to maximize the reward which consists not only short-term reward but also
long-term reward brought by caching popular AImodels. The resource scheduling problem is formulated into
amulti-dimensional optimization problem. A new deepQ-learningmethod is proposed due to the complexity
and high dimension of this problem. The simulation results verify the effectiveness of the software-defined
IC-IoT architecture and the joint resource allocation strategy.

INDEX TERMS Information-centric network, Internet of Things, mobile edge computing, joint optimiza-
tion, deep Q-learning.

I. INTRODUCTION
Information Centric Network (ICN) is a type of network
that changes users focus from the terminal to the content,
separates the content from the terminal location, and pro-
vides storage and communication services through the pub-
lish/subscribe paradigm [1]. ICN has changed the pattern of
the existing IP network. It is characterized by the fact that the
network carries a large amount of contents and the user’smain
behavior is to access certain popular contents. ICN uses the
request and acquire information as the basic behavior mode
instead of the traditional end-to-end connection which can
effectively distribute the contents. Thus, ICN can be appli-
cable to a large number of application scenarios, especially
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in Internet of Things (IoT) network which needs to distribute
large amount of information.

IoT applications have gradually been incorporated into all
areas of the production and our daily lives. IoT is becoming
more and more intelligent with the in-depth research work
on related technologies. IoT devices need to make decisions
by training and running Artificial Intelligence (AI) models
according to environmental changes in real time [2]. How-
ever, computation capabilities of the devices are too weak to
train and run the models. By offloading the complex com-
putation tasks to Mobile Edge Computing (MEC) servers,
the computation latency and network transfer load can be
reduced. Therefore, edge servers need to acquire AI models
and infer the models to analyze the data produced by IoT
devices, then return the calculation results to the devices,
so that the devices can perform related tasks intelligently.
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At the same time, IoT devices generate massive data which
enable the edge servers to train AI models with the data, then
the AI models are distributed to the other users who need the
model. For example, in Industrial Internet of Things (IIoT)
scenario, a glass manufacturer wants to inspect the crack
on the glass, and another glass manufacturer also wants to
inspect the crack on the glass, they can use the same AI
model. Thus, the AI models spread through the network in a
publish/subscribe paradigm. Therefore, efficient and flexible
forwarding AI models and the massive data is an impor-
tant issue of current IoT research. Compared with the tradi-
tional network, ICN pays attention to the information content
itself, thus it can transmit the information content efficiently.
It is highly suitable for the transmission of the AI models
in IoT.

Therefore, we introduce SDN paradigm to Information
Centric-Internet of Things (IC-IoT) and extend the function
of traditional SDN controllers. This paper proposes a Soft-
ware Defined Network (SDN) based IC-IoT architecture.
Since various computation and caching resources need to
work together to provide service for users in this scenario,
it is necessary to manage the resources in the network archi-
tecture uniformly. However, most of the existing researches
only focus on computing resource allocation, and only a few
researches focus on joint resource allocation [3]–[6]. Thus,
we propose a resource allocation scheme by jointly consider-
ing the user requirements, model popularity, computing and
caching resource status. The objective of the scheme is to
maximum the reward which is consisted of short-term reward
and long-term reward. Since the joint resource schedul-
ing problem is complex and involves multiple optimization
dimensions. This paper proposes Deep Q-Learning (DQL)
algorithm to settle the problem.

The contributions of this paper include:
• Propose a new AI model computing and propagation
application scenarios and process of IC-IoT which can
be widely used in multiple IoT scenarios.

• Propose a SDN paradigm based IC-IoT network archi-
tecture, and propose a joint computing and caching
resource allocation scheme based on the architecture.
The scheme considers resource status, user requirements
and the popularity of the AI model.

• The objective of optimization includes not only
the current reward, but also the long-term reward
from caching popular AI models in the network.
And utilize DQL to solve the multi-dimensional
problem.

We organize the rest of the paper as follows. In section 2,
we introduce some related works. In section 3, we present
the software-defined IC-IoT architecture and system model.
In section 4, the joint resource optimization problem is
formulated, with the consideration of caching and com-
puting resources. And the problem id solved by DQL.
We show the simulation settings and discuss the simu-
lation results in section 5. Finally, conclusions are given
in section 6.

II. RELATED WORKS
In the next decade or so, billions of things are expected
to be put into use around the world with the support of
IoT technology [2], [7]–[10]. Therefore, MEC and ICN tech-
nologies are important for processing and transmitting the
huge data in a timely and efficient way. And there are many
researches focus on applyingMEC and ICN to IoT.Moreover,
with the help of SDN technology, computing and caching
resources in MEC and ICN can be centralize managed to
provide higher users’ quality of experience (QoE) [11].

A. INTERNET OF THINGS WITH CACHING
Caching technology has special significance for IoT. On one
hand, caching is usually able to speed up data retrieval,
this could bring shorter IoT task execution delays. But
on the other hand, caching and related acceptance opera-
tions are very expensive in terms of processing and power
consumption.

Therefore, the first question is which devices in the IoT
should have caching capabilities. A simple design is to
not cache in IoT devices with constrained capabilities [12].
Although it has been confirmed in [13] that network latency
can be reduced even caching in an IoT node with small
storage. However, this will bring some energy consumption.
Therefore, we usually choose to cache content in the IoT
gateway or network router [14].

The second problem is that caching all contents results
in higher content redundancy and lower resource utilization.
The IoT strategy should focus on improving the speed of
propagation instead of long-term caching, and it is recom-
mended to taking the content freshness and the require-
ments of the application into consideration. And the data
replacement strategy is essential, while abandoning outdated
content [15].

B. INTERNET OF THINGS WITH EDGE COMPUTING
Because IoT devices have limited computing power while
need to deal with complex tasks, it has long been proposed to
introduce edge computing into the IoT network. At present,
edge computing has been applied in various fields of IoT.

In the smart city field, Li et al. [3] proposed the edge com-
puting resource allocation scheme based on delay optimiza-
tion, by describing the problem as partial observable Markov
decision process for minimizing the network expenditure.
In [4]–[6], researchers considered network, cache, and com-
puting resources to jointly optimize the tasks computation
latency in smart cities.

In the field of industrial Internet, Aazam et al. dis-
cussed how fog provides local computing support in the IIoT
environment [16]. Li et al. proposed an IIoT adaptive trans-
mission model based on SDN and edge computing. Xu et al.
in [17] proposed a centralized edge computing offloading
strategy. The strategy brings higher processing and operation
performance to the system. Chao et al. in [18] considered
cache and compute resources together when computing tasks,
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FIGURE 1. The software-defined IC-IoT architecture.

and dynamically scheduled the resources to maximize the
system reward in software-defined industrial internet.

Most of the existing researches on single resource alloca-
tion, only some researches focus on joint resource allocation.
However, these co-optimization schemes are not applicable
to our scenario. Because these co-optimization schemes only
consider the short-term reward and ignore the long-term
reward. However, caching popular AI models will bring huge
long-term reward, since it saves the cost of recalculating the
model when the model is requested in the future.

III. SYSTEM MODEL
We first introduce the proposed SDN paradigm based IC-IoT
network architecture. Then the network architecture is given,
including network model, cache model, and compute model.

A. PROPOSED SOFTWARE-DEFINED IC-IOT
ARCHITECTURE
By considering caching and computing resources together,
we propose a software-defined IC-IoT architecture. The
architecture is consisted of 4 layers, which includes IoT
devices, data, control, and application layer which is shown
in 1. The proposed framework could be used to provide

computing and caching services for IoT applications such as
IIoT, smart home, intelligent city and so on.

In the IoT devices layer, for example, in IIoT scenario
there are different kinds of field devices such as cameras,
sensors, robot arms and band carriers. They are responsible
for collecting data and execute instructions On one hand,
the data which are collected by them is gathered for training
AI models. On the other hand, they use AI models to make
behavioral decisions, such as classify products according to
the quality.

In the data layer, there are two kinds of resources, ICN
routers are responsible for both routing and caching. Popular
contents in the network are usually cached in the ICN routers.
So that when the other users request the cached content in
the future, the routers can return the results directly to users
which can speed up content retrieval in the IoT network.
Mobile edge gateways with stronger computing capabilities
are responsible for computing tasks such as training AI mod-
els, and also inferring other AI models to analyze the data.
We assume that there are C ICN routers, M MEC gateways,
and U users in the system. And we use C = {1, . . . ,C} to
present the set of ICN routers, M = {1, . . . ,M} to present
the set of MEC gateways, and U = {1, . . . ,U} to present the
set users.
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The control layer integrates the network intelligence,
which enables the system to centralized manage the cache,
and compute resources dynamically.

Moreover, many applications are supported in the applica-
tion layer, such as predictive maintenance, quality inspection
and motion control applications in IIoT, and the intelligent
electrical control, security monitoring system applications in
smart home.

Theworkflow of this architecture is introduced here. A sys-
tem user requests an AI model, such as an image identifica-
tion model to inspect product quality, from an ICN router.
First, the ICN router will check if this AI model is cached in
the system. If the AI model is cached in the system, the ICN
router will reply the user with this AI model. Otherwise,
the ICN router sends the task request to SDN controller.
The SDN controller runs the joint optimization algorithm and
chooses a MEC server to train the model for the user. More-
over, the SDN controller decides whether to store the model
in the network according to the popularity of the AI model
and the computing and caching cost, and if it does, it chooses
an ICN router to store the model. Finally, the ICN router
forwards the matched model to the user. For a comprehensive
perspective, the flow chart is shown in Fig. 2.

FIGURE 2. Workflow of the architecture.

B. CACHING MODEL
It is assumed that there are I AImodels in the IC-IoT network.
The models indexed by i are arranged in decreasing popular-
ity order.The average request rate of the model i is denoted as

λi(t) =
λ

ρiα
, (1)

where the arrival of users requests is a Poisson process,
the arrival rate is λ. The AI models request rate is a Zipf-like
distribution. The probability of AI model i being requested
is 1/ρiα , here ρ =

∑I
i=1 1/i

α . α is the Zipf slope, such that
0 < α ≤ 1.
When the AI model i is well trained, it could be cached in

an ICN router in this system. However, it could be replaced
by other models with higher popularity. Thus, whether or not
model i is stored in IC-IoT network is presented by ςi. ςi = 0

means the AI model i is not stored in an ICN router; ςi = 1
means the AI model i is stored in the ICN router. The cache
status of model i in one ICN router at time t is presented as
ςi(t). The caching state changes from one state to another
based on a certain transition probability. AndJ%s̄ξs̄ (t) denotes
the transition probability of ςi(t) changes from %s̄ to ξs̄ at
time instant t . The transition probability matrix 8i(t) can be
presented as:

8i(t) = [J%s̄ξs̄ (t)]2×2, (2)

where J%s̄ξs̄ (t) = Pr(ςi(t + 1) = ξs̄|ςi(t) = %s̄), and
ξs̄, %s̄ ∈ ζ .

C. COMPUTING MODEL
There is a computation task Tu = {ou, nu, tu} from system
user u, and ou means the output size of the requested AI
model, nu means the needed number of CPU cycles for
training this model, tu means the maximum tolerant delay of
the task.

The compute capability of MEC gateway m provided for
user u is modeled as hmu . To discrete the value, we divide the
range of hmu into L ′ intervals, i.e., H = {H0,H1, . . . ,HL ′−1}.
Computation capability hmu at time t can be presented by
hmu (t) [4]. The computation capability changes from one state
to another based on a certain probability. Let ε∝s̄$s̄ (t) rep-
resent the transition probability of hmu (t) from ∝s̄ to $s̄ at
time instant t . The transition probability matrix Hm

u (t) is
presented as:

Hm
u (t) = [ε∝s̄$s̄ (t)]L ′×L ′ , (3)

where ε∝s̄$s̄ (t) = Pr(hmu (t + 1) = $s̄|hmu (t) =∝s̄),
$s̄,∝s̄∈ H .
The training time Tu at MEC gateway m could be

expressed as:

tmu =
nu
hmu (t)

. (4)

The computation latency must be smaller than the maxi-
mum tolerant latency of the task when ignoring the transmis-
sion latency. Thus,

s.t.
nu
hmu (t)

< tu (5)

Thus the computation rate is:

CompRmu (t) = amu (t)
ou
tmu
= amu (t)

hmu (t)ou
nu

, (6)

where amu (t) means whether user u uses MEC gateway m for
training the AI model. Let amu (t) = 1 denote MEC gateway
m is assigned to user u for training AI model, and amu (t) = 1
denote MEC gateway m is not assigned to user u for training
AI model.

Moreover, the use of the MEC gateways cannot exceed
their computation capabilities.

s.t.
∑
u∈U

amu (t)ou ≤ Om, (7)
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where Om is the maximum output data size of AI models can
be trained on MEC gateway m concurrently.

Thus, considering cache, and compute resources together
in IC-IoT will bring a complex system, the resource schedul-
ing problem in this system is difficult to be solved by conven-
tional algorithms.

IV. PROBLEM FORMULATION
The resources scheduling problem in IC-IoT network is for-
mulated into a DQL process, then the system state, controller
action, system reward are put forward.

A. SYSTEM STATE
The system state consists caching status, and computing sta-
tus. Thus, system state S(t) at time t is represented as:

S(t) =
[
01
u(t) 02

u(t) . . . 0cu(t) . . . 0Cu (t)
h1u(t) h2u(t) . . . hmu (t) . . . hMu (t)

]
,

(8)

where 0cu(t) = [ς1(t), ς2(t), . . . , ςi(t), . . . , ςI (t)],
ςi(t) ∈ {0, 1}.

B. CONTROLLER ACTION
The controller should decide whether or not the requested
AI model should be cached in the system and which ICN
router should cache the model. Moreover, the controller need
to determine which MEC gateway should train the AI model
for user u. Thus, controller action au(t) at time instant t could
be presented as:

au(t) = {CaAu(t),CompAu(t)}, (9)

where CaAu(t), and CompAu(t) mean:
1) CaAu(t) = [CaA0u(t),CaA

1
u(t), . . . ,CaA

C
u (t)], where

CaA0u(t) represents cache the model or not. CaA0u(t) = 1
means that the AI model is not popular and the network
refuses to store the AI model. CaA0u(t) = 0 means the AI
model will be stored. And CaAcu(t),∀c ∈ C means whether
or not the AI model requested by user u is stored in ICN
router c. CaAcu(t) ∈ {0, 1}, where CaA

c
u(t) = 0 means the

model is not stored in ICN router c, otherwise CaAcu(t) = 1.
Moreover, only one ICN router store the requested AI model,
thus

∑
c∈C CaA

c
u = 1,∀u ∈ U .

2) CompAu(t) = [CompA1u(t), . . . ,CompA
M
u (t)], where

CompAmu ,∀m ∈ M means whether or not the model
requested by user u is trained by MEC gateway m. And
CompAmu (t) ∈ {0, 1}, where CompAmu (t) = 0 means
the model is not trained in MEC gateway m, otherwise
CompAmu (t) = 1. Moreover, only one MEC gateway train the
AI model for the user u, thus

∑
m∈M CompAmu = 1,∀u ∈ U .

C. SYSTEM REWARD
The optimization goal of this paper is to maximize the system
revenue, so that the system can get the highest profit when it is
dealing with the same task. Therefore, the total profit is equal

to the difference between the income and the expenditure of
the system.

Since the cached AI model may be requested by other
network users in the future, which could bring profits. Thus,
the reward of this model is consisted of short-term reward and
long-term reward.

Short-term reward is the difference between each user’s
payment and the electricity cost of the system for serving the
user. The network consumes electricity when MEC gateway
training the model and ICN router caching the model. The
decision on whether or not to cache the AI model determines
whether or not the system consumes energy due to caching in
this time slot.

Long-term reward is obtained if the SDN controller decides
to cache the AI model. Thus, the MEC gateway does not need
to recalculate the model when the other users will request
the model in the future. And energy consumption cost by
recalculation could be saved. Thus, the reward function is
denoted as:

Ru(t) = rsu(t)+ wr
l
u(t). (10)

where w is a weight to balance the short-term and long-term
reward. w could be set small when we focus more on
short-term reward, and could be set large if we focus more
on long-term reward.

Firstly, we consider specifically about short-term reward.
The system need to pay for electricity usage caused by
caching in ICN router c and computing in MEC gateway m,
the electricity fee is denoted as ηm per killowatt-hour. Mean-
while, the system charge the user u for the fee of training the
AI model, which is represented by φu per million CPU cycle.
Thus, short-term reward is denoted as:

rsu(t) = Rpayu −
∑
c∈C

Ecahcheu,c −

∑
m∈M

Ecompu,m

= φunu −
∑
c∈C

CaAcu(t)ηmouwc

−

∑
m∈M

CompAmu (t)ηmnuem

= φunu − ηm(
∑
c∈C

CaAcu(t)wcou

+

∑
m∈M

CompAmu (t)emnu). (11)

wherewc denotes the electricity consumption for caching one
bit content, and em denotes the electricity consumption of
CPU running a cycle.

The long-term reward is defined as expected return within
the next k time slots. J%s̄%s̄ (t) is probability that model i
remains cached. Thus, the long-term reward is denoted as:

r lu(t) = ηmnuemCaA
0
u
1− J%s̄%s̄ (t)k

1− J%s̄%s̄ (t)
λ

ρiα
. (12)
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Thus, by considering short-term and long-term reward
together, the reward function is denoted as:

Ru(t) = rsu(t)+ wr
l
u(t)

= φunu + wηmnuemCaA0u
1− J%s̄%s̄ (t)k

1− J%s̄%s̄ (t)
λ

ρiα

− ηm(
∑
c∈C

CaAcu(t)wcou +
∑
m∈M

CompAmu (t)emnu).

(13)

D. DEEP Q-LEARNING ALGORITHM
In the proposed software defined IC-IoT, the controllers visu-
alize and schedule the caching resource from ICN routers,
and the computing resource from MEC gateways. Due to
the following reasons, it is difficult to solve the resource
allocation problem in this system with tradition algorithms:
• High complexity and dimensional system.
• Need to learn the regularity of the system environment.
• Need to make decisions while considering both current
and long-term reward.

Therefore, we use deep Q-learning (DQL) to choose opti-
mal action which brings maximum reward function.

FIGURE 3. Agent-environment iteration paradigm.

Fig. 3 displays the interaction between controller and sys-
tem environment in Q-learning. In each episode, the con-
troller can percept current resources status S(t), i.e., the status
of caching resource, and computing resource. Based on a
given policy, the controller chooses an action au(t) in current
environment, such as, it assigns a MEC gateway m to the
user u for training the AI model, decides whether to cache
the model i and assigns an ICN router for caching the model.
Then the environment changes to S(t + 1), and the system
obtains the reward Ru(t).

The policy function is denoted as π , where π (au(t)|S(t))
presents the probability of choosing action au(t) under envi-
ronment state S(t). Action-state value function Qπ (s, a) is
used to evaluate the expect reward of a policy in Q-learning

which is denoted as:

Qπ (s, a)=Eπ [
∞∑
k=0

γ kRu(t+k+1)|St=s, au(t)=a], (14)

where Eπ [∗] is the mathematical expectation with state tran-
sition probability matrix and policy π . γ ∈ [0, 1] is the dis-
count factor to balance current reward and long-term reward.

Q-learning is a temporal-difference learning algorithm,
and the evaluation method of Q(s, a) is denoted as:

Q(s, a)← Q(s, a)+ α(Ru(t)+ γ max
a′

Q(s′, a′)− Q(s, a)),

(15)

where the learning rate α ∈ (0, 1].Q(s, a) values are recorded
in a Q table, and agent usually chooses the action with largest
Q(s, a) value.
Since the system state and the controller action in our

system is large. It is such difficult to record Q(s, a) in a Q-
table. So, neural networks are used to estimateQ(s, a), we use
w to denote the parameters of neural networks, the parameters
setw include weights and biases. And the neural networks are
trained to enable Q(s, a,w) ≈ Q(s, a) [19]. In each learning
iteration, we train the neural networks to minimize loss, and
use the neural networks to estimate real Q(s, a) which is
shown in Fig 4 and loss function is expressed as follows:

L(w)=E[(Ru(t)+γ max
a′

Q(s′, a′,w′)−Q(s, a,w))2]. (16)

FIGURE 4. The presentation of the loss function.

Two innovations are proposed to make DQL more
efficient:

1) Fixed target neural networks. There are two sets
of independent neural networks with the same structure.
In each episode, one changes parameters to decrease the
loss function, called evaluated Q-networks. Another set of
neural networks are temporary fixed, and updates parameters
with evaluated Q-networks every some steps, called target
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Q-networks. Then, the algorithm could be trained in a stable
manner.

12) Experience replay memory. DQL records experiences
in (s, a,Ru(t), s′) format in a replay memory with fixed-
sized. DQL randomly selects batch of them for training the
neural networks. This makes the controller learn from past
experiences stored in the memory.

Thus, the process of DQL approach is shown in Fig 5.

FIGURE 5. The workflow of DQL.

V. SIMULATION AND RESULTS ANALYSIS
A. SIMULATION SETTINGS
We use a CPU-based server, which has 8GB 2666 MHz
DDR4 memory, 2GHz Intel Core i7, and 256GB drive.
Python 3.6.4 with Tensorflow 1.8.0 is used to provide soft-
ware environment. Note that we use a seven-layer neural
networks in the simulation.

We assume the caching status of one AI model in ICN
routers could be cached (ςi = 1), and non-existence (ςi = 0),
the transition probability matrix is set as:

8 =

[
0.7 0.3
0.3 0.7

]
. (17)

In a similar way, the computation capability states of MEC
gateways could be strong (with the computation rate hmu (t) =
50), medium (hmu (t) = 10), and weak (hmu (t) = 1), the transi-
tion probability matrix is set as:

E =

0.6 0.3 0.1
0.1 0.6 0.3
0.3 0.1 0.6

 . (18)

The rest parameter setting in the simulation are presented
in Table 1.

In order to compare the performance, there are four simu-
lation schemes:
• DQL based joint optimization scheme (considering
cache and compute resources).

• DQL based computing scheme (considering compute
resource only).

• DQL based caching scheme (considering cache resource
only).

• Static allocation (static cache, and compute resource
allocation).

B. SIMULATION RESULTS
Fig. 6 presents the connection between the state-action value
and the training episodes in different schemes. The conver-
gence of state-action value indicates the convergence of the
proposed algorithm. We compare the convergence situation
of difference schemes in Fig. 6. ε-greedy linearly decrease
from 1 to 0.1 in 1000 training episodes and then remains
stable. With the increasing of training episodes, till about
the 1000th episode, Q-evaluate remains stable, which shows
good convergence characteristic of the algorithm. Note that,
the algorithm converges under different transition probability
matrices.

FIGURE 6. State-action value of different schemes.

Fig. 7 presents the changing trend of learning loss under
DQL based joint optimization scheme in the training process.
It also indicates the convergence characteristic of the pro-
posed algorithm. It can be seen that the curve does not decline
smoothly, because the input data in DQN is changed step
by step, and different data will be obtained according to the
learning situation. When training steps reaches 5000, the loss
of DQL based joint optimization scheme starts to decrease
gradually which means the algorithm eventually converges.

Fig.8 shows the reward performance of different schemes
when the required CPU-cycle changes from 5 to 10 mil-
lion cycles. The revenue of each mode increases, although
the increasing number of computing cycles brings higher
computing energy consumption. Since the amount of fees
paid by users are proportional to the number of CPU cycles

VOLUME 7, 2019 61993



F. Xu et al.: DQN Inspired Joint Computing and Caching Resource Allocation Approach

TABLE 1. Setting of simulation parameters.

FIGURE 7. Learning loss of DQL based joint optimization scheme.

FIGURE 8. The expected reward versus the required CPU cycles nu under
different schemes.

required by their computing tasks. However, it can be seen
that compared with the other schemes, the DQL based joint
optimization scheme has the largest reward. Moreover, it has
the largest growth rate of reward. And the DQL based com-
puting scheme has the lowest benefit, even lower than static
allocation scheme. Since it gives up huge long-term reward
when the cost of energy for caching a model is relatively
small, and it is not sensible.

FIGURE 9. The expected reward versus the size of model ou under
different schemes.

In Fig.9, we simulate the reward performance of different
schemeswhen themodel size changes from 1Mbits to 4Mbits.
Because caching model is a behavior of the system for gain-
ing long-term reward, users do not need to pay extra fees to
the system for caching the model. Therefore, with the data
volume of themodel increasing, the system gains less and less
reward. For models with large enough data volumes, caching
the models in the system is not a good strategy. It obvious that
the proposed algorithm can bring the highest reward which
shows the advantage of joint optimization scheme.

In Fig.10, we simulate the reward performance of different
schemes when the probability of requesting model changes
from 0 to 0.6. From the figure, we can see among the
DQL based joint optimization scheme, DQL based caching
scheme, and static allocation schemes, the joint resource allo-
cation scheme always brings higher reward. Compare with
DQL based computing scheme, the DQL based joint opti-
mization scheme could gain higher reward when the model
requesting probability is higher than about 0.025. However,
when the probability is too small, it has a little smaller reward
than the DQL based computing scheme. Since it has a prob-
ability of 0.1 to randomly selects actions which leads to a
relatively reduction of the reward. However, overall, the DQL
based joint optimization scheme performs better compared
with the other schemes.
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FIGURE 10. The system reward versus the AI model popularity under
different schemes.

FIGURE 11. The system reward versus the task arriving rate λ under
different schemes.

In Fig.11,we simulate the reward performance of different
schemes when the arriving rate of the network changes from
1 task/time slot to 6 tasks/time slot. From the figure, we can
see among the DQL based joint optimization scheme, DQL
based caching scheme, and static allocation schemes, the joint
resource allocation scheme always brings higher reward. And
the reward increases with the arriving rate. However, when
the arriving rate is too low, static allocation scheme which
always chooses to cache the content in certain ICN router
gains smaller reward than the DQL based computing scheme.

VI. CONCLUSION
This paper propose a software-defined IC-IoT network archi-
tecture and proposed a specific application scenarios of IC-
IoT, namely the publishing and subscription scenarios of
the AI models. Then we propose a joint resource allocation
scheme to dynamically manage and arrange the caching and
computing resources based on the proposed architecture. The
network always selects actions that bring the highest reward
to the system. The reward is consisted of short-term reward
and long-term reward. We formulate the resource scheduling
problem as a multi-dimensional optimization problem and

utilize deep Q-learning algorithm to settle the problem. Eval-
uation results prove that the scheme is effective and conver-
gent in different scenarios. Some future work is underway to
consider cloud edge collaboration or collaboration between
edges for training the model in order to better promote the
proposed approach.
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