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ABSTRACT Accurate state monitoring and the fault prediction model is very important for the smooth
running of a reciprocating compressor. Vibration signal is a sensitive characteristic parameter for fault
prediction of a reciprocating compressor. Thus, it is necessary to develop an accurate and stable vibration
signal prediction model. However, it is difficult to predict using a simple model for its nonlinear and
nonstationary characteristics. Aiming at the characteristics of the vibration signal, a hybrid prediction
modeling strategy called ACLCD-PSOLSTM is proposed by combining autocorrelation local characteristic-
scale decomposition (ACLCD) and improved long short termmemory (LSTM) neural network. To reduce the
complexity of modeling, the original vibration signal is decomposed into many intrinsic scale components
(ISCs) and a residue item by ACLCD. Then, each of the ISCs is predicted using the particle swarm optimiza-
tion LSTM (PSOLSTM) model. And all the predicted results are accumulated as the final predicted result
of the vibration signal, where the autocorrelation characteristics of the signal are considered to overcome
the end effect of traditional LCD. For better performance of the LSTM prediction model, a multiobjective
optimization model is established that balanced the prediction ability of the LSTM (RMSE) with the model
complexity (hidden neurons and time lags). And the model is solved by the PSO algorithm. To validate the
predicting capacity of the proposed hybrid ACLCD-PSOLSTM model, four different predicting models are
implemented on the vibration signal series. The results of experiments show the superiority of the hybrid
model over other models in improving the predictive performance.

INDEX TERMS Vibration signal predicting, signal autocorrelation, local characteristic-scale decomposi-
tion, long short term memory neural network, particle swarm optimization, hybrid model.

I. INTRODUCTION
Reciprocating compressor is the core equipment in petro-
chemical production. Once the compressor breaks down,
it will affect the whole production process, reduce production
efficiency and even cause environmental pollution. Thus,
accurate fault prediction is crucial to the smooth running of
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approving it for publication was Bo Jin.

the reciprocating compressor. Vibration signal is a sensitive
characteristic parameter for fault prediction of reciprocating
compressor [1]. Most of the faults, such as air valve damage,
piston rod sinking, crosshead bolt loosening, connecting rod
wear, are accompanied by abnormal vibration signal [2], [3].
Therefore, accurate prediction of vibration signal is the basis
of compressor fault prediction. However, due to the complex-
ity of the production environment, the vibration signals often
present nonlinear and nonstationary characteristics, which
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brings great difficulties to modeling. Therefore, it is still a
challenge to establish an accurate vibration signal prediction
model.

The vibration signal produced in the running process of
compressor has the characteristics of time series. Time series
prediction models can be divided into three categories: linear
models, intelligent models and hybrid models. The linear
model is a very widely used time series model because of
its simple structure. The general linear time series model is
composed of Auto-Regressive (AR) model, Moving Aver-
age (MA) model and the Auto-Regressive Moving Aver-
age (ARMA) [4]–[7]. These models only apply to linear
systems, describing linear relationships between variables.
Intelligent models [8]–[12], such as Back Propagation neural
network (BP) can process complex nonlinear data and capture
the inherent characteristics of data, which has been widely
studied in recent years. However, the traditional intelligent
model cannot solve the timing problem in the data due to
the limitation of structure. The Recurrent Neural Network
(RNN) [13] improves the connection mode of neurons in the
traditional neural network, connecting neurons at different
moments. Hence, the information of the present moment
is relevant not only to the present moment but also to the
past. In recent years, RNN has been widely used in speech
recognition and machine translation [14]–[16]. However,
RNN is easily affected by the vanishing gradient problem,
which makes it difficult to deal with the long-term depen-
dencies problem [17]. Long short-term memory(LSTM) [18]
is a special type of RNN architecture, to solve the vibra-
tion signals predicting problem. LSTM performs well in
dealing with long-term dependencies problems and can sup-
press the vanishing gradient problem. Li et al. [19] and
Hu and Chen [20] predicted wind speed series used LSTM
network. The results show that LSTM network is superior
to other traditional neural networks in the prediction of wind
speed series. Lin et al. [21] predicted the operation state of the
transformer with LSTM network and achieved good results.

However, LSTM will encounter various problems in the
use process, such as slow convergence, overfitting and param-
eter selection and so on. Gregory and Gauvain [22] proposed
a modified version of the LSTM neural network in which
direct links are added between the three gates of a LSTM cell.
This modification aims to prevent that convergence rate from
being too slow when the LSTM activation function gets stuck
in a saturated state. Zhao et al. [23] proposed an improved
LSTM network. This method introduced batch normalization
procedure that aims to reduce the internal covariate shift
of LSTM. ElSaid et al. [24] proposed an improved LSTM
model that changed the way neurons are fully connected. This
method speeds up the convergence and avoids the overfitting
problem. As there is no scientific guidance to choose the
number of neurons in hidden layer and the number of time
lags of LSTM network, an improved model PSOLSTM is
presented in this paper which PSO is introduced to solve
the optimal number of neurons and lags by minimizing a
multiobjective function.

Due to the limited information that a single model can
process, more andmore scholars use hybridmodel to improve
the prediction accuracy in recent years. To improve the pre-
diction accuracy, Jatin and Toshniwal [25] use Empirical
Mode Decomposition (EMD) to decompose the signal before
establishing the LSTM prediction model. EMD [26], [27] can
decompose complex signals into multiple simple components
to extract local characteristics of signals. The advantage of
EMD over wavelet transform is that there is no need to define
base function in advance. Yu et al. [28] developed a diagnosis
model using EMD and Artificial neural network (ANN) to
improve the accuracy of fault diagnosis. Sharma et al. [29]
presented a novel signal classification method using EMD
and least squares support vector machine. However, there
are two obvious drawbacks in EMD: iteration time is long
and mode mixing. Recently, Zheng et al. [30] presented a
new signal decomposition method called local characteristic-
scale decomposition (LCD) and demonstrated that LCD is
better than EMD in processing complex signals because LCD
can reduce invalid components and suppress mode mixing.
Liu et al. [31] proposed a bearing fault diagnosis method
based on LCD-Teager Energy Operator to improve accu-
racy. However, in the process of decomposition, LCD tends
to produce end effect, which leads to the large error of
the decomposed signal at the end. Some methods to solve
end effect are proposed in the literature [32]–[36], such as
image continuation and extremum continuation. However,
it does not work well for nonstationary vibration signals.
In this paper, an improved signal decomposition method
called Autocorrelation-LCD (ACLCD) is proposed which
consider the autocorrelation of signal. In summary, to reduce
the complexity of modeling, the complex vibration signal is
decomposed into some ISCs and a residue item. Then the
prediction model is established for each component. Hence,
a hybrid model ACLCD-PSOLSTM is proposed to enhance
the prediction performance of vibration signals.

The structure of this paper is as follows. Section 2 describes
the proposed model and relevant theoretical knowledge in
detail. Then, the validity of the proposed model is verified
through different experiments and the experimental results
are analyzed in detail in Section 3. Finally, the conclusion
of the paper is summarized in Section 4.

II. METHODOLOGY
In Section 2, the proposed model and relevant theoreti-
cal knowledge are described as follows, including LCD,
ACLCD, LSTM network, PSOLSTM.

A. LOCAL CHARACTERISTIC-SCALE
DECOMPOSITION (LCD)
Local Characteristic-scale Decomposition (LCD), proposed
by Zheng et al. [30] in 2013. The LCD approach assumes that
any complex signal can be decomposed into many indepen-
dent ISC components. Any ISCs must satisfy the following
two conditions:
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(1) In the whole data segment, there is monotonicity
between any two adjacent local maxima and local minima.

(2) In the whole data segment, assume that all extreme
point for xk , the corresponding moment is tk , (k =

1, 2, . . . ,m). A line that connects any two adjacent local
maxima (minima) (tk−1, xk−1) and (tk+1, xk+1). The interme-
diate local minima (maxima) (tk , xk ) that corresponding point
(tk , Ak ) is denoted as:

Ak = xk−1 +
tk − tk−1
tk+1 − tk−1

(xk+1 − xk−1) (1)

More generally, the proportions of xk and Ak remain constant,
as follows:

aAk + (1− a)xk = 0, a ∈ (0, 1) (2)

where a is a proportional coefficient. Generally, a is set
as 0.5.

The single component signal satisfying the above condi-
tions (1) (2) is called intrinsic scale component (ISC). The
LCD of arbitrary signal x(t) is performed and decomposed
into many ISC components and a residue item. The algorithm
is as follows:

Where θ is iteration termination threshold. Traditional
LCD iteration termination condition is that r(t) is a constant
function. However, the condition is difficult to satisfy in the
actual situation. Hence, the iteration is terminated when the
variance of r(t) is less than the threshold θ in this paper.
SD is the termination criterion, as follows:

SD =
T∑
t=0

[
|(hk−1(t)− hk (t)|2

h2k−1(t)

]
(3)

If SD <= 0.3 for the kth loop, it is considered as
ISC component; otherwise, the loop continues until the vari-
ance of r(t) is less than the threshold θ . Finally, x(t) will
be decomposed into the sum of N ISCs and a monotone
functionr(t), as follows:

x(t) =
n∑
i=1

ISCi(t)+ r(t) (4)

For clarity, the partial decomposition process of LCD is
shown in Fig. 1.

From the above LCD decomposition process can be noted
that the value of Lk is from 2 to m − 1. It is necessary to
estimate the values of L1 and Lm at ends. This is the reason
for the end effect in the process of LCD decomposition.
End effect is one of the main factors that affect the accu-
racy of this method in signal decomposition. There are two
main ways to deal with the end effect: one is to extend the
original signal and bring the original end into the interior
of the new signal, thus eliminating the uncertainty of the
extreme at the end. Another is to extend the sequence of signal
extremum. However, it does not work well for nonstationary
vibration signals. Based on the above two ideas, an improved
signal decomposition method called Autocorrelation-LCD
(ACLCD) is proposed which considers the autocorrelation of
signal.

FIGURE 1. The partial decomposition process of LCD.

FIGURE 2. The process of signal continuation.

B. AUTOCORRELATION LOCAL CHARACTERISTIC-SCALE
DECOMPOSITION (ACLCD)
In this section, based on Radial Basis Function (RBF) neural
network prediction method, two ends of signal are predicted
separately. RBF can approximate arbitrary nonlinear signals,
but its premise is that RBF neural network can accurately
predict the signal. However, when the signal components
are complex or have more interference (such as the vibra-
tion signal in this paper), the fitting ability of RBF neural
network is poor, and sometimes even the minimum point
can be fitted at the position where the maximum value
should be, which obviously has a huge impact on the whole
algorithm.

To solve this problem, an extremum correction algorithm is
designed. The basic idea is: According to the autocorrelation
characteristics of signals [37], the sum of all local max-
ima or localminima can affect the trend of signals for a certain
scale of signals. The RBF neural network was used to fit the
extended signals containing both local maximum and local
minimum at the front end and the back end of the signals,
as shown in Fig. 2. Next, the sum of all local maxima and local
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minima of the original signal is calculated, and the local max-
ima and local minima in the extension interval are corrected
to obtain the complete extension signal. Finally, the extended
signal is decomposed to LCD, and the decomposed signal is
intercepted to the original signal interval, to obtain the final
decomposed signal.

The algorithm process is as follows:
(1) A signal is described as follow:

{x(t)|t = 1, 2, . . . ,N }

(2) Locate all the local maximum of x(t):

m1,m2, . . . ,mi(i = 1, 2, . . . ,m)

and all the local minimum of x(t):

h1, h2, . . . , hj(j = 1, 2, . . . , n)

Then the mean of the local maximum and local minimum can
be obtained:

m =
1
m

m∑
i=1

mi, h =
1
n

n∑
j=1

hj (5)

(3) The training data P and T are shown as follows:

P =


x1 x2 x3
x2 x3 x4
...

...
...

xt−3 xt−2 xt−1

 ,T =

x4
x5
...

xt

 (6)

Here P is the input and the T is the output of RBF. Then
the next period signal is predicted a (xt+1, xt+2, . . . , xt+k ,
xt+k+1, . . . , xt+l, xt+l+1)(l > k > t), xt+k is the local
minimum and xt+l is the local maximum.
(4) Set

P =


xt xt−1 xt−2
...

...
...

x5 x4 x3
x4 x3 x2

 ,T =

xt−3
...

x2
x1


Here P is the input and the T is the output of RBF. Then
the previous period signal is predicted as (o1, o2, . . . , or ,
or+1, . . . , oq, oq+1)(q > r > 1), or is the local minimum
and oq is the local maximum.
(5) To calculate:

max _ arg 1 = α1 × m+ β1 × xt+l, (α1 + β1 = 1) (7)

min _ arg 2 = α2 × m+ β2 × oq, (α2 + β2 = 1) (8)

min _ arg 1 = α3 × h+ β3 × xt+k , (α3 + β3 = 1) (9)

min _ arg 2 = α4 × h+ β4 × or , (α4 + β4 = 1) (10)

Here α, β is a custom parameter.
(6) Correct extremum:
If max _ arg 1 > xt+l and 1 ≤ max _ arg 1/xt+l ≤ γ ,

Replace xt+l with max _ arg 1, if it doesn’t meet the condi-
tions, it stays the same;

If max _ arg 2 > oq and 1 ≤ max _ arg 2/oq ≤ γ ,
Replace oq with max _ arg 2, if it doesn’t meet the conditions,
it stays the same;

If min _ arg 1 ≤ xt+k and ε ≤ min _ arg 1/xt+k ≤ 1,
Replace xt+k with min _ arg 1, if it doesn’t meet the condi-
tions, it stays the same;

If min _ arg 2 ≤ or and ε ≤ min _ arg 2/or ≤ 1,
Replace or with min _ arg 2, if it doesn’t meet the conditions,
it stays the same;

Here ε, γ is a correction factor, preventing false substitu-
tions. Generally, γ is set as 1.2 and ε is 0.8.

(7) Get the extended signal:

x,(t) = [o1, o2, . . . , or , or+1, . . . , oq, oq+1, . . . , x1,

x2, . . . , xt , xt+1, . . . , xt+k , xt+k+1, . . . , xt+l, xt+l+1]

(11)

(8) Decomposition x,(t) using LCD:

x,(t) =
n∑
i=1

ISC ,i (t)+ r
,(t) (12)

(9) Intercept the signal to the original signal interval and get
the final decomposition result:

x(t) =
n∑
i=1

ISCi(t)+ r(t) (13)

The RBF neural network fitting ability and autocor-
relation characteristics of signal are fully considered in
improved boundary extension method. The extreme of new
end and neural network fitting are limited in the algorithm
execution. The algorithm avoids the effect of signal muta-
tion points on the end fitting and provides optional param-
eters to select different key points according to different
signals. When the complexity of signal is high and the fit-
ting effect of neural network is poor, α can be increased
and β is reduced properly, whereas the signal is more
regular and predictable, α can be reduced and β is
increased.

C. LONG SHORT TERM MEMORY NETWORK (LSTM)
In the prediction of vibration signal, the vibration signal at the
current moment is often related to the signal at the previous
moment, and the value of the signal before and after is not
independent. The traditional neural network cannot deal with
this kind of time series problem well because of its limited
structure. LSTM was proposed by Hochreiter and Schmid-
huber [18]. in 1997 as a special kind of the recurrent neural
networks (RNNs). LSTM model has widely used the field of
time series prediction and has a strong ability in solving long-
term dependence problems. The basic architecture of LSTM
network is shown in Fig. 3. Because of three gates: input,
forget and output, the LSTM network can selectively receive
and delete information of cell state. The calculation formula
of each gate and the update of cell state can be expressed
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FIGURE 3. The architecture of the LSTM memory block.

as follows:

ft = σ (wf [ht−1, xt ]+ bf ) (14)

it = σ (wi[ht−1, xt ]+ bi) (15)

c̃t = tanh(wc[ht−1, xt ]+ bc) (16)

ot = σ (wo[ht−1, xt ]+ bo) (17)

ct = ft � ct−1 + it � c̃t (18)

ht = ot � tanh(ct ) (19)

where xt is the input at the current moment and ht−1 is the
output of the hidden layer at the previous moment. it , ft ,
and ot denote the input gate, forget gate and output gate.
c̃t denotes candidate information of input gate. And
ct denotes state value at current moment while ht means the
output value of LSTMmemory cell at current moment. σ and
tanh denote activation function.� denotes the dot product of
the vectors. Additionally, wf , wi, wc and wo are the weight
to be learned; bf , bi, bc and bo are the corresponding bias
vectors.

D. PSO-BASED OPTIMIZATION OF LSTM NETWORK
(PSOLSTM)
In the design process of LSTM network, as the parameters
such as the number of hidden layer neurons and time lags are
custom parameters, there is a lack of clear knowledge to guide
researchers. Many researchers choose to use trial-and-error
method or experience, which is time consuming and cannot
be used effectively. So how to obtain the number of hidden
layer neurons and the number of time lags automatically
and efficiently is the key to using LSTM successfully. Here,
we proposed an improved LSTM by designing an optimiza-
tion strategy for the best performance of prediction.

In theory, the more neurons in the hidden layer and the
longer the time lag within a certain range, the better the
prediction capacity of the model. But at the same time,
the model becomes more complex and computational speed
slower. These can be described as a multiobjective optimiza-
tion problem. To balance the prediction performance and the
complexity of themodel, the objective function and constraint

are described as follows:

min


f1 = Nn + Nt

f2 = RMSE =

√
1
N

N∑
i=1

(predictedi − observedi)2

s.t.

{
LNn ≤ Nn ≤ UNn
LNt ≤ Nt ≤ UNt

(20)

where Nn is the number of hidden layer neurons and
Nt is the number of time lags. Moreover, The LNn and UNn
represent the lower and upper bounds of Nn while LNt and
UNt represent the lower and upper bounds of Nt . RMSE is
Root Mean Squared Error; predictedi is predicted value and
observedi is observed value. Number of hidden layer neurons
will be tested from 5 to 80 and number of time lags from
1 to 99. In the other word, the LNn and UNn are set as 5
and 80, and the LNt and UNt are set as 1 and 99 in this paper.
In order to calculate conveniently, we transform the multi-

objective problem into a single-objective problem, the objec-
tive function is considered as follows:

f = ω1f
,
1 + f2

f ,1 = h(Nn)+ h(Nt ) (21)

where ω1 is the weight coefficient to balance the predicting
performance and algorithm complexity. h(·) denote Normal-
ized function that prevents ignoring the change of f2 because
of different orders of magnitude.

PSO is a popular swarm intelligence algorithm for its
simple and effective characters and has been widely used in
many kinds of model optimization. Therefore, PSO algorithm
was adopted to solve the above optimization problem, and the
objective function (21) was taken as the Fitness function in
the PSO algorithm. The Fitness function as follow:

min Fitness = f (Nn,Nt ) (22)

To elaborate further, the main steps of the optimization of
PSO-based LSTM network are described as following:
Step1: Initialization parameters of PSO algorithm.
Step2: The particle is randomly initialized according to the

range of particle position and velocity.
Step3: The Fitness function value of each particle was

calculated according to (22).
Step4:Update the optimal position of each particle accord-

ing to the Fitness function value of the current moment.
The smallest value among all particles is denoted as global
optimal position.
Step5:Update the velocity and the position of each particle

according to (23) -(24)

vij(t + 1) = ωvij(t)+ c1γ1(pBestij(t)− xij(t))

+ c2γ2(gBestj(t)− xij(t)) (23)

xij(t + 1) = xij(t)+ vij(t) (24)

where i denotes the number of particles, j denotes the
jth dimension of the search space and t is iterations.Moreover,
v denote particle velocity. x is particle position and denotes
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FIGURE 4. The framework of the proposed hybrid ACLCD-PSOLSTM model.

optimized numbers of neurons for LSTM network and time
lags in this paper. pBest, gBest denote individual optimal
position and global optimal position. ω is inertia weight,
decides the range of motion of particles. Generally, ω is set
as 0.5. c1 and c2 are acceleration coefficients and are usually
set to 2. γ1 and γ2 are random numbers in range (0,1).
Step6: Repeat Steps 3-5 until the maximal number of

iterations is reached.
Step7: The latest gBest is the optimized numbers of neu-

rons for LSTM network and time lags.

E. THE NOVEL HYBRID ACLCD-PSOLSTM MODEL
Due to the complexity of the production environment,
the vibration signal of reciprocating compressor often
presents nonstationary characteristics, which brings great dif-
ficulties to accurate prediction. In this section, a new hybrid
model is presented to enhance the predictive performance
of the vibration signal based on ACLCD, LSTM network
and PSO algorithm. The ACLCD is firstly used to decom-
pose the vibration signal into many ISCs and a residue
item to reduce the complexity of modeling. Then, each of
the components is predicted using the PSOLSTM. Finally,
the final result is obtained by summing the predicted results of

each component. The whole process of the proposed hybrid
ACLCD-PSOLSTM model is presented in Fig. 4. The main
steps of the ACLCD-PSOLSTM are as follows:
Step1: Vibration signal decomposing. The original vibra-

tion signal is decomposed into some ISCs and a residue item
using ACLCD.
Step2: ISCs and residue item modeling and predicting.

PSO algorithm is used to determine the optimal number of
hidden layer nodes and the number of time lags. Then the
LSTM model is established for each component. Finally,
many predicted ISCs and residue item results are obtained.
Step3: Obtain the final predicted result. The final result

is obtained by summing the predicted results of each
component.
Step4: Evaluate the proposed model. Several evaluation

indicators are used to verify the performance of the proposed
model.

In section 2, the proposed model and related theories are
introduced in detail. First, aiming at the end effect problem
in LCD decomposition process, ACLCD method is proposed
according to the autocorrelation characteristics of the signal.
Second, PSOLSTM model is presented which introduced
PSO algorithm to optimize the number of neurons in hidden
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layer and the number of time lags of LSTM network.
Finally, to reduce the complexity of modeling and improv-
ing the accuracy of prediction model, a novel hybrid model
ACLCD-PSOLSTM is proposed. In the next section, exper-
iments will be conducted to verify the effectiveness of the
proposed model.

III. EXPERIMENTS AND ANALYSIS
In this section, the performance of ACLCD-PSOLSTM
hybrid model is to be validated on two experiments. The first
experiment is to compare ACLCD with conventional decom-
position methods including LCD and EMD. This experiment
can prove that the improvement of LCD in computing speed
and the superiority of signal autocorrelation in solving the
problem of end effect. Another experiment is to test the
vibration signal predicting capacity of the proposed hybrid
model. According to the different forms of fault, compressor
fault can be divided into gradual fault and abrupt fault. For
the gradual fault, if the sampling interval of the signal is
too short, the fault cannot be predicted effectively. Hence,
two cases were studied including short-term vibration sig-
nal prediction and long-term vibration signal prediction in
the second experiment. Four other predicting models are used
for comparative experiments. The involved models consist of
Back Propagation Neural Network (BP), LSTM, PSOLSTM
and LCD-LSTM. It should be noted that all experiments run
in the Python 3.6 environment on 2.80 GHz PC with process
i5-7440HQ and 16G RAM.

In addition, three commonly used evaluation indices are
employed to evaluate the performance of the hybrid ACLCD-
PSOLSTM model. They are the mean absolute error (MAE),
the root mean square error (RMSE) and the mean absolute
percentage error (MAPE) that defined as follow:

MAE =
1
N

N∑
i=1

|predictedi − observedi| (25)

RMSE =

√√√√ 1
N

N∑
i=1

(predictedi − observedi)2 (26)

MAPE =
1
N

N∑
i=1

|
predictedi − observedi

observedi
| × 100% (27)

where predictedi and observedi denote the predicted value
and observed value of the isample respectively. N denotes
sample size.

A. EXPERIMENT I: COMPARISON RESULTS OF MODEL
ACLCD, LCD AND EMD
To make the experimental results clearer, we use the simula-
tion signal to verify the model. The signal as follow:

x(t) = x1(t)+ x2(t) = (1+ 0.5 sin 5π t)
cos(250π t + 20π t2)+ 4 sin 40π t

t ∈ [0, 1] (28)

The simulation signal consists of an AM-FM signal and a
sinusoidal signal. The time domain waveforms are shown
in Fig. 5.

FIGURE 5. The waveforms of simulation signal and its components.

FIGURE 6. The result of EMD.

TABLE 1. Times and iterations times of each method.

First, EMD is used to decompose the signal. The termi-
nation criterion is standard deviation (SD) method, and the
iteration was terminated when SD<0.3. The decomposed
result is shown in Fig. 6.

Then, LCD is used to decompose the signal. The algorithm
parameters are selected as follows: SD = 0.3, θ = 0.01 and
a = 0.5. The decomposed result is shown in Fig. 7.
Finally, ACLCD is used to decompose the signal. The

algorithm parameters are selected as follows: SD = 0.3,
θ = 0.01, a = 0.5, ε = 0.8, γ = 1, 2, α = 0.35 and
β = 0.65. The decomposed result is shown in Fig. 8.
To compare the decomposition efficiency, Table 1 gives the

time and iteration times required for each method.
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FIGURE 7. The result of LCD.

FIGURE 8. The result of ACLCD.

From Table 1 and Fig. 6-8, it can be observed as follows:
1) ACLCD method performs better than other methods.

EMDmethod has the worst performance, whose values
of Times and Iteration times are 0.2005 and 17.

2) EMD and LCD have obvious end effect and EMD
produces more false components in the process of
decomposition.

3) In summary, ACLCD method has obvious advantages
in both computing speed and restraining end effect.

B. EXPERIMENT II: COMPARISON RESULTS OF MODEL
ACLCD-PSOLSTM, BP, LSTM, PSOLSTM AND LCD-LSTM
1) DATA INFORMATION
In this experiment, the vibration signal data obtained from
an oil production platform in Bohai, China, is used. In order
to fully prove the superiority of the proposed model, two
different time interval datasets that one-minute interval and
ten-minute interval are employed to verify the prediction
performance of different models. Each data set contains
5,000 data points. The first 3,000 data are used as the train
set and the other 2000 data are used as the test set shown in
Fig. 9 and Fig. 10. Moreover, in order to clearly display the
data characteristics, the detailed information of data series is
showed in Table 2 and Table 3.

FIGURE 9. Original vibration signal time series with 1 min interval.

FIGURE 10. Original vibration signal time series with 10 min interval.

TABLE 2. The statistical result of vibration signal data with 1 min interval.

TABLE 3. The statistical result of vibration signal data with 10 min
interval.

A one-step-ahead vibration signal prediction model is
built in this experiment. For example, to signal{x(t)|t =
1, 2, . . . ,N }, the samples that can be generated are as follows:

P =


x1, x2, . . . , xi
x2, x3, . . . , xi+1
...

xN−i, xN−i+1, . . . , xN

 ,T =

xi+1
xi+2
...

xN

 (29)
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TABLE 4. Main parameters of five different models on case 1.

where P is input data and T is output data. i is input data
dimension, also called time lag in this paper. As can be seen
from (29), different amount of lags will lead to different
sample size. Since the time lag quantity is the optimization
variable in PSO algorithm, the lag quantity of the model
with PSO algorithm is different from that of the model with-
out PSO algorithm. In the other word, the sample size of
the model with PSO algorithm is different from that of the
model without PSO algorithm. Hence, in order to better show
the results of model comparison, we divide the model into
two cases: the model with optimization algorithm and the
model without optimization algorithm. The algorithm group
#1 includes BP model, LSTMmodel and LCD-LSTMmodel
and the algorithm group #2 includes PSOLSTM model and
ACLCD-PSOLSTMmodel. According to the abovemethods,
training samples and test samples are generated. Finally,
the algorithm group #1 and algorithm group #2 both select
2000 training samples and 800 test samples to build models.

2) CASE STUDY 1: SHORT TERM VIBRATION SIGNAL
PREDICTING
In this case, the one-min interval dataset is used to verify
the performance of ACLCD-PSOLSTM model. Four other
predicting models are chosen for comparative experiments.
The involved models consist of BP Neural Network, LSTM,
PSOLSTM and LCD-LSTM.

In order to balance the model complexity and prediction
accuracy, the parameters of models without PSO optimiza-
tion algorithm were determined by trial and error method.
The parameters of the model are selected as follows. For
BP model, the number of neurons in hidden layer, learn
rate and the maximum number of iterations are set as 50,
0.1 and 100, respectively. For LSTM model, the number
of neurons in hidden layer and the maximum number of
iterations are set as 30 and 100. For ACLCD model, SD =
0.3, θ = 0.05, a = 0.5, ε = 0.7, γ = 1.2, α = 0.55
and β = 0.45. For PSO algorithm, ω1 = 0.9, N = 20,
T = 100, c1 = 1.49, c2 = 1.49 and ω = 0.5. The final
optimization results of the PSO algorithm on the one-minute
interval dataset are shown in Appendix A, where the best per-
formance is highlighted in bold. For clearer display, the main
parameters of five different models are shown in Table 4.

The experiment results obtained by five different models
are shown in Table 5. Comparison results of different models

TABLE 5. The error evaluation results of different models for the
vibration signal series on case 1.

TABLE 6. The error evaluation results of BP and LSTM for the vibration
signal series on case 1.

TABLE 7. The error evaluation results of LSTM and PSOLSTM for the
vibration signal series on case 1.

TABLE 8. The error evaluation results of LSTM and LCD-LSTM for the
vibration signal series on case 1.

TABLE 9. The error evaluation results of PSOLSTM and ACLCD-PSOLSTM
for the vibration signal series on case 1.

are shown in Tables 6-9. In order to show the results more
clearly, we only compare the first 100 test samples. The
results of all the test samples are shown in Appendix A. The
vibration signal predicting results of the models above are
shown in Fig. 11.

FromTables 5-9 and Fig. 11, the following conclusions can
be drawn:

1) The ACLCD-PSOLSTM model performs better than
four other models, whose values of MAE, RMSE and
MAPE are 0.0227, 0.0286 and 0.3050. BP model has
the worst performance, whose values of MAE, RMSE
and MAPE are 0.1109, 0.1299 and 1.5121. This indi-
cates that the traditional neural network is not suitable
for processing complex time series data.

2) According to Table 6, due to LSTMcan solve long-term
dependencies problem, LSTM provides a better result
than traditional BP model.

3) As shown in Table 7, PSOLSTM model has smaller
error than LSTM model. It shows that PSO algorithm
can improve the accuracy of prediction model
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FIGURE 11. The results of the first 100 test samples for the vibration
signal series on case 1: (a) the algorithm group #1 and (b) the
algorithm group #2.

4) As can be seen from the Table 8, the hybrid
LCD-LSTM model has a better performance than the
single LSTMmodel. The LCD is effective in improving
the predicting capacity of the LSTM network.

5) According to Table 9, the hybrid ACLCD-PSOLSTM
model has a better result than the PSOLSTM model.
It shows that the proposed ACLCD method can reduce
the complexity of modeling and improve the accuracy
of prediction vibration signal.

6) In summary, the ACLCD-PSOLSTM provides signifi-
cant improvement than single models (i.e., BP, LSTM),
hybrid model (i.e., LCD-LSTM) and optimal model
(i.e., PSOLSTM).

3) CASE STUDY 2: LONG TERM VIBRATION SIGNAL
PREDICTING
In this case study, the ten-min interval dataset is employed
to test the performance of ACLCD-PSOLSTM model. As in
the case 1, four other prediction models were used for
comparison.

The parameters of the model are selected as follows. For
BP model, the number of neurons in hidden layer, learn rate
and the maximum number of iterations are set as 50, 0.1

FIGURE 12. The results of the first 100 test samples for the vibration
signal series on case 2: (a) the algorithm group #1 and (b) the
algorithm group #2.

TABLE 10. Main parameters of five different models on case 2.

and 100, respectively. For LSTM model, the number of neu-
rons in hidden layer and the maximum number of iterations
are set as 40 and 100. For ACLCD model, SD = 0.3, θ =
0.07, a = 0.5, ε = 0.7, γ = 1.2, α = 0.7 and β = 0.3.
For PSO algorithm, ω1 = 0.9, N = 20,T = 100, c1 =
1.49, c2 = 1.49 and ω = 0.5. The final optimization results
of the PSO algorithm on the ten-minute interval dataset are
shown in Appendix A. For clearer display, the main parame-
ters of five different models are shown in Table 4.

The experiment results obtained by five different models
are presented in Table 11. In order to show details clearly,
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TABLE 11. The error evaluation results of different models for the
vibration signal series on case 2.

TABLE 12. The final optimization results of PSO algorithm based onv
case 1.

we only compare the first 100 test samples. The results of all
test samples are shown in Appendix A. The vibration signal
predicting results of the models above are shown in Fig. 12.

From Table 11 and Fig. 12, the following conclusions can
be drawn:

1) The proposed ACLCD-PSOLSTM performs better
than four other models. This shows that the proposed
hybrid model has a strong advantage in predicting com-
plex vibration signals.

2) PSOLSTM model has better performance than LSTM
model. It shows that PSO algorithm can improve the
accuracy of prediction model. The hybrid LCD-LSTM
model has better performance than the single LSTM
model. The LCD is effective in improving the predict-
ing capacity of the LSTM network.

3) As is shown in Fig. 12, the proposed model has better
fitting ability for vibration signal than other models.

In summary, from the above two cases, it can be seen that
ACLCD-PSOLSTM model has smaller errors in short-term
and long-term vibration signal prediction than other mod-
els, which indicates that the proposed model is effective in
improving the prediction accuracy of vibration signal.

IV. CONCLUSION
In this paper, the ACLCD-PSOLSTM model has been pro-
posed to obtain more accurate vibration signal prediction

FIGURE 13. The results of all the test samples for the vibration signal
series on case 1: (a) the algorithm group #1 and (b) the algorithm
group #2.

TABLE 13. The final optimization results of PSO algorithm based on
case 2.

results by using ACLCD model, LSTM network and PSO
algorithm. The main conclusions of this paper can be sum-
marized as follows: (1) To solve the end effect in LCD, intro-
ducing the autocorrelation of signals into RBF continuation
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FIGURE 14. The results of all the test samples for the vibration signal
series on case 2: (a) the algorithm group #1 and (b) the algorithm
group #2.

algorithm, an ACLCD decomposition method is proposed.
(2) As there is no scientific guidance to choose the number
of neurons in hidden layer and the number of time lags
of LSTM network. PSOLSTM model is proposed to search
the optimal number of hidden layer neurons and time lags.
(3) To reduce the complexity of modeling, the complex vibra-
tion signal is decomposed into some ISCs and a residue item
with ACLCDmodel. Then the predictionmodel is established
for each component with PSOLSTM model. Hence, a novel
hybrid model aiming at enhancing prediction performance
of vibration signals called ACLCD-PSOLSTM is presented
in this paper. (4) The validity of ACLCD-PSOLSTM hybrid
model is to be validated on two experiments. The first experi-
ment is to compareACLCDwith conventional decomposition
methods including LCD and EMD. The results show that
ACLCD method has obvious advantages in both computing
speed and restraining end effect compared with LCD and
EMD. Another experiment is to test the vibration signal
predicting capacity of the proposed hybrid model. Three
metrics (MAE, RMSE and MAPE) are selected to evaluate

the performance of the BP, LSTM, PSOLSTM, LCD-LSTM
and ACLCD-PSOLSTM models. The results show that the
proposedACLCD-PSOLSTMperforms better than four other
models in predicting vibration signals.

The proposed model needs a considerable number of sam-
ples for training to ensure the accuracy, so the model needs
big data as the basis. For small sample data, the model
has no obvious advantage. One-step ahead vibration signal
predicting has been studied in this paper. How to accurately
predict long-term vibration signals is the focus of the next
research. Moreover, how to accurately judge the running state
of the compressor through the predicted vibration signal,
so as to reduce the occurrence of accidents and improve the
production efficiency of the enterprise is the focus of future
research.

APPENDIX A
See Figures 13 and 14 and Tables 12 and 13.
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