
Received April 17, 2019, accepted April 29, 2019, date of publication May 10, 2019, date of current version May 29, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2916019

Learning Feedforward Control of a One-Stage
Refrigeration System
YANG ZHAO 1, YAN LI 2, SINA DEHGHAN3, AND YANGQUAN CHEN3
1School of Electrical Engineering and Automation, Qilu University of Technology, Jinan 250353, China
2School of Control Science and Engineering, Shandong University, Jinan 250061, China
3School of Engineering, University of California at Merced, Merced, CA 95340, USA

Corresponding author: Yan Li (liyan_cse@sdu.edu.cn)

This work was supported by China Scholarship Council, in part by the National Natural Science Foundation of China under
Grant 61374101, Grant 61527809, Grant U1764258, Grant U1864205, and Grant 61633015, in part by the National Key Research and
Development Program of China under Grant 2018YFB0104000, and in part by the Young Scholars Program of Shandong University.

ABSTRACT Refrigeration control is usually realized by means of model-based feedback controllers, which
requires high-computational load and time-consuming model identification efforts. The implementation
of feedback control requires a compromise between performance and robust stability. Considering these
difficulties, an online learning operation controller for one-stage refrigeration cycle is presented, which
consists of two components: a model-based feedback component and a learning feedforward component. The
feedback controller is utilized to guarantee robustness. Meanwhile, the optimized performance is reached
by the learning feedforward controller including a one-hidden-layer structure with B-spline basis functions.
The comparison results of benchmark problems validate the effectiveness of this strategy and show that a
perfect tracking performance can still be achieved without extensive modeling.

INDEX TERMS Learning control, refrigeration system, vapour compression cycle, convergence analysis.

I. INTRODUCTION
The research of refrigeration systems has received much
attention for over a century due to its cooling property,
which was introduced by industry and research institutes.
Refrigeration is a cooling generation to attain and maintain
a temperature of some product or space below that of the
surroundings. It has many possible uses in food preservation,
chemical and process industries, manufacturing process, cold
treatment of metal, drug manufacturing, ice manufacturing
and so on. With rapid advances in modern technology, vapor
compression refrigeration systems are now the most common
means for commercial and residential space cooling, which
lead to fast growth in energy consumption, negatively energy
and economic balances effects [1].

Recently, there has been extensive research adopted
linear techniques regarding the control of vapor com-
pression refrigeration systems. For example, decentral-
ized PID control [2], decoupling multivariable control [3],
optimal control [4], LQG control [5], [6], model predic-
tive control (MPC) [7], [8], and robust control [9], [10].
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However, there are many challenges associated with refriger-
ation systems control stemming from the components them-
selves to the fundamental characteristics of a heat transfer
process, which cause high thermal inertia, dead times, high
coupling between variables, and strong nonlinearity. There-
fore, a less accurate model of the plant will result in a con-
troller with an unsatisfied performance. When the model is
not available or whenmany parameters cannot be determined,
learning feedforward control (LFFC) may be considered.
As shown in Fig. 1, LFFC can be implemented by using a
learning controller that is comprised of a feedback compo-
nent (FBC) and a separate learning component (FFC). The
FBC part is designed on basis of the prior available process
model with the aim of delivering a robust controlled system.
Meanwhile, the FFC part is equipped to compensate repro-
ducible disturbances and optimize the system performance
with process knowledge.

Being a variant of iterative learning control (ILC) [11]–[13],
learning feedforward control (LFFC) [14] shares basic ideas
with ILC. Differ from most existing control methods, ILC
exploits every possibility to incorporate past control infor-
mation into the construction of the present control action
which can also be treated as a reverse solution of system [15].
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FIGURE 1. Learning feedforward control.

Due to its simplicity and effectiveness, ILC has received
considerable attention and applications in many areas, such
as piezoelectric actuator [11], multi-agent systems consensus
tracking [16], permanent magnet linear motor [17]. A com-
prehensive review of iterative learning control and its appli-
cations can be found in the coming monographs [18].

First proposed for motion systems subjected to repro-
ducible disturbances, LFFC is designed to compensate the
reproducible disturbances as value-added blocks [19]. As an
extra degree of freedom, LFFC generates steering signals
that enhance the feedback control performance [20] andmake
the output of the process y follow the reference signal yd ,
perfectly. Thus feedforward part can be adapted as a func-
tion approximator that creates a mapping from the reference
signal yd to the steering signal uff . The mapping can be
implemented as follow

uj+1ff (t) = ujff (t)+ γ u
j
fb(t), (1)

where ujfb(t) is the output of feedback part, and ujff (t) is
the output of feedforward part at the j-th iteration, γ is
the learning rate, 0 < γ ≤ 1. In previous research,
the LFFC has been widely applied in many areas, such as
robotics [20], linear motor [21], piezoelectric Actuator [22],
and UPS Inverter [23]. These previous research had shown
that learning feedforward control can improve system per-
formance and acquire enhanced extrapolation capabilities for
repetitive tracking control tasks with little modeling infor-
mation. The main contribution of this paper is to apply
two-parameter tunable LFFC schemes for the control of
refrigeration systems introduced in PID2018 benchmark
problem [1]. The detailed contributions of the paper include
the following.

1) Combined with feedback control, learning feedforward
control is utilized to the control of vapor compression
systems which is simple and implementable.

2) No model identification is needed in LFFC design, and
the convergence analysis ensures the convergence of
the proposed strategy.

3) The performance of the proposed controller has been
verified by simulation for reference trajectories of
benchmark problems.

In the rest of this paper, the one-stage vapour-compression
refrigeration system is first discussed in more details in

Section 2. Next, the design of the learning feedforward
control system is discussed (Section 3). Simulation results
are presented in Section 4. We end with conclusions
in Section 5.

II. ONE-STAGE REFRIGERATION SYSTEM
As shown in Fig. 2, a simplified schematic diagram of
one-stage refrigeration system includes electronic expansion
valve, variable-speed compressor, evaporator, and condenser.
In this thermodynamic refrigeration cycle, refrigerant works
as a circulating fluid enters the compressor as a vapor. Being
compressed at constant entropy, the superheated vapor goes
through the condenser where heat is first exchanged with the
secondary flux and then the vapor is condensed into liquid.
Traveling through the expansion valve, heat is absorbed at
the evaporator by evaporating the liquid refrigerant at low
pressure and temperature. The main control objective is to
provide the desired cooling power, which can be reflected
in a reference for the outlet temperature of evaporator sec-
ondary flux (Tout,sec,e). Furthermore, a low but constant set
point on the degree of superheating (TSH ) is introduced to
ensure a high Coefficient of Performance (COP). Therefore,
control scheme is designed to get these two variables to track
their references as efficient as possible by operating two
manipulated variable (the compressor speed N and the valve
opening Av). Hence, the whole control system would be a
two-input, two-output system.

FIGURE 2. The refrigeration cycle.

Concerning this type of process, high thermal inertia, dead
times, high coupling between variables and strong nonlinear-
ities give rise to the control difficulty. Hence, it is difficult to
obtain an accurate model of the process. In previous work,
model-based feedback controller has been used to control
the complex one-stage refrigeration process. To cope with
the coupling and uncertainties neglected in modelling, these
controllers have to make a compromise between performance
and robust stability. Different from the model-based feedback
controller, the feedback component used in the LFFC does not
need an accurate process model.
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III. DESIGN OF LEARNING FEEDFORWARD COMPONENT
One-stage refrigeration systems are mostly controlled by PID
or robust control strategies based on process dynamic model.
A compromise has to be made between performance and
robust stability to cope with the coupling and uncertainties
that may exist when modelling systems linearly. Herein,
the main disturbances that remain unknown in advance can-
not be compensated for properly. It makes sense to utilize
feedforward controller as a value-added block for improv-
ing the feedback control performance by taking advantage
of the repetitiveness of these systems’ operation. Therefore,
the design of the learning controller can be divided into
two steps: (1) feedback component design and (2) feed-
forward component design. Since many algorithms have
been proposed considering the former part [2], [3], we will
mainly elaborate upon the design of the learning feedforward
controller.

A. LEARNING FEEDFORWARD COMPONENT DESIGN
The learning feedforward component is an ideal function
approximator that can create a mapping between the refer-
ence input and the desired output. The mapping can be real-
ized by most neural networks [24], [25], such as a multilayer
perceptron [26], a radial basis function network [27], and a
B-spline network (BSN) [28]. The approach we take in this
manuscript is a B-spline network which features a relatively
short evaluation time for learning and computationally attrac-
tive. Generally, such network that consists of one-hidden-
layer networks with adaptable weights is a function

ujff (t) =
∑
i

ω
j
iµi(t), (2)

where ωji is the B-spline weight in iteration j, µi is the
membership function of the ith B-spline (i = 1, · · · ,N ), The
output of the BSN at input t , uff (t), is the learning feedforward
control signal in iteration j.

The B-spline network weights change according to error
results in minimizing the summed squared error of the
network. Whenever the learning feedforward component
mapping imperfectly, tracking errors will occur and can
be compensated for by feedback component. Therefore,
the feedback controller can be interpreted as an error mea-
sure for the feedforward steering. Hence, it is reasonable to
utilize feedback control signals as the output error measure
for feedforward controller. The value of the learning weighs
changes according to the following updating rule

1ω
j
i = γ u

j−1
fb (t)µi1···ik (t). (3)

Apply equation (3) to equation (2) yields

ujff (t) = uj−1ff (t)+ γ uj−1fb (t)µi1···ik (t). (4)

Clearly, the linear manipulation of the signal uj−1fb can be in
any filter form. Hence, the above equation can be written as
the following filter form:

ujff = uj−1ff + γH (z, z−1)uj−1fb . (5)

FIGURE 3. Second-order dilated B-splines and the filtering process.

The membership functions of nth-order BSN are piecewise
polynomial functions of order n − 1. As shown in Fig. 3,
we use a second-order BSN to obtain continuous control
signals with bounded time derivatives. The support of the
B-spline d corresponding to the input space that µi(t) is not
equal to zero. For this LFFC problem, suppose there are N
equally-spacedB-splines within [0,T ] time interval. Then the
B-spline support can be gotten as d = 2T/(N − 1). Hence,
for the learning feedforward controller, there are mainly two
parameters remaining to be determined. That is the learning
rate γ and the support of splines d . The support of splines
need to be determined according to the input signal to ensure
the mapping with a certain smoothness. The learning rate is
chosen as a compromise between fast learning and assuring
stability. These two parameters are chosen by the rule of the
thumb.

B. CONVERGENCE ANALYSIS
For convergence analysis, we first assume that the transfer
function of the plant P be linear. The plant may be nonlinear
with uncertainty, but it can certainly be approximated by a
linear model for frequencies below a frequency of interest.
The convergence analysis of the LFFC scheme is in the sense
that uff approaches to a fixed signal and the output approaches
to reference r from trial to trial. The convergence of learning
feedforward control is given in Theorem 1 and proved as
follows, where F denotes the standard Fourier transform.
Theorem 1: For the linear system as shown in Fig. 1 with an

existing feedback controller performs a given task repeatedly.
A learning feedforward scheme is added to utilize process
knowledge to optimize system performance. Furthermore,
there exist a real constant γ and learning feedforward approx-
imatorH (z, z−1) such that the learning process is convergent,

lim
j→∞

U j
ff (jω)→ R(jω)/P(jω), (6)

where U j
ff (jω) = F[ujff (t)] and R(jω) = F[r(t)]. The

convergence rate can be derived as

|ρ(ω, γ )| , |1− γH (jω)G(jω)| ≤ 1, (7)

where G(jω) is the closed-loop transfer function, let
C(jω) denotes feedback controller, herein G(jω) =

C(jω)P(jω)/(1 + C(jω))P(jω). Considering frequency
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FIGURE 4. Refrigeration control system.

TABLE 1. Disturbance vector.

domain notion, the mapping (5) becomes

U j
ff (jω) = U j−1

ff (jω)+ γH (jω)U j−1
fb (jω), (8)

where U j−1
fb (jω) = F[uj−1fb (jω)].

Proof: According to Fig.1, the feedback signal can be
denoted as

Ufb(jω) = −G(jω)Uff (jω)+ G(jω)R(jω)/P(jω). (9)

Substituting equation (9) into equation (8) yields

U j
ff (jω) = [1− γH (jω)G(jω)]U j−1

ff (jω)

+ γH (jω)G(jω)R(jω)/P(jω). (10)

Iterating equation (10) yields

U j
ff (jω) = [1− γH (jω)G(jω)]j−1U0

ff (jω)

+{1− [1− γH (jω)G(jω)]j}R(jω)/P(jω). (11)

Since G(jω) has a low pass filter characteristics, hence,
we can conclude that it is possible to choose a suitable γ and
H (jω) such that equation (6) is true. That is, the output y(t)
converge to the reference r(t) for all t ∈ [0,T ] as j→∞.
Remark: According to the above proof, the learning con-

vergence is independent on the initial feedforward control u0ff .

Therefore, u0ff can be chosen arbitrarily. In practice, as no
prior knowledge available, u0ff is usually set to be 0.

IV. SYSTEM SETUP AND NUMERICAL SIMULATIONS
In this section, we use benchmark examples to demonstrate
feasibility of learning control for one-stage refrigeration
cycle.

The Benchmark PID 2018 is first introduced in brief to
give the necessary information for the control system design
process [1]. In the Benchmark PID 2018 a particular applica-
tion of one-stage refrigeration systems as shown in Fig. 2 is
considered. Working with R404a as refrigerant, the cycle is
expected to provide a certain cooling power to a continuous
flow entering the evaporator as secondary flux. As shown
in Fig. 4, a standard simulation of the refrigeration con-
trol system has been scheduled for testing any control sys-
tems, considering also the disturbances, which are included
in Table 1. As shown in Fig. 5-6, the simulation includes
step changes in the references on Te,sec,out and TSH and in
the most important disturbances: the inlet temperature of the
evaporator secondary flux Te,sec,in inlet temperature of the
condenser secondary flux Tc,sec,in. It is important to note that
the manipulated variables, Av and N , are subjected to limits,
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FIGURE 5. The standard simulation for Benchmark PID 2018 generates
changes in the references Te,sec,out and TSH .

FIGURE 6. The standard simulation for Benchmark PID 2018 generates
changes in two disturbances: Te,sec,in and Tc,sec,in.

Av ∈ [10, 100] and N ∈ [30, 50], and are saturated within the
system block.

The Benchmark PID 2018 provides a default discrete
decentralized feedback controller, where the outlet temper-
ature of the evaporator secondary flux is controlled by means
of the expansion valve, meanwhile the compressor speed con-
trols the degree of superheating. Simulations are performed
with the MATLAB program to demonstrate feasibility of
learning control. The sampling time is 1s and the simula-
tion time is 1200s. The qualitative and quantitative compar-
isons are explored between our LFFC scheme with controller
provided in the Benchmark PID 2018. In the quantitative
comparison, the discrete decentralized PID controller plays
the role of controller of reference (labelled as Controller 1
in Fig. 7-9) and our proposed controller plays the role of
controller to evaluate (labelled as Controller 2 in Fig. 7-9).
Moreover, eight individual performance indices and one com-
bined index are applied to further evaluate in comparison
which are listed as follows

IAEi =
∫ time

0
|ei(t)|dt, (12)

FIGURE 7. Tracking performance at 10th iteration compared
decentralized PID control system under BSN LFFC.

FIGURE 8. Manipulated variables comparison between decentralized PID
control system and BSN LFFC.

IAVUi =
∫ time

0

∣∣∣∣dui(t)dt

∣∣∣∣ dt, (13)

RIAEi(C2,C1) =
IAEi(C2)
IAEi(C1)

, (14)

RITAEi(C2,C1, tc, ts) =
ITAEi(C2, tc, ts)
ITAEi(C1, tc, ts)

, (15)

RIAVUi(C2,C1) =
IAVUi(C2)
IAVUi(C1)

, (16)

J (C2,C1) =
1∑8
1 wi
{w1RIAE1(C2,C1)

+w2RIAE2(C2,C1)

+w3RITAE1(C2,C1, tc1, ts1)

+w4RITAE2(C2,C1, tc2, ts2)

+w5RITAE2(C2,C1, tc3, ts3)

+w6RITAE2(C2,C1, tc4, ts4)

+w7RIAVU1(C2,C1)

+w8RIAVU2(C2,C1)}. (17)
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FIGURE 9. Compressor efficiency and coefficient of performance
comparison between decentralized PID control system and BSN LFFC.

GUIDELINES FOR TUNING
The learning feedforward scheme offers considerable flexi-
bility with the number of tuning knobs that it provides. To fit
a mapping accurately, B-splines need to be implemented with
a small support d . In terms of the learning gain r , a cau-
tiously small learning gain can ensure the convergence of this
scheme. Thewidth of the B-splines and the learning gainwere
tuned by starting from value 0 and changing the values by try
and error in the direction that reduces the combined index J .

TABLE 2. Quantitative comparisons of controller 2 with controller 1.

For a BSN LFFC with m = 9 and γ = 0.1, labelled as
Controller 2, Fig. 7-Fig. 10 show its tracking performance
after 10th learning iterations compared with the discrete
decentralized PID controller. As shown in Fig. 7, Controller 2
achieves better tracking performance on the outlet temper-
ature of the evaporator secondary flux and the degree of
superheating than Controller 1, specially regarding the distur-
bance rejection, which is demonstrated in almost all indices.
Fig. 10 depicts combined index J versus learning iteration
number where the monotonic convergence is obvious. The
eight performance indices shown in Table 2 further testify the
control effort in BSN LFFC. Although the relative indices
RIAVU1(C2,C1) and RIAVU2(C2,C1) are greater than one
which indicate that control effort in Controller 2 is higher.
Considering the index weighting, Controller 2 significantly
outperforms Controller 1 as it improves the overall index J

FIGURE 10. The change of combined index with iterations under BSN
LFFC.

by 35%. The improvement in results can be explained by the
comparison results as shown in Fig. 8-9. As the blue lines
go smaller, the feedforward controller undertakes more work
with iterations.

V. CONCLUSIONS
In this paper, we demonstrated the effectiveness of
a learning feedforward control participated scheme for
vapour-compression refrigeration system. Combined with
feedback PID controller, the BSN based learning feedfor-
ward controllers are applied. The learning controller is able
to improve system performance drastically with only two
parameters to adjust: the support of B-spline and learning
gain. Simulation results suggests that the proposed LFFC
with B-spline network scheme can achieve satisfied tracking
control performance on difficult dynamical systems without
extensive and time-consuming modelling. It is noteworthy
that the network we applied during simulations was obtained
by the rule of the thumb. Hence, an optimized tuning of
parameters can help to improve the performance of the dis-
cussed control system. Our future work includes systematic
design methods for learning feedforward control.

ACKNOWLEDGMENT
The authors would like to thank the associate editor and all of
the reviewers for their constructive suggestions.

REFERENCES
[1] G. Bejarano, J. A. Alfaya, D. Rodríguez, F. Morilla, and

M. G. Ortega, ‘‘Benchmark for PID control of refrigeration systems
based on vapour compression,’’ in Proc. IFAC, 2017, pp. 1–6. [Online].
Available: http://www.dia.uned.es/~fmorilla/ benchmarkPID2018

[2] M. Salazar and F. Méndez, ‘‘PID control for a single-stage transcrit-
ical CO2 refrigeration cycle,’’ Appl. Therm. Eng., vol. 67, nos. 1–2,
pp. 429–438, 2014.

[3] Y. Shen, W.-J. Cai, and S. Li, ‘‘Normalized decoupling control for high-
dimensional MIMO processes for application in room temperature control
HVAC systems,’’ Control Eng. Pract., vol. 18, no. 6, pp. 652–664, 2010.

[4] A. Zendehboudi, A. Mota-Babiloni, P. Makhnatch, R. Saidur, and
S.M. Sait, ‘‘Modeling andmulti-objective optimization of an R450A vapor
compression refrigeration system,’’ Int. J. Refrig., vol. 100, pp. 141–155,
Apr. 2019. doi: 10.1016/j.ijrefrig.2019.01.008.

VOLUME 7, 2019 64125

http://dx.doi.org/10.1016/j.ijrefrig.2019.01.008


Y. Zhao et al.: Learning Feedforward Control of a One-Stage Refrigeration System

[5] L. C. Schurt, C. J. L. Hermes, and A. T. Neto, ‘‘A model-driven multivari-
able controller for vapor compression refrigeration systems,’’ Int. J. Refrig.,
vol. 32, no. 7, pp. 1672–1682, 2009.

[6] L. C. Schurt, C. J. L. Hermes, and A. T. Neto, ‘‘Assessment of the
controlling envelope of a model-based multivariable controller for vapor
compression refrigeration systems,’’ Appl. Therm. Eng., vol. 30, no. 13,
pp. 1538–1546, 2010.

[7] N. L. Ricker, ‘‘Predictive hybrid control of the supermarket refrigeration
benchmark process,’’ Control Eng. Pract., vol. 18, no. 6, pp. 608–617,
2010.

[8] Z. Yang, D. T. Pollock, and J. T.Wen, ‘‘Optimization and predictive control
of a vapor compression cycle under transient pulse heat load,’’ Int. J.
Refrig., vol. 75, pp. 14–25, Mar. 2017.

[9] T. Sung, Y. J. Kim, H. S. Kim, and J. Kim, ‘‘Empirical mod-
eling and robust control of a novel meso-scale vapor compression
refrigeration system (mVCRS),’’ Int. J. Refrig., vol. 77, pp. 99–115,
May 2017.

[10] G. Bejarano, J. A. Alfaya, M. G. Ortega, and F. R. Rubio, ‘‘Multivariable
analysis and H∞ control of a one-stage refrigeration cycle,’’ Appl. Therm.
Eng., vol. 91, no. 6, pp. 1156–1167, 2015.

[11] Y. Jian, D. Huang, J. Liu, and D. Min, ‘‘High-precision tracking of
piezoelectric actuator using iterative learning control and direct inverse
compensation of hysteresis,’’ IEEE Trans. Ind. Electron., vol. 66, no. 1,
pp. 368–377, Jan. 2019.

[12] Q. Yan, J. Cai, L. Wu, and Q. Zhou, ‘‘Error-tracking iterative learning
control for nonlinearly parametric time-delay systems with initial state
errors,’’ IEEE Access, vol. 6, pp. 12167–12174, 2018.

[13] Y. Yu, J. Wan, and H. Bi, ‘‘Suboptimal learning control for nonlinearly
parametric time-delay systems under alignment condition,’’ IEEE Access,
vol. 6, pp. 2922–2929, 2018.

[14] W. J. R. Velthuis, T. J. A. De Vries, P. Schaak, and E. W. Gaal, ‘‘Stability
analysis of learning feed-forward control,’’ Automatica, vol. 36, no. 12,
pp. 1889–1895, 2000.

[15] K. L. Moore, Iterative Learning Control for Deterministic Systems.
London, U.K.: Springer-Verlag, 2012.

[16] X. Jin, ‘‘Adaptive iterative learning control for high-order nonlinear multi-
agent systems consensus tracking,’’ Syst. Control Lett., vol. 89, pp. 16–23,
Mar. 2016.

[17] N. Lin, R. Chi, B. Huang, and Z. Hou, ‘‘Multi-lagged-input iterative
dynamic linearization based data-driven adaptive iterative learning con-
trol,’’ J. Franklin Inst., vol. 356, no. 1, pp. 457–473, 2019.

[18] J.-X. Xu and Y. Tan, Linear and Nonlinear Iterative Learning Control.
Berlin, Germany: Springer-Verlag, 2003.

[19] W. J. R. Velthuis, T. J. A. de Vries, and M. Haring, ‘‘Regularization in
learning feed-forward control,’’ in Proc. 6th Int. Conf. Control, Automat.,
Robot. Vis., Singapore, 2000, pp. 406.1–406.6.

[20] Y. Chen, K. L. Moore, and V. Bahl, ‘‘Learning feedforward con-
trol using a dilated B-spline network: Frequency domain analysis and
design,’’ IEEE Trans. Neural Netw., vol. 15, no. 2, pp. 355–366,
Mar. 2004.

[21] Z. Lin, J. Wang, and D. Howe, ‘‘A learning feed-forward current controller
for linear reciprocating vapor compressors,’’ IEEE Trans. Ind. Electron.,
vol. 58, no. 8, pp. 3383–3390, Aug. 2011.

[22] F.-S. Lee, J.-C. Wang, and C.-J. Chien, ‘‘B-spline network-based iter-
ative learning control for trajectory tracking of a piezoelectric actu-
ator,’’ Mech. Syst. Signal Process., vol. 23, no. 2, pp. 523–538,
2009.

[23] H. Deng, R. Oruganti, and D. Srinivasan, ‘‘Neural controller for UPS
Inverters based on B-spline network,’’ IEEE Trans. Ind. Electron., vol. 55,
no. 2, pp. 899–909, Feb. 2008.

[24] J. Liao, T. Liu, M. Liu, J. Wang, Y. Wang, and H. Sun, ‘‘Multi-context
integrated deep neural network model for next location prediction,’’ IEEE
Access, vol. 6, pp. 21980–21990, 2018.

[25] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret,
‘‘Network traffic classifier with convolutional and recurrent neural net-
works for Internet of Things,’’ IEEE Access, vol. 5, pp. 18042–18050,
2017.

[26] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning representa-
tions by back-propagating errors,’’ Nature, vol. 323, no. 9, pp. 533–536,
1986.

[27] T. Poggio and F. Girosi, A Theory of Networks for Approximation and
Learning. Cambridge, MA, USA: MIT Press, 1989.

[28] M. Brown and C. Harris, Neurofuzzy Adaptive Modelling and Control.
London, U.K.: Prentice-Hall, 1994.

YANG ZHAO received the M.S. degree in con-
trol engineering and the Ph.D. degree in pattern
recognition and intelligent system from Shandong
University, in 2011 and 2019, respectively. She
was a Visiting Scholar with MESA Labs, Uni-
versity of California at Merced, Merced, from
2017 to 2018. She is currently a Lecturer with the
School of Electrical Engineering and Automation,
Qilu University of Technology, Jinan, China. Her
research interests include applied fractional calcu-

lus in robust control, iterative learning control, and system identification and
robotics.

YAN LI received the Ph.D. degree in applied
mathematics from Shandong University, sJinan,
China, in 2008. He was a Visiting Scholar with
CSOIS, Utah State University, from 2007 to 2010.
Since 2010, he has been a Faculty Member of
the School of Control Science and Engineering,
Shandong University, where he teaches complex
analysis and equations of mathematical physics for
undergraduates, and optimal control and fractional
order control systems for graduates. His research

interests include applied fractional calculus in cybernetics, test, modeling,
and simulation of power batteries, big data analytics in power batteries
and microbes, biomechanics, iterative learning control, high gain adaptive
control, optimal control, and complex systems and networks.

SINA DEHGHAN received the B.Sc. degree in
mechanical engineering from the Isfahan Univer-
sity of Technology (IUT), Iran, in 2013. He is
currently pursuing the Ph.D. degree with the
Mechatronics, Embedded Systems, and Automa-
tion (MESA) Lab, University of California at
Merced, Merced. He has been working on a USDA
funded project serving as a Process Control Spe-
cialist and he helps in the development of process
control for a conventional and a novel system for

carbon activation using California local biochar. He currently works on a
project in collaboration with Lam Research Corporation leveraging data
analytics and machine learning for advanced process control (APC). His
research interests include mechatronics and automation, data analytics and
machine learning, advanced process control, precision temperature control,
and fractional order control.

YANGQUAN CHEN received the Ph.D. degree
in advanced control and instrumentation from
Nanyang Technological University, Singapore,
in 1998. He was with the Faculty of Electrical
and Computer Engineering, Utah State Univer-
sity, before he joined the School of Engineer-
ing, University of California at Merced, Merced,
in 2012, where he teaches mechatronics for juniors
and fractional order mechanics for graduates. His
research interests include mechatronics for sus-

tainability, cognitive process control and hybrid lighting control, multi-UAV-
based cooperative multi-spectral personal remote sensing and applications,
applied fractional calculus in controls, signal processing and energy infor-
matics, distributed measurement, and the distributed control of distributed
parameter systems using mobile actuators and sensor networks.

64126 VOLUME 7, 2019


	INTRODUCTION
	ONE-STAGE REFRIGERATION SYSTEM
	DESIGN OF LEARNING FEEDFORWARD COMPONENT
	LEARNING FEEDFORWARD COMPONENT DESIGN
	CONVERGENCE ANALYSIS

	SYSTEM SETUP AND NUMERICAL SIMULATIONS
	CONCLUSIONS
	REFERENCES
	Biographies
	YANG ZHAO
	YAN LI
	SINA DEHGHAN
	YANGQUAN CHEN


