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ABSTRACT With the coming of artificial intelligence and the era of big data, convolutional neural
network (CNN) has become one of the research hotspots in many scientific fields. However, there exist
serious edge information loss problems in the information transmission process of CNN. Therefore, in order
to suppress the loss of important information during the information transmission process, new methods
are proposed which use the singular value decomposition (SVD) algorithm based on the phase space
reconstruction to analyze the bearing vibration signal. Singular values are regarded as the features for
evaluating the bearing’s health condition. Then, the features radiate from the center around to form a spiral
matrix as the input of the CNN, which can effectively resist information loss problems during the information
delivery process. In order to verify the performance of the proposed methods better than the conventional
ones, experiments are carried out. This paper shows that the proposed methods have excellent performances
in the field of bearing fault diagnosis.

INDEX TERMS Vibration signal, singular value decomposition, spiral matrix, convolutional neural network,
fault diagnosis.

I. INTRODUCTION
A rolling bearing is the core component of rotating machin-
ery whose running state plays a decisive role in economic
development and social security [1]. Therefore, it is of great
significance to continuously monitor and diagnose the run-
ning state of rolling bearings.With the upgrading of industrial
demand, the traditional signal processing methods have been
increasingly difficult to meet the new requirements for fault
diagnosis and the rapid development of artificial intelligence
is leading the fault diagnosis to the intelligent direction.
In recent years, intelligent diagnosis models such as extreme
learning machine (ELM), support vector machine (SVM) and
deep neural network (DNN) have been successfully applied
to the rolling bearings’ fault diagnosis [2]–[7].

Among many intelligent diagnosis models, DNN has
attracted much attention due to its outstanding pattern recog-
nition ability. The DNN commonly used in the field of
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fault diagnosis is mainly composed of stacked auto-encoder
(SAE), deep belief network (DBN) and convolutional neu-
ral network (CNN). However, compared with the other two
models, CNN is the most complex and widely used. Since
the AlexNet model of CNN won the championship of the
2012 ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [8], CNNmodels such as VGGNet, Google Incep-
tion and ResNet have also won this award, which has set
off a wave of research on the CNN in the field of image
recognition. At the same time, with the coming of artifi-
cial intelligence and the era of big data, a new data-driven
‘‘industrial revolution’’ is quietly emerging and deep learning
algorithms presented by the CNNhave beenwidely applied in
the field of rotating machinery fault diagnosis. Jiao et al. [9]
proposed a multivariate encoder information based convolu-
tional neural network for intelligent fault diagnosis of plane-
tary gearboxes, which offers a promising tool for intelligent
diagnosis of rotating machinery. Appana et al. [10] pro-
posed an acoustic emission (AE) analysis-based bearing fault
diagnosis invariant under fluctuations of rotational speeds
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FIGURE 1. The specific process of the convolution operation. (a) Convolution kernel slides to the starting position. (b) Convolution
kernel slides to the end position.

using envelope spectrums (ES) and a CNN. They showed
that the proposed method leads to highly reliable results.
Moreover, Wang et al. [11] used the Short-Time Fourier
transform (STFT) to pre-process the original signal to obtain
the corresponding time-frequency images.Moreover, in order
to perform the fault diagnosis of an asynchronous motor,
they applied the CNN to adaptively extract time-frequency
mapping features.

Although CNN has achieved good results in the fault diag-
nosis of rotating machinery, it has a problem that cannot
be ignored, that is, the loss of edge information. The prob-
lem of edge information loss is determined by the operation
mechanism of CNN, and the operation mechanism of CNN
can be simply described as the following process. Generally,
the inputs of the CNN are images and the convolution opera-
tion is applied to process pixel values of each image. Taking
a single-channel grayscale image as an example, in fact, it is
a two-dimensional discrete signal and the convolution oper-
ation is to use a convolution kernel to slide on the grayscale
image. When the convolution kernel slides to a certain posi-
tion, pixel values corresponding to this position aremultiplied
by convolution kernel values and the results are added to
obtain the center pixel value of the corresponding position of
the output image. The convolution kernel slides in the order
from left to right and from top to bottom to complete the
calculation of all pixels. Thus, the output of this process is
still an image. Figure 1 shows the specific process of the
convolution operation.

Figure 1 shows that the input image size and the size of the
convolution kernel for the sample image are 5× 5 and 3× 3,
respectively. After completing the convolution operations, the
size of the output image is 3×3, which leads to the following
problems: First, when the number of CNN layers is too deep,
the size difference between input and output images is too
large and it is obviously not an ideal result. Second, during
the above convolution operations, pixel values of the edge
position of the input image are less involved in the operation
than those of the center position. For example, pixel values

of four vertex positions of the input image participate in
only 1 convolution operation, while the pixel value in the
middlemost position participates in 9 convolution operations.
This causes the loss of information in the edge position of the
image and the loss of the edge information accumulatively
increases during layer by layer training.

The general solution to the above problems is to
perform edge filling processing on the original map
(Padding) [12]–[14]. That is, the above input image is
expanded to a size of 7 × 7 to ensure that the final output
image size is also 5 × 5. The commonly used edge filling
methods include zero padding, edge copying, edge mirroring
and block copying. Although these edge filling processing
methods solve the first problem well, the CNN still suffers
from loss of the edge information during the information
delivery process after padding. It should be indicated that
when the edge information is particularly important, the loss
is fatal. What’s more, no scholars have perfectly solved the
problem of edge information loss caused by the operation
mechanism of CNN so far.

In the field of rotating machinery fault diagnosis,
the inputs of the CNN are usually the time-frequency
images of the vibration signals, which are mostly
obtained by time-frequency analysis methods such as
wavelet transform (WT) and short-time Fourier transform
(STFT) [15]–[17]. These time-frequency images not only
inevitably suffer from edge information loss in the training
process of CNN, but also have excessively large image sizes.
The problem is that the time-frequency images with too
large size will take up a lot of computing resources, and
the image compression processing will also lose some infor-
mation. In order to solve the above problems, a new image
construction method that the extracted features of vibration
signals are converted into pixel values to construct the images
which are regarded as the inputs of CNN is proposed in
this paper. In this way, it is better to extract hundreds of
features to form an image of appropriate size while traditional
feature extractionmethods in time domain, frequency domain
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and time-frequency domain are not only tedious, but also
difficult to extract so many features. According to the matrix
theory, the singular values can reflect the energy distribution
of signal and noise, so the singular values obtained by the
singular value decomposition (SVD) algorithm can represent
the features of the original signal itself. It is worth noting
that after the one-dimensional vibration signal is transformed
into a two-dimensional matrix by means of phase space
reconstruction, the number of obtained singular values is con-
siderable. Moreover, the larger the singular value is, the more
important the corresponding feature will be. Therefore, in this
paper, the SVD algorithm is first used to extract the low-level
features of the vibration signal, and then the grayscale image
is constructed from the center to the edge according to the
importance of these singular value features which ensures
that the pixel values converted by the larger singular values
are in the center of the image. As a result, the most important
information is concentrated at the center of the image, while
the least important features are concentrated at the edge of the
image. In this way, the integrity of the important information
in the transmission process can be guaranteed, and the impact
caused by the loss of edge information can be effectively
resisted.

To suppress the loss of important information during
the information transfer process, in this paper, a CNN
based on spiral arrangement of features is proposed and
the phase space reconstruction and singular value decom-
position (SVD) algorithms are combined to investigate the
accurate diagnosis of the aero-engine inter-shaft bearing.

II. FUNDAMENTAL THEORY
A. SVD BASED ON PHASE SPACE RECONSTRUCTION
The basic idea of the phase space reconstruction is that the
evolution of a component in the system is determined by other
components that interact with it and the relevant information
about these components is implicit in the development of
this component. To reconstruct an equivalent state space,
we only need to consider one component and treat some of its
measurements at fixed-time delay points as new dimensions.

The way how Hankel matrix is constructed is an important
phase space reconstructionmethod [18], which is widely used
in the field of signal processing. If there is time-domain signal
x = {x1, x2, · · · xN }, a p∗q-order Hankel matrix Hp∗q can be
constructed as the following:

Hp∗q =


x1 x2 · · · xq
x2 x3 · · · xq+1
...

...
...

xp xp+1 · · · xN

 (1)

Singular value decomposition (SVD) is a commonly used
algorithm for mining data features, which is an extension
of the eigenvalue decomposition and suitable for arbitrary
matrices. Employing the SVD algorithm yields the following
expression for Hp∗q:

Hp∗q = Up∗p6p∗qVT
q∗q (2)

where, U and V are orthogonal matrix and 6 is a
non-negative diagonal matrix, that is

6p×q =

[
1 0
0 0

]
, 1 = diag(σ1, σ2, · · · σr ),

σi = 6(i, i), σi−1 ≥ σi, i = 1, 2, · · · r

To reach the majority of singular values of the Hankel
matrix, it is necessary to maximize the scalar product of
the row and column numbers, called p and q, respectively.
It should be indicated that the Hankel matrix size varies in
accordance with the signal length N :

p =

{
N/2, N is an even number
(N+)/2, N is an odd number

q = N +−p (3)

B. CNN
The convolutional neural network (CNN) was originally
designed to solve the problem of image recognition and it was
proposed by Lecun [19] in 1989. Currently, CNN’s applica-
tions are not limited to images and video, but can also be used
for time-series signals such as audio and vibration signals.
The core elements of CNN are local connection, weight
sharing, down-sampling and so on. Among them, local con-
nection and weight sharing can greatly reduce the parameter
quantity and training complexity, as well as solving the over-
fitting problem in training. Moreover, the down-sampling of
the pooling layer can further reduce the parameter quantity.
Furthermore, it is gratifying that down-sampling gives the
model a certain degree of deformation tolerance and improves
the generalization of the model.

Assuming x li as the input of lth layer in the CNN, the con-
volution calculation for this layer can be expressed as:

x l+1j = sf

∑
i∈Mj

x li ∗ k
l+1
ij + bj

 (4)

where ∗, kl+1ij , Mj, bj and sf are the convolution operator,
the weight matrix of the convolution kernel in l + 1th layer,
a collection of input images, the corresponding bias and the
activation function, respectively.

After each layer’s convolution operation, it is usually fol-
lowed by a pooling layer and its main purpose is to compress
the images and reduce the parameters without affecting the
images’ quality by means of down-sampling. In classic CNN
models such as AlexNet (see Figure 2) [1], the first few

FIGURE 2. AlexNet network structure.
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layers of the network are generally designed to be connected
alternately between the convolutional layer and the pooling
layer. At the end of the network, fully connected layers and
a Softmax classifier are used to perform the final classifica-
tion task. Compared with the conventional machine learning
algorithms, CNN does not need to manually extract features.
In other words, it can automatically extract features from the
input during the training and complete the pattern recogni-
tion, which can not only reduce the recognition difficulty but
also have higher recognition accuracy.

III. CNN MODEL BASED ON SPIRAL ARRANGEMENT
OF SINGULAR VALUES
A. SPIRAL ARRANGEMENT OF SINGULAR VALUES
In this section, it is assumed that the time-domain vibration
signal of the inter-shaft bearing is x = {x1, x2, · · · xN }, then
the p∗q-order Hankel matrix Hp∗q can be constructed by the
method of Formula (1). Finally, singular value decomposition
of Hp∗q yields a set of singular values of the signal from
the largest to the smallest permutations. In order to achieve
accurate classification of the bearing’s health condition, all
the singular values of the signal are arranged as a two-
dimensional matrix and converted into a grayscale image,
which is the input of the deep convolution neural network.
What must be taken into account is that, in the singular value
theory of matrices, larger singular values correspond to more
important signal features [20]. Therefore, in order to suppress
the loss of important information during the information
delivery process, it is necessary to avoid large singular values
appearing at the edge positions of the matrix when singular
values are arranged into a two-dimensional matrix.

The appearance of internal spiral matrix solves the above
problems skillfully. The inner spiral matrix refers to a matrix
whose elements are arranged in an inner spiral pattern [21].
Equation (5) indicates that elements of the inner spiral matrix
increase from the middle to the right, down, left and up
directions, respectively.

21 22 23 24 25
20 7 8 9 10
19 6 1 2 11
18 5 4 3 12
17 16 15 14 13

(5)

Except for the inner spiral matrix, the elements of the
double spiral matrix also radiate from the center around,
which can achieve the same effect. Elements of double spiral
matrix are arranged in such a way as the following:

9 10 11 12 13
8 3 4 5 6
7 2 1 2 7
6 5 4 3 8
13 12 11 10 9

(6)

Considering that the singular value sequence obtained by
SVD is a one-dimensional array arranged from large to small,

if the array elements’ indexes are spirally arranged in accor-
dance with Equations (5) or (6), the relatively larger singular
values can avoid appearing at the edge of the matrix. This
ensures that the pixel values converted by the larger singular
values are in the center of the image and the loss of impor-
tant information during the transmission will be effectively
resisted.

After completing the data preprocessing mentioned above,
in order to facilitate the subsequent training and testing of
CNNmodel, the matrix composed of singular values is saved
as a grayscale image and labeled at the same time.

B. THE PROPOSED CNN MODEL
It is intended to investigate the vibration signal of the aero-
engine inter-shaft bearing in the present study. Moreover,
fault diagnosis methods of CNN based on spiral arrange-
ment of singular values are proposed. Figure 3 illustrates the
proposed fault diagnosis model. It indicates that the model
consists of six steps:

FIGURE 3. Flowchart of the proposed fault diagnosis model.

Step 1: Acquiring original vibration signals of bearings.
Then all signals are divided into training and testing signals.
Step 2: Reconstruction of the original signal into a Hankel

matrix. Then the matrix size is determined.
Step 3: Applying the SVD algorithm to the constructed

Hankel matrix.
Step 4: Arranging obtained singular values into an inner

spiral matrix or a double spiral matrix, converting the spiral
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matrix into a grayscale image to save and attaching a label at
the same time.
Step 5: Building a deep CNN model and designing model

parameters.
Step 6: Training the established deep CNN model and

testing in batches to obtain diagnostic accuracy.

IV. EXPERIMENTAL VERIFICATION
A. INTRODUCTION OF TEST RIG AND DATA SETS
DESCRIPTION
In order to validate the efficiency of the proposed fault diag-
nosis model, experiments are carried out in the present study.
The test setup consists of a double rotor aero-engine with
inter-shaft bearing, two motors, three mass disks and four
accelerometers. Figure 4 illustrates the configuration of the
test setup.

FIGURE 4. The configuration of test setup.

In order to investigate the inter-shaft bearing, four acceler-
ation sensors are installed on the bearing pedestal to gather
vibration signals of the bearing, which is the equipment basis
for the following 4 groups of parallel experiments carried out
in this paper. As we can see from Figure 4 that the bearing
is installed between low and high pressure axes to connect
motors and it should be indicated that the sampling frequency
for all sensors is set to 25.6 KHz.

In this case, data sets contain 10 kinds of operating condi-
tions, which point to the corresponding data of label 1∼10 in
Table 1. The faults are introduced to the inter-shaft bearing
under the running conditions of high-pressure-motor sin-
gle rotation (HR), low-pressure-motor single rotation (LR),

TABLE 1. Description of operation conditions.

and high-pressure-motor/low-pressure-motor relative rota-
tion (HLR), respectively. Besides, a normal condition of a
two-motor relative rotation is introduced. The rotation speed
of the motors is 1200 RPM under each operating condition.
The fault grooves in the bearing are machined by an electric
spark, as shown in Figure 5. The outer ring fault is displayed
by taking one of roller elements because the outer race and
the holder cannot be removed.

FIGURE 5. Configuration of machined faults on the bearing.

In order to verify the effectiveness of the proposed meth-
ods, four groups of parallel experiments were conducted in
this paper, which were respectively denoted as Group 1,
Group 2, Group 3 and Group 4. In each group, 400 samples
are collected for each operating condition, where 300 samples
are used for training and 100 samples are remained for testing.
Table 1 shows the detailed information of the used data sets.
In Group 1, the data sets were collected from the acceleration
sensor in the X direction of the high pressure axis or the
low pressure axis, and in Group 2, the vibration signals were
collected from the acceleration sensor in the Y direction of
the high pressure axis or the low pressure axis. In Group
3 and Group 4, the data sets were obtained from the X and
Y directions of the bearing housing, respectively.

B. DATA PROCESSING AND COMPARISON EXPERIMENTS
In this study, the sampling length for all operating conditions
is set to 2000. Therefore, after each sample is processed by the
proposed SVD algorithm, 1000 singular values, arranged in
descending order can be obtained. If these singular values are
spirally arranged into an inner spiral matrix or a double spiral
matrix, the corresponding matrix of 31 × 31(312 < 1000 <
322) or 44 × 44 ((442 + 1)/2 < 1000 < (452 + 1)/2) size
is available and the matrix can be converted to a grayscale
image by processing each element of the matrix to a pixel
value between 0 and 255 and labeled to facilitate subsequent
processing. In this study, the image processing method of
double-cubic interpolation is applied to reconstruct the saved
31 × 31 grayscale image, dedicates to get an image size of
32 × 32 as the input of CNN, which is convenient for data
processing.

In order to highlight the advantages of proposed meth-
ods over conventional methods, 4 comparison experiments
have been carried out in this part. Comparison experiment
1 is performed to arrange the obtained singular values into
a two-dimensional matrix whose elements decrease from
left to right and from up to down and convert it to a
32 × 32-size image as the input of the CNN. Comparison
experiment 2 is performed to treat the obtained 1000 singular
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values as the input of the stacked auto-encoder (SAE) and
then identify the inter-shaft bearing vibration signal. In com-
parison experiment 3, the obtained 1000 singular values were
firstly reduced in dimension by principal component analy-
sis (PCA) algorithm, and then the low-dimensional samples
were input into the support vector machine (SVM) model to
complete the intelligent diagnosis of the inter-shaft bearing.
In comparison experiment 4, the traditional artificial neural
network (ANN) algorithm is used to classify the singular
value features of vibration signals. In order to describe the
experiments process more clearly, the proposed fault diagno-
sis methods are recorded as Method 1 and Method 2, corre-
sponding to the CNN’s input constructed by the method of
double spiral matrix and inter spiral matrix, respectively. The
fault diagnosis methods corresponding to comparison exper-
iments 1∼4 are recorded as Method 3, Method 4, Method
5 and Method 6, respectively. All the above experimental
methods used in this paper and corresponding descriptions
are shown in Table 2.

TABLE 2. Experimental methods and corresponding description.

Figure 6 illustrates the network structure and parameters
of Method 1, Method 2 and Method 3, which indicates

that after passing through the input layer, convolution lay-
ers (C), Max-pooling layers (S) and fully connected lay-
ers (F), the model automatically learns the grayscale features
of singular values and sends them to the Softmax classifier.
At the input layer, the image size for Method 1 is 44×44×1,
while the image size for Methods 2 and 3 are 32 × 32 × 1,
where 1 denotes the number of color channels, indicating
that the input image is a grayscale image. In all convolution
operations, the convolution kernel has a common size of 3×3
and all convolution kernels have a same stride of 1 × 1 with
the boundary processing way of ‘SAME’. After completing
the convolution calculation, the Relu activation function is
applied to improve the training speed and the accuracy of
the model. It should be indicated that a 2 × 2 filter with a
Max-pooling strides of 2×2 is selected in all pooling layers of
the present study. After all convolution and Max-pooling lay-
ers, all features ofMax-pooling layer S6 are taken as inputs to
fully connected layer F7 so that the first fully connected layer
has 2304 or 1024 nodes. The number of nodes in the second
fully connected layer F8 is 200 and the number of nodes in
the output layer is 10, corresponding to the health status of
inter-shaft bearings for 10 different operating states.

In Method 4, the SAE contains three hidden layers and
the network structure parameters are: 1000-400-80-10. Con-
sidering the dimension of sample singular values, number of
input layer neurons is set to 1000. On the other hand, since
there are 10 kinds of fault signals, the number of output layer
neurons is set to 10. The learning rate of each AE, Softmax
classifier and the fine-tuning process are 0.3, 0.3, 0.3, 2.0 and
1.2, respectively and the momentum term is 0.5.

In Method 5, the low-level 1000-dimensional singular
value features are firstly reduced to 50 by PCA algorithm,
then the relatively advanced 50-dimensional features are used
as the input of the SVM model to complete the training
process, and finally the intelligent diagnosis of the inter-shaft
bearing is realized.

Method 6 still uses SVD algorithm based on phase space
reconstruction for signal preprocessing. The obtained singu-
lar values are used as the inputs of the traditional ANN, and
the number of hidden layer nodes of ANN is set to 60.

C. EXPERIMENTS ANALYSIS
If the diagnostic accuracy of the bearing is higher, the fault
information extracted from the signal will be more compre-
hensive. In other words, for the CNN methods used in this
paper, the network structure corresponding to the higher fault
diagnosis accuracy can better inhibit the edge information
loss of CNN.

After selecting the gradient descent algorithm to perform
10000 optimization iterations on the model, the diagnosis
accuracy in 4 groups of experiments of each method is shown
in Figure 7.

Figure 7 shows that the diagnosis accuracy ofMethod 1 and
Method 2 achieved in 4 groups of experiments ranged from
96.1% to 97.9%, indicating that the proposed methods can
accurately identify 10 kinds of health status of inter-shaft
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FIGURE 6. CNN structure and parameters of method 1-3.

FIGURE 7. Each method’s diagnosis accuracy in 4 groups.

FIGURE 8. The multi-class confusion matrix for the method 2 in group 2.

bearings for three different working conditions and four dif-
ferent fault positions. However, since the most important
singular values are at the top of the image in Method 3
(Comparison experiment 1), this leads to a certain degree of
edge information loss in the information transmission process
of the CNN, causing the reduction of the average diagnostic
accuracy to 92.4%. The average classification accuracy of
Method 4, Method 5 and Method 6 are all low than 88%,
indicating that the CNN has better classification ability than
the SAE, SVM and ANN for the extracted singular value
features. Thus, the above results show that the proposed
methods can effectively suppress information loss problems

FIGURE 9. Feature space of each method using t-SNE.

during the information delivery process and achieve a very
good classification accuracy in classifying faults of vibration
signals for the aero-engine inter-shaft bearing.

Experiments carried out in the present study show that the
highest accuracy is achieved for Group 2 ofMethod 2. Among
all 1000 test samples, only 21 samples are misjudged and the
average diagnosis accuracy reaches to 97.9%. Figure 8 shows
the multi-class confusion matrix for theMethod 2 in Group 2.

To further verify the ability of the proposed algorithm
to resist the edge information loss of CNN, in this section,
t-SNE clustering algorithm is used to analyze the last layer
features extracted fromMethod 1-6 in Group 2. The better the
clustering effect of a method, the fault information extracted
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by the method will be more comprehensive, and if the method
is based on CNN, it is also proved that this method can effec-
tively suppress the impact of edge information loss of CNN.

Figure 9 shows the clustering effect of each method using
t-SNE algorithm. It can be seen from figures of Method 1
and Method 2 that the bearing signals of the same kind
can be clustered together with an obvious clustering center,
and the bearing signals of different classes can be separated
effectively. In figures of Method 3∼6, because the edge
information loss of CNN is not suppressed or the CNN is not
used for fault diagnosis at all, the points are aggregated not so
well, and the different classes of features are aliased together,
which results in an inability to effectively identify.

Considering analysis and discussions, it is concluded that
the proposed methods are pretty accurate and effective for
fault diagnosis of the aero-engine inter-shaft bearing in all
operating conditions. Moreover, it is found that applying pro-
posed methods can effectively resist information loss prob-
lems during the information delivery process.

V. CONCLUSION
In the present study, novel methods are proposed for the bear-
ing fault diagnosis by combining SVD and spiral arrangement
of features with the deep CNN. The proposed methods can
be divided into three major steps: Firstly, the SVD algorithm
based on the phase space reconstruction is used to analyze the
bearing vibration signal. Subsequently, the obtained singular
values are used as features to evaluate the bearing health
status and arrange these features into an inner spiral matrix
or a double spiral matrix. It converts the spiral matrix into
a grayscale image and attaches a label at the same time.
Finally, the CNN model is built and the diagnosis accuracy
is calculated to verify the efficiency of proposed methods.
The present study shows that the proposed methods have the
following characteristics:

(1) Highly innovative algorithm. The proposed methods
combine the SVD and spiral arrangement of features
with the deep CNN, which can effectively resist infor-
mation loss problems during the information delivery
process. This is nearly unprecedented in the field of
deep learning and fault diagnosis.

(2) Perfect diagnosis accuracy. Compared with other meth-
ods in comparison experiments, the proposed fault
diagnosis methods achieve a high recognition accuracy.

(3) Excellent clustering effect. The proposed methods can
effectively extract the features from different signals,
which have an obvious clustering center after carrying
on t-SNE algorithm.
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