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ABSTRACT The computational techniques for nucleic acid and protein sequence comparison reduce the
extensive burden of molecular biologists. The sequence alignment is one of the main research areas in
bioinformatics, and comparative genomics and proteomics lead us to important discoveries in various fields
of bioinformatics. Researchers develop and use different heuristics and evolutionary algorithms for optimal
DNA and protein sequence alignment. There are different categories of improved computational sequence
matching methods. In this paper, the goal is to cover almost all computational approaches toward sequence
alignment. Different aspects and issues related to the optimal alignment of biological sequences will be
analyzed. The sequence comparisons through mathematical and computational techniques have manifold
benefits and importance in bioinformatics. Researchers recently explore proposing novel computational tech-
niques for simultaneous matching of multiple sequences or multiple sequence alignment (MSA). Pairwise
alignment, or the alignment of two sequences, is the basic building block of all alignment methods. The goal
is to design optimal and relevant algorithms with less computational complexity and more efficiency.

INDEX TERMS Dynamic programming optimization, multiple sequence alignment, evolutionary compu-
tations, categories of sequence alignment, recent trends in sequence alignment, local and global alignment,
pairwise alignment, structure based alignment.

I. INTRODUCTION
Nucleic acids are responsible for determining the structure
and function of the living kingdom. The main constituent
organic compound or component of all living organisms is
protein. Genes are encoded by a specific pattern of DNA
nucleotides; there is a specific nucleotide pattern for each
amino acid which is also called as codons. The DNA codon
sequence is then transcribed to messenger RNA (mRNA) and
is transferred to ribosomal RNA (rRNA). The ribosome is
comprised of rRNA that synthesizes proteins according to
codon pattern of the mRNA with the help of tRNA (transfer
RNA). Bioinformatics comprised of computer science tools
and applications to efficiently handle important biological
data. It can be used for protein data sorting, manipulation,
and arrangement of nucleic acids.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiankang Zhang.

Nucleic acids are made up of nucleotides, and a protein
molecule is a poly peptide chain or combination of amino
acids. Nucleotides in a specific order are referred to as
a sequence. Sequence comparison reveals important infor-
mation, such as relatedness between organisms. Sequence
matching has historically been carried out in biochemical
laboratories by molecular biologists. However, such kind of
alignment is slow and practically impossible for enormous
amount of data. Computational algorithms exploit biological
comparisons and estimate the relatedness between sequences
through alignment score.

The term biological sequence applies to nucleic acid
and protein molecules with nucleotides and amino acids,
respectively, in a properly ordered format, as shown in the
figure three. Matching or comparison of nucleic acid and pro-
tein sequences point-by-point or cell-by-cell to find possible
similarities and relationships among the sequences is called
as sequence alignment. DNA sequences are comprised of
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nucleotides and protein sequence is made up of the polypep-
tide chain of amino acids. If we take two proteins or DNA
sequences as a row of symbols and each nucleotide and amino
acid is represented by specific special symbols like thymine
by ‘T’ and Leucine amino acid by ‘L’. Comparing two rows of
sequences, nucleotide by nucleotide or amino acid by amino
acid, is a process called sequence alignment, as shown in
the figure three. This is referred to as word or string based
matching, as the residue nucleotides are represented by their
respective symbols. Actual computational alignment of two
DNA sequences in MATLAB workspace is shown in the
figures 4.

In this diagrammatic illustration matches are represented
by a vertical line from one nucleotide in one sequence to
another nucleotide in the second sequence. Mismatch is rep-
resented by no line and gap in each sequence is represented
by a dash in a sequence. The combine alignment score is
the combination of all matches minus mismatch scores. Gap
penalty is also applied. Usually gap penalty is set to zero for
simplicity in any novel algorithm.

Sequence alignment gives us the measure of relatedness
between nucleotides and amino acid sequences. By determin-
ing the relatedness between two sequences we are able to find
out structural, functional and evolutionary relationships [1].
All computational alignment approaches are statistical proba-
bilistic calculation ofmatches, mismatches and gaps. Some of
them are mathematical assumptions and require pre-requisite
information. The correct estimation of match, mismatch and
gap determine the quality of computational algorithms.

II. RELATED WORK
Sum-of-pairs (SP) or Column score (CS) represent the quality
of alignment. SPdist is a novel approach and is used to mea-
sure the sequence distance between mismatched residues in
the query alignment. This technique gives better results than
SP especially in terms of divergent reference alignments [2].

Through sequence comparison we find similarity. Simi-
larity is the quantitative measure between two sequences.
Choose two sequences, Select an algorithm that generates
a score, Allow gaps (insertions, deletions). Match, mis-
match and gap got specific assigned score in each algorithm.
The combine score reflects the degree of similarity of two
sequences. There are two kinds of sequence alignment tasks,
e.g. pairwise sequence alignment and the more computation-
ally complex task ofmultiple sequence alignment (MSA).The
alignment of two sequences at a time is called as pairwise
alignment and the matching of three or more sequences at a
time is termed as multiple sequence alignment.

There is another kind of sequence alignment called as
triplet alignment. Three sequences are aligned at a time in
triplet comparison. Figure 1 show us the types andmethods of
sequence alignment. All novel computational techniques for
sequence matching have some sort of relationship with these
methods. Calculation of lower and upper bounds for optimal
alignment of binary sequences can be carried out through
various mathematical methods [3].

FIGURE 1. Different kinds of Sequence alignments methods and types.

Several methods are used for sequence alignment and anal-
ysis. Alignment free method is based on mapping symbolic
sequences describing DNA, RNA and proteins onto vector
spaces, in which many of the analysis can be performed
more efficiently. In this method the rational is to represent
sequences as numerical real valued vectors. The available
tools like filtering techniques, normalization, dissimilarity
estimation and clustering are applied to this domain. Prob-
ability, statistics and linear algebra are then at hand to pro-
vide a strong and extensive theoretical and computational
background. It has the ability of effortlessly dealing with
whole genomes, thus allowing the analysis of complete
sequence information [4]. Traditional analysis of MSA is
through single strand ofmultiple alignments. Directed acyclic
graph (DAG) is used for a set of sampled alignment. Each
node is an alignment column and each path through this
DAG is a valid alignment. This approach provides a natural
space distribution of MSA’s to make the existing algorithm
for alignment more efficient [58].

SNAPR algorithm is applied for efficient and accurate
RNA-Seq alignment and analysis. This is an easy algorithm to
convert raw RNA sequences to interpretable results. A hash
table technique is used to utilize the processing and mem-
ory of high power machines. FASTQ and BAM file format
are used as an input and the output is a sorted BAM file.
The algorithm can read individual read counts and identify
exogenous RNA species and gene fusion. SNAPR is used
for future sequencing with longer reads [6]. Recently we
experience many novel techniques for whole genome com-
parison. Some researchers propose compression models for
MSA blocks [62]. One of such method is based on a mixture
of finite-context models that address the problem of DNA
bases and gap symbols together. This method further explores
the correlation between sequences [7].

Comparison of complete nucleic acid or protein sequences
is called as global alignment, and partial sequence align-
ment is termed as local alignment. Local alignment is use-
ful to find out sub optimal matching locus between two
sequences [8]. Traditionally a variety of computational tech-
niques are available for sequence alignment. For global
alignment Needleman-wunsch [9] algorithm is used. Smith-
waterman [10] algorithm is used in cases of local alignment.
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FIGURE 2. Scoring of residue in a matrix (two dimensional array b) and
trace backing to obtain an alignment of GAATTCAGTTA and GGATCGA.

FIGURE 3. Diagrammatic illustration of Pairwise alignment through
dynamic programming.

In both cases the longest common subsequence is obtained
through dynamic programming.

III. ALIGNING THROUGH EXACT METHOD AND LATEST
INPROVEMENTS
Dynamic programming is the exact method for computational
sequence comparison. The application of dynamic program-
ming requires certain conditions.

The sub-problems or matching of each cell residue are
interrelated. Interrelations of sub-problems also mean that all
pairwise alignments are linked through a tree in the process
of progressive multiple sequence alignment.

Optimal structure can be characterized as explained above
for multiple matrices or multiple sequence alignment. The
extent of similarity and non-relatedness can be defined. The
characterize structure can be defined recursively like adding
more sequences (repeat the same process) to the already
aligned profile during MSA.

Solution for base cases has a termination criterion and if
the construction of optimal solution is possible then dynamic
programming is a better choice.

Dynamic programming consist of three steps, first initial-
ization take place, then scoring of matrix and then alignment
of two sequences through trace back mechanism. The matrix
for sequence alignment through dynamic programming is
shown in the figure 2 and the resultant pairwise alignment
is shown in the figure 3.

IV. MERITS AND ISSUES IN ALIGNMENT
The function of protein is predicted by computational
approaches. If the crystal structure of one protein is avail-
able then the 3D model of its unknown homologous in
any database of proteins is retrieved through computational
matching tools. Proteins binding regions can be identified
through careful interpretation of multiple sequence align-
ment [1]. Comparison of two sequences point by point or cell

FIGURE 4. Actual alignment of two sequences.

FIGURE 5. Merits and issues of computational sequence alignment tools
and techniques.

by cell to discover relatedness or to find out common ancestry
and functional similarity. Some techniques gave good results
but there is always a chance of further improvement. Some
methods predict the structure and function of proteins and the
relationship between proteins and gene is traced out [1].

The issues and problems related with sequence alignment
are shown in the figure 5. Proper sequence alignment is
necessary to reveal the structure and function of organism
genome. Through proper alignment we can find relationship,
linkage and interaction between nucleic acid and proteins.
The phylogenetic origin of species is traced out. Sequence
alignment is also helpful in forensic and medical sciences.
Phylogenetic means the evolutionary origin or the history
of organism lineage as they change through different times.
The phylogenetic tree can be obtained from filtered and
non-filtered MSA. Recent research investigation reveal that
the tree generated from filtered MSA is worse than the tree
obtained from unfiltered MSA [11]. The identification of
non-coding DNA or RNA regions in the complete genome
alignment is very important. Secondary structure of pro-
teins and nucleotides is more stable and conserved. So the
identification of non-coding regions through stable and con-
served secondary structure is more reliable [12]. Outlier
detection in MSA is another interesting area of research. In a
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given multiple sequence alignment an outlier sequence create
many problems. OD-seq detects outlier through the exam-
ination of average distance of individual sequence from
other sequences. The sensitivity and specificity of OD-seq
is very high [13]. DECIPHER resolve the accuracy of align-
ment in cases of large number of sequences. DECIPHER
R package is available from Bioconductor repository [14].
Figure 5 summarized the application and efficiency of
Sequence Alignment.

V. RECENT TRENDS IN SEQUENCE MATCHING
In recent year we observe a lot of novel approaches toward
sequence comparison. Cynthia Vinzant defines new lower
bound for optimal alignments of binary sequences [3].
Alignment free comparison of genome sequences by numer-
ical characterization is another novel method. Alignment
free comparison of sequences was performed by comput-
ing the distances between vectors of the corresponding
numerical characterization, which define the evolutionary
relationship [53].

This is a powerful tool for genome comparison [15]. Align-
ment free method is also used for phylogenetic inference.
D2 alignment free approach is usually used for the same
purpose [16]. Protein MSA through permutation similarity is
proposed to evaluate several algorithms. As the permutation
similarity method only concerns with the relative order of
different protein evolutionary distances, without taking into
account the slight difference between the evolutionary dis-
tances, it can get more robust evaluation [17].

Analysis of MSA through correlation method finds out
residue-positions whose occupation with amino acids change
in a concerted manner. The position of specific residue is
of vital importance in many areas of research. The residue
position is important for protein function or stability [5].

The application of parallel processing in multiple sequence
alignment is another catching area. There are a lot of parallel
strategies for word based proteinMSA. Thesemethods can be
extended to the structure based protein MSA. Waterman and
Smith [10] is a famous algorithm for local alignments but at
the expense of very high computing power and huge memory
requirements. In one approach Smith-Waterman algorithm
for local alignment run in a cluster of workstations using a
distributed shared memory system [18]. This approach can be
used for structure MSA. In cases of protein structure based
multiple sequence alignment several searches and structure
matching are involved which require a lot of time and pro-
cessing speed. The use of a parallel computer cluster or Grid
can reduce processing time and obtain an optimal result in
less time. It may help us to quickly predict the function of
proteins from its structure. A number of algebraic operation
theories for linear and context-free grammars make possible
to combine atomic and complex multidimensional grammars
in cases of complex alignment problems [6].

According to one research method inside a structure
based multiple sequence alignment; remote homologues pro-
teins improve sequence alignment by extracting structural

information from profiles of multiple structure alignment.
A systematic search algorithm combined with a group of
score functions based on sequence and structural information
has been introduced in one procedure [4].

Structurally informed alignment has a manifold benefits
and it can be useful in the phylogenetic analysis of biogenic
amine receptors in vertebrates. A comprehensive high qual-
ity alignment is constructed to facilitate the biogenic amine
receptors study [5].

Roy D. Sleater et al proposed MSA algorithm to be run
in a parallelized fashion with the sequence data distributed
over a computer cluster or server farm. The cloud computing
technology improves the speed, quality and capability of
MSA. They introduce next generation of cloud based MSA
algorithm [19]. Some researchers evaluate the performance
of parallel multiple sequence alignment on supercomputer
like BlueGene/Q or JUQUEEN. A parallel I/O interface for
simultaneous and independent access to single file collec-
tively has been designed and verified [20]. David diaz and
his co-researchers developed MC64-ClustalWP2 as a new
implementation of Clustal W algorithm, integrating a novel
parallelization strategy that significantly increases the per-
formance when aligning long sequences in architecture with
many cores. They analyze the software and hardware features
in order to exploit and optimize the full potential of paral-
lelism in many-core CPU systems.

To test the performance of their proposed algorithm they
use hybrid computing system. MC64- Clustal WP2 has
many fold benefits [21]. To improve the scalability of global
sequence alignment an MPI based parallelization technique
is proposed. In this method a parallel waveform algorithm
based on a chunk size transformation to handle large datasets
with message passing model exposes high speed up and
scales linearly with the increasing number of processes [22].
Some researchers examine different multi-core machines by
running a variety of MSA software [23]. In recent years we
observe various kinds of novel techniques for parallel MSA
like artificial bee colony optimization [24].

Structure based alignment is more comprehensive, con-
served and informative. Conserved regions are much stable
and predict correct function and structure of a given protein.
The extent to which two structures align is to measure the root
mean square deviation (RMSD) [25].

VI. MAOR CATEGORIES OF SEQUENCE ALIGNMENT
Computational alignment techniques are summarized
as under.

A. PAIRWISE LOCAL AND GLOBAL SEQUENCE
ALIGNMENT
Comparison of two sequences at a time is termed as pair-
wise sequence alignment. BLAST [26] and FASTA [27] are
famous programs for pairwise alignment. BLAST [28] is used
to compare a sequence with the entire online database, so it is
an important discovery method of potential homologs. The
inference of homology or common ancestry of organisms
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FIGURE 6. Issues related with computational sequence matching.

FIGURE 7. Classification of computational sequence alignment
techniques according to my understanding.

is satisfied when two sequences have sufficient similarity.
Homology refers to the relationship between genes separated
by the event of speciation (orthology) or the relationship
between genes separated by the events of genetic duplica-
tion (paralogy). Generally protein sequences with 20-25%
similarity are classified in the twilight zone. Some pairwise
alignment methods are specialized for below twilight zone
comparisons [29]. Figure 7 is the diagrammatic illustration
of different categories of alignment techniques.

Coding for one-to-many multiple sequence alignment is
another hot research topic nowadays. A code that take an
input set of pairwise alignments and generates a one-to-many
gapped multiple sequence alignment. CombAlign code is
demonstrated by generating gapped multiple sequence align-
ment from structure based pairwise alignments. The multiple
sequence or structure based alignment (MSSA) show individ-
ual residue-residue relationship, which enable the identifica-
tion of similar and different regions between the alignment
proteins [30].

Homology is the conclusion that we reach after measur-
ing the similarity or percent identity between sequences.
Homology cannot be measured in degrees and we can use
the term partial homology in cases of partial similarity.

FIGURE 8. Diagram showing homology, orthology, and paralogy.

Homology implies the evolutionary relationship between
sequences. Homology mean the percentage of similarity
between sequences and homologs mean same or nearly same
sequences in the same or different organisms. Homologs
belong to the same species are called as paralogs and ortho-
logues are those homologs that are found in different species
of organisms. The figure 8 shows homology, orthology and
paralogy.

Similarity of two sequences is measured through empir-
ical mathematical scoring matrices. There are two famous
substitution matrices called as PAM and BLOSUM [31].
The evolutionary history of two sequences is revealed
by homology through phylogenetic analysis [32]. Pairwise
alignment is either local or global as discussed above. Phy-
logenetic analysis is carried out through various tools like
MEGA [33] or MATLAB [34]. Characterization of errors
in pairwise and multiple sequence alignment is a difficult
task [23].

Partial sequence alignment or the comparison of most
similar parts of two sequences is termed as local alignment.
Local alignment finds optimally matching regions within two
sequences. Smith-waterman [10] procedure is used for local
alignment. Actually smith and waterman work on a com-
plete mathematical analysis of RNA secondary structure [10].
RNA has a single helical structure.

Smith waterman or local alignment find and align most
optimal or closely related fragments between two sequences.
There are very few gaps in local alignment and long gaps are
ignored.

Smith waterman algorithm is slow in processing and
there are several parallel and high performance computing
techniques to resolve this issue. The high computational
power of NVIDIA-based general purpose graphic processing
units (GPGPUs) can be accessed through PaSWAS alignment
software. PaSWAS is a Smith waterman parallel implemen-
tation that runs on graphical hardware with improved perfor-
mance. Score, number of gaps and mismatches can retrieve
through this tool and the software reports multiple hits per
alignment [2]. The test cases show the usability and versatility
of this parallel alignment software utility [35].

Comparison of complete length-wise nucleic acid or pro-
tein sequences is called as global alignment. Global align-
ment extends from one end of a sequence to the other.

Global alignment gives us complete details of comparison
between two sequences.

Recently we observe novel and modified global align-
ment techniques like normalized global alignment for protein
sequences [36]. In order to reduce the length and composition
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dependence of global alignment scores, Z-score is computed
with Monte-Carlo algorithm. This technique requires a great
number of sequence alignments, leading to high computa-
tional cost. In this method a normalized global alignment
score is introduced in order to correct the length dependencies
of global alignment. This algorithm is based on fractional
programming and defines a best ratio of alignment score
and length [36]. Some algorithms for global alignment are a
combination of many strategies. One algorithm proposes by
Qi et al. [37] combine simple alignment algorithmwith exten-
sion algorithm for largest common substring and graphical
simple alignment tree (GSA). The GSA tree solves the prob-
lem of global alignment of two DNA sequences [37]. Pro-
gressive MSA need a guide tree to align sequences according
to the topology of tree. The adaptive method of constructing
guide tree is another quality approach and it mainly improves
the accuracy of different progressive MSA tools [38]. Some
researchers systematically explore the performance of differ-
ent guide trees currently used for multiple sequence align-
ment [59]. In one effort the researchers claim that the pairwise
distance based default guide tree performance is better than
evolutionary guide tree in cases of structure derived reference
alignment. The results of pairwise distance based default
guide tree are still not optimal but even better than the average
chained guide tree [39].

Through Needleman-wunsch method it is possible to
determine whether significant homology exists between the
proteins. This information is used to trace their possible
evolutionary development. The largest number of amino acids
of one protein that can be matched with those of a second
protein allowing for all possible interruptions in either of the
sequences. Comparisons are made from the smallest unit of
significance, a pair of amino acids, one from each protein.
All possible pairs are represented by a two-dimensional array,
and all possible comparisons are represented by pathway
through the array. A numerical value is assigned to each cell
in the array and the maximum match is the largest number
that would result from summing the cell values of every
pathway [9].

B. MULTIPLE SEQUENCE ALIGNMENT
Comparison of more than two sequences at a time is called
as multiple sequence alignment (MSA). In the process of
multiple sequence alignment with any algorithm or method
first pairwise alignment takes place. So pairwise alignment
is the basic building block for multiple sequence alignment.
Multiple sequence alignment is very useful in cases of evo-
lutionary relationship between sequences. It is helpful to find
out similarity and relationship between homolog sequences
and the discovery of special motifs in a sequence.

For large number of sequences progressive alignment is a
standard method. In this approach we experience the tradeoff
between alignment accuracy and computational time. In one
research finding the loss of information in the early steps
result in an unstable final alignment. If the order of sequences
is reversed in the input file then a totally new alignment is

FIGURE 9. Different kinds of multiple sequence alignment and related
tools (personal perceptive).

generated. This MSA technique is instable for large number
of sequences. The researchers also determine the number of
sequences for which the probability of instability is more
noticeable [38].

FASMA [24] is a service to format and analyze sequences
during the process of multiple sequence alignment. MSA
reveal conserved secondary structures features and indels
(insertion and deletion in evolutionary mutation). There are
some useful web applications that extract indel regions
and conserved blocks from protein multiple sequence align-
ment [40]. Duringmeiosis or reduction divisionmutation take
place and insertion and deletion of nucleotides and amino
acids is common. Indels refer to the inserted or deleted
sequence parts. Multiple sequence alignment is further
divided into five basic types.

Multiple sequence alignment identifies conserved regions,
patterns and domains. Conserved regions are required for
structure and function and can carry out limited changes
without affecting the structure and function of the given
protein. Mutation is very frequent in non-conserved regions
of proteins. Through Multiple sequences alignment Phylo-
genetic analysis is easy and it also generates position spe-
cific scoring matrices for subsequent searches. Large scale
multiple sequence alignment with simultaneous phylogenetic
inference is possible through parallel computing [41].

Protein alignment is more informative and accurate than
nucleic acid alignment. Reasonable number of sequences is
preferred. Selection of sequences with moderate similarity
index gives clear results. It means a collection of not too
similar and not too different sequences for multiple sequence
alignment. Different kinds of multiple sequence alignment
methods and related tools are shown in the figure 9.

C. WORD AND STRUCTURE BASED SEQUENCE
ALIGNMENT
The term Word-based is used when the amino acids and
nucleotides are represented in a sequence by their respective
symbols, like nucleotide guanine by G and amino acid lysine
by K. FASTA or Fast alignment [27] and BLAST [26] are
word based methods. BLAST stand for Basic local alignment
search tool. BLAST seeks high-scoring segment pairs (HSP).
HSP are pairs of sequences that can be alignedwith each other
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and got maximum aggregate score. The obtained score cannot
be improved by extension and score must be above a certain
threshold.

The alignment obtained through BLAST is either gapped
or un-gapped. Direct approximate alignments through
BLAST optimize a measure of local similarity. BLAST is
simple and robust and it can be implemented in a number of
ways and applied in a number of contexts. In addition to its
flexibility and tractability to mathematical analysis, BLAST
is faster than sequence comparison tools of comparable
sensitivity [28].

BLAST tends to rely on amino acid distribution frequency
and sometime result to false positives. BLAST for nucleotide
query to retrieve nucleotide result is called as BLASTN.
Another version of BLASTN called MegaBLAST is used
to align very long and highly similar sequences and good
for batch nucleotide searches. MegaBLAST is faster than
BLASTN and is used for eukaryote organelles, whole chro-
mosomes alignment or small organism genome searches.

BLAT or BLAST like alignment tool is similar in function
to MegaBLAST. BLAT find out genome coordinates and
determine gene structure of an unknown gene or sequence.
BLAT also modifies markers of interests in the vicinity of a
sequence. It display separate tracks of sequences and identify
gene family members.

A comprehensive survey of web based multiple sequence
alignment tools is conducted by Ken D.NguYen et al that
cover all existing web based MSA techniques [55]. The
author also amazed and identify discrepancies in these meth-
ods. A web based ‘SeqAna’ model is proposed that compre-
hensively cover all missing needs in this area [32].

In cases of local protein multiple sequence alignment the
transitive consistency score (TCS) web server measure the
local reliability and find out analogous residues positions.
TCS scoring scheme for structural superposition and phy-
logenetic reconstruction is more accurate than other related
methods [32].

VII. PROMINENT EFFORTS FOR SEQUENCE ALIGNMENT
A. DOT MATRIX SEQUENCE ALIGNMENT METHOD AND
SUBSTITUTION MATRICES
In dot matrix [42] method a matrix store intermediate results
and sequences are plotted on a graph. Each intersection
point or dot on a graph represents amatching pair or similarity
and differences between sequences.

In substitution matrices each intersection or matching pair
got a specific score [43]. Dot matrix analysis is dynamic
but substitution matrices are static. There are two famous
types of matrices, the percent accepted mutation (PAM) [31]
and the blocks substitution matrix (BLOSUM) [44]. PAM
is usually used for global alignment of closely related pro-
teins and BLOSUM is used for local alignment of distantly
related proteins. Substitution matrices give accurate measure
of similarity between two sequences. Some researchers prefer
BLOSUM over PAM and there is no single matrix that should
be a complete enough for all sequence comparisons.

FIGURE 10. Dot matrix pairwise alignment.

Substitution matrices are actually pre-computed tables
of numbers representing all possible transitions states for
nucleotides and amino acids. Scoring matrices give us empir-
ical weighting scheme representing physiochemical and bio-
logical characteristics of nucleotides and amino acids. This
reveal side chain structure, function and chemistry. Protein
substitution matrices affect amino acid classification [45].

There are two considerations in dealing with scoring matri-
ces. The first is conservation; it means that what kind of
residue substitution is possible that could not affect the func-
tion of protein. The second is the frequency of a residue
amino acid or nucleotide within a sequence when deriving
the scoring matrices for a given alignment.

Gap represent biological event, either insertion or deletion.
If there is one gap per twenty residues then this is
good. The Gap penalty can be deducted by the following
equation 1.1 and Dot-matrix pairwise comparison is shown
in the figure 10.

Deduction for a gap = G+ Ln

where G = gap openingpenality

L = gap extensionpenality

n = length of the gap

and G > L

Equation 1.1: Gap Penalty Deduction

B. BAYESIAN METHOD FOR SEQUENCE ALIGNMENT
This method is rarely used for pairwise alignment and is
used to measure the evolutionary distance between DNA
sequences. This method involves the probabilities of all
aligned sequences in a profile, their gap scores and sub-
stitution matrix value to assess the probability of the next
alignment.

No need to specify all parameters in Bayesian method.
It describes the exact uncertainty and derives significant mea-
sure. This method assesses the probability of the alignment
and there is no need of substitutionmatrix or gap scoring [46].

VIII. EVOLUTIONARY OR GENETIC ALGORITHMS FOR
SEQUENCE ALIGNMENT
To trace out the evolutionary origin of sequences we have
two steps process. First the comparison of multiple sequences
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FIGURE 11. My personal understanding the types of genetic algorithm for
sequence alignment.

and then to build the evolutionary or phylogenetic tree of all
sequences in the given MSA. The inference of evolutionary
parameters is drawn from maximum likelihood or Bayesian
method. The changes in sequence is mediated by probabilistic
substitution models. Some researcher’s investigate the sta-
tistical properties of the above mentioned methods used in
building the phylogenetic tree.

Simulation study of sequence divergence inference and
phylogenetic tree were conducted. Such kind of analysis
shows that nucleotide and amino acids are negatively affected
by using inaccurate and overfitting guide tree. The effect is
more pronounced for alignments involving more sequences.
Amino acid results are more robust than nucleotide in cases
of no inference strategy [47]. Such kind of sequence align-
ment algorithms based upon the concept of natural organic
evolution and hence we name it evolutionary algorithms. The
different categories of genetic algorithms are summarized in
the figure 11.

First, initialize a population of sequences or alignments,
then the selection of the fittest (optimal) candidate take place.
Parents give birth to offspring’s and variations occur in the
population. Optimization of crossover, mutation and migra-
tion is different in each evolutionary algorithm. Child popu-
lation is raised on the basis of candidate fitness. Evolutionary
algorithms are applied in cases of multiple sequence align-
ment. The function of an evolutionary algorithm is to pick the
next optimal pairwise alignment that has to be aligned with
the already aligned profile.

During multiple sequence alignment three or more than
three aligned sequences are sometime termed as a profile.
Protein sequence profiles can be used to predict reliable
aligned regions [48], [60]. Objective or fitness function is
used to judge the fitness of solution. The fitness values deter-
mined in the objective function show us the evolutionary rela-
tionship and structural information of the aligned sequences.
For better results more improvement and further refinement
is required. Some famous sequence alignment algorithms that

FIGURE 12. Graphical representation of hill climbing algorithm
(according to personal perception).

are based upon the evolutionary computational model are
discussed below.

A. HILL CLIMBING ALGORITHM FOR SEQUENCE
ALIGNMENT
To search a fittest alignment inside a population we apply
local search as in hill climbing algorithms. In this approach
the current solution is jump to its neighbor solution, if the
neighbor is fitter than the previous one then select it as a new
solution and if it is worse than the previous then return to the
previous solution. Selection through this algorithm is graphi-
cally shown by a curve like a hill, so this is called as hill climb-
ing approach. ). If A is the current solution then B is rejected
because B is less fit than A, and we jump to solution C, which
is fitter than A. The search is limited to neighborhood or only
local search for fittest is possible through this approach. Solu-
tions here mean a pairwise alignment of sequences. If there is
no proper solution in the neighborhood then this algorithms
stagnate at local maximum. Graphical representation of hill
climbing algorithm is shown in the figure 12. Neighboring
joining procedure is proposed by Hoksza and Svozil [56]
in cases of 3D nucleic acid structural alignment. SETTER
is a fast and accurate technique for RNA pairwise structure
comparison.MutliSETTER is an extension of SETTER and is
used in cases of multiple RNA structure alignment. SETTER
decomposes RNA structure into non-overlapping structural
parts. MutliSETTER combine the function of SETTER with
ClustalW. ClustalW in this case is used for RNA structural
superposition or alignment [48].

B. SIMULATED ANNEALING ALGORITHM FOR SEQUENCE
ALIGNMENT
In this method a temperature parameter is initialized with
population initialization. A non-local mutant can be accepted
as a current solution, if the mutant is fitter than the current
candidate. Simulated annealing resolve the issue of local
solution stagnation. Migration of candidate solutions in a
population is a continuous process and if the worse solution
is temporarily moved then local search can find a fittest
candidate solution in a population.

After variations in sequences and alignments, new uni-
form child population of fittest offspring is generated.
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The candidates in a population are unique. Alignments are
selected gradually base upon their similarity score. To prevent
disruption caused by crossover and mutation functions, a pro-
file or subpopulation based alignment is preferred. In sim-
ulated annealing suboptimal solutions evolve through varia-
tions to get an optimal solution. Profiles are then combined
into an optimal multiple sequence alignment. All candidate
solutions are accessed in a random rather than ordered man-
ner [47]. So all potential solutions may not be visited during
random search, which reduce computational complexity.

C. SAGA AND RAGA
SAGA stands for Sequence alignment genetic algorithm.
The population is made up of complete multiple sequence
alignment and the operators have direct access to the aligned
sequences. Insertion or shifting of gaps takes place in a
random or semi random manner. Populations of multiple
alignments evolve by selection, combination and mutation.

The population consists of alignments and mutations shuf-
fle the gaps using complex models. Each individual to be a
multiple alignment and it is represented by two dimensional
array in which each line represent an aligned sequence and
each location or cell of array is a residue or a gap. The number
of individuals in a population is constant with no duplicates.
The design of proper operators reflects the true mechanism
of molecular evolution. The Pseudocode of SAGA is as
under [49].

Initialization: -
1. Create Go, an initial random population
Selection: -

2. Evaluate the population of generation n (Gn)
3. If the population is stabilized then END
4. Select the individuals to replace
5. Evaluate the expected offspring
Variation: -

6. Select the parents from Gn
7. Select an operator
8. Generate offspring
9. Keep or discard the new offspring in Gn+1
10. Go to step 6 until all Gn+1 is complete
11. n=n+1
12. Go to step 2
13. End
The goal of any GA is how to initialize and generate

a diverse population in term of genotype, uniformity and
scores. Manual collection of sequences from genomic and
proteomic databases resolve this raised issue. Fitness is mea-
sured by scoring each alignment according to the chosen
objective function. Better alignment got higher scores and
therefore higher fitness.

The weakest half of the population is replaced by new
offspring and the other half carried over unchanged to the
next generation this is called as overlapping generation.
Raw alignment score is converted into an expected off-
spring (EO).EO is used as a probable parent in the next
population [49].

A variation operator is applied to the parent alignment
to create offspring alignment. Twenty two different varia-
tions operator are available in SAGA. These variations are
classified into a single-parent (mutation) or multiple-parent
(crossover).The algorithm is itself terminated when there is
no improvement for more than 100 generations. The design
of proper variation operator is important. Crossovers generate
new alignments by combining information contained in two
existing alignments. Two parents alignment generate two
offspring. The fittest offspring survive in the next generation.

The function of mutation operator is to insert/delete a gap.
The alignment is divided into two groups. The gap insertion
operator inserts a gap at a specific position in both groups.
Groups are chosen by randomly splitting of estimated phylo-
genetic tree. During algorithm execution the probability are
dynamically reassessed to reflect each operator performance.
Efficiency and performance using different operators facili-
tate the use of dynamic scheduling method [47].

The island models propose several identical genetic algo-
rithms that run parallel on separate processors [50]. After
Every five generations the processors exchange some of their
individuals between the evolving populations. The Island
model is implemented in RAGA, The RNA version of SAGA.
This distributedmodel is ten times faster than the non-parallel
version [51]. Migration of best score individuals between
processors is possible after specified number of generations.
In SAGA the donor processor keep a copy of donated indi-
viduals and the migrating individual replace low-scoring
alignment in the recipient genetic algorithm. Relevant and
appropriate objective or fitness function is very important to
the overall efficiency of any Genetic Algorithm (GA).

There are three kinds of objective functions used in SAGA,
weighted sums of pairs, consistency based and taking nonlo-
cal interaction into account. Consistency based is used in the
COFFEE score and RAGA is based upon the nonlocal inter-
action. RAGA use island model in cases of parallel imple-
mentation. RAGA can be used to evaluate the alignment of
two RNA sequences. The Sequence with a known secondary
structure is called as the master and one that is homologous
to the master but with unknown secondary structure is termed
as the slave RNA sequence. In cases of weighted sum of pairs
method [52] each aligned residue and gap is associated with
a cost and the combine cost of multiple sequence alignment
is the sum of individual pair cost and substitution cost. The
computational cost of sum of pairs [33] can be given by

C =
∑n−1

i=1

∑n

j=1
Wi,j cost

(
Ai,Aj

)
Optimization of consistency based objective function uses the
same technique as discussed above in the section of multiple
sequence alignment. Consistency based objective function in
cases of SAGA use an already aligned multiple sequence
alignment as a guide for pairwise alignment in the process
of multiple sequence alignment. SAGA, RAGA and PRAGA
are available for free download. PRAGA is a parallel version
of RAGA [57].
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D. MESSY GENETIC ALGORITHM (mGA)
This algorithm is used for polypeptide structure prediction
and work on building block hypothesis (BBH). Small pieces
of solution (alignments) combine and recombine into larger
pieces. Small pieces of alignment may be disrupted by
crossover or mutation so this algorithm encodes the string
position. String position in this case means the locus and
it value or allele. And we achieve a true building block in
this case. In this algorithm there are underspecified and over
specified strings to exist in the population. Underspecified
strings have no allele defined for locus while over specified
have multiple alleles for the same locus. Start of open reading
frame can also be declared as string position. Open reading
frame have genes codons and are also called as exons or those
areas of nucleic acid that encode proteins [56].

E. KENOBI ALGORITHM FOR SEQUENCE ALIGNMENT
The goal of this algorithm is to develop biologically useful
alignment. This algorithm first aligns the most conserved
portions of proteins, their cores, as represented by secondary
structure elements (SSE) [54]. A genetic algorithm then
optimizes the alignment according to an elastic similarity
score. This evolutionary algorithm generates optimal align-
ment which is very near to manual biological alignment [47].

F. K2 ALGORITHM
Improved version of KENOBI algorithm with rapid vector
based SSE. This algorithm also use genetic algorithm for
calculating the statistical significance of resultant alignments.
In K2 algorithm hybridization of fast vector-based SSE with
slower but reliable genetic algorithm take place. This algo-
rithm handles difficult problems. Vector based SSE mean to
represent SSE for two proteins with vectors and then identify
a set of equivalent vectors.

The purpose of vector based SSE is to reduce computa-
tional complexity of structure based alignment. Vector align-
ment can be computed very quickly and efficiently. This
algorithm first finds optimal alignment within SSEs. Vector
based alignment is an intelligent direct method for selecting
initial population of alignments. The initial population is then
refined in detail.

This algorithm work in three stages, first selection of best
alignments of any protein SSE. A genetic algorithm manip-
ulates these selected alignments to optimize the alignment
of amino acid position with the given SSEs. Finally pro-
tein backbones are superposed based on the equivalencies
determined in the first and second stages. K2 then searches
for additional equivalent positions in the non-SSE regions.
This hierarchical approach to alignment reflects the nature of
protein structure.

IX. CONCLUSION
The correct estimation of match, mismatch and gap, deter-
mine the quality of a given alignment approach [2]. There
are many issues related with optimal sequence matching.

Dynamic programming optimization and its several improved
variants for sequence comparison is an optimal choice.
The computational sequence analysis and alignment is very
important. Different kind of sequence alignment approaches
and a lot of tools and technologies are in practice for this
purpose. Parallel processors and specialized kind of hard-
ware make easy the complex task of multiple sequence
alignment [61].

Protein is the end product of nucleic acid gene codon trans-
lation. A comparison that take into account the three dimen-
sional structure of protein is more important, due to more
informative, stable and reliable arrangement of molecules.
Online bioinformatics resources play a significant role in
all kinds of alignments and analysis methods. The goal
of next generation sequence alignment is the parallel pro-
cessing of algorithms. The application of multiple algo-
rithms together or hybrid approach also ensures optimality of
matching techniques. Almost all computational approaches
are statistical probabilistic estimations or mathematical
optimizations.

Parallel genetic algorithms overcome the computational
burden of multiple sequence alignment. The self-improving
and evolving capable Genetic algorithms are applied for both
word based and structure based MSA. Parallel computing
and hybrid strategy reduces the time burden and improve
efficiency. Right now we observe a race among researchers to
develop and propose optimal alignment libraries or packages
in different programming languages.
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