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ABSTRACT Dynamic multi-objective optimization problem (DMOP) is such a type of optimization
problems that multiple contradictory objectives change over time. This paper designs a special point-based
hybrid prediction strategy (SHPS) integrated into the decomposition-based multi-objective optimization
algorithm with differential evolution (MOEA/D-DE) to handle DMOPs, which is denoted as MOEA/D-DE-
SHPS. In the SHPS, when historical information is insufficient to establish prediction model of population
prediction strategy (PPS), the prediction (PRE) and variation (VAR)method are adapted to generate the initial
population of the new environment. Meanwhile, the PPS predicts the whole population of new environment
according to the history information collected from past environments; therefore, once collected historical
information is inaccurate, the predicted population may be located in the wrong search region. To overcome
the shortcoming, we propose the special point-based strategy in which the initial population of the new
environment consists of two parts of individuals: the predicted special points and the predicted population
by PPS (except the special points). The empirical results show that MOEA/D-DE-SHPS is promising for
handling DMOPs.

INDEX TERMS Multi-objective optimization, decomposition, differential evolution, special points, hybrid
prediction strategy.

I. INTRODUCTION
Many optimization problems refer to optimizing mul-
tiple contradictory objectives, which are denoted as
multi-objective optimization problems (MOPs). For MOPs,
there is no optimal solution that satisfies simultaneous opti-
mization ofmultiple objectives. Therefore, the goal of dealing
with MOPs is to obtain Pareto-optimal Set (PS).

Evolutionary algorithms (EAs) take a vital role in dealing
with MOPs [1]–[7], and a large number of outstanding works
have emerged, for instance, non-dominated sorting genetic
algorithm II (NSGA-II) [2]; multi-objective evolutionary
algorithm based on decomposition (MOEA/D) [3], [4]; regu-
larity model based multi-objective estimation of distribution
algorithm (RM-MEDA) [6], [7].

The associate editor coordinating the review of this manuscript and
approving it for publication was Orazio Gambino.

However, there exist some MOPs changing over time,
called as dynamic multi-objective optimization problems
(DMOPs). How to find the PS of each environment quickly
and effectively is a challenge that must be faced for solving
DMOPs. Recently, scholars have done some researches to
deal with DMOPs [8]–[10]. For instance, population predic-
tion strategy (PPS) [10] could predict the position of individ-
uals of new environment on the basic of historical information
of PS of previous environments. However, inaccurate predic-
tion may mislead search and lead to the inability to find the
Pareto front (PF) quickly.

This paper develops a special points-based hybrid pre-
diction strategy (SHPS) to respond to the environmental
changes. Firstly, PPS uses historical information of the pre-
vious 23 environments to construct an auto regression (AR)
model to predict initial population of new environment,
so when historical information is not enough to establish
AR model of PPS, prediction (PRE) & variation (VAR)

62496
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-0502-4074


J. Li et al.: SHPS for Dynamic Multi-Objective Optimization

method [8] is adopted to generate the new population.
Secondly, when AR model works, PPS predicts the whole
population based on the historical information, once the
collected information is not accurate, the whole predicted
population may be located in wrong search region, and the
algorithm can’t respond to environmental changes effectively.
To avoid invalid prediction mislead the search, we pro-
pose a special points-based strategy, in which, the initial
population of new environment is generated by combining
the predicted special points and the population (except the
special points) predicted by PPS. SHPS is integrated into
the differential evolutional-based MOEA/D (MOEA/D-DE)
to handle DMOPs, referred to as MOEA/D-DE-SHPS. The
reason for adopting MOEA/D-DE as the basic optimization
algorithm is its lower computational complexity and better
performance [4], [11]–[14].

The main structure of this paper consists: Section 2 intro-
duces the related background. Section 3 detailedly describes
MOEA/D-DE-SHPS. Section 4 presents test functions, per-
formance metric, empirical results and analysis. Finally, con-
clusion and the future research are shown in the last section.

II. THE RELATED BACKGROUND
This section mainly introduces the definition of DMOP and
some representative works on solving DMOPs, then presents
the descriptions of special points, PPS, PRE&VAR.

A. THE DEFINITION OF DMOPs
The mathematic description of a DMOP is presented as
follows [15]:

min F(x, t) = (f1(x, t), f2(x, t), . . . , fm(x, t))T

s.t.
gi(x, t) ≤ 0, i = 1, 2, ... . . . , p
hj(x, t) = 0, j = 1, 2, ... . . . , q
x ∈ �x , t ∈ �t

(1)

where t is the time variable, x = (x1, x2, . . . , xn)T is the
n-dimension decision vector within the decision space �x ,
F(x, t) represents the objective function. g(x, t) ≤ 0 and
h(x, t) = 0 represent inequality and equality constraints,
respectively.

B. REPRESENTATIVE WORKS ON SOLVING DMOPs
Yamasaki [16] firstly proposed a dynamic Pareto opti-
mum genetic algorithm. After Farina et al. [15] pro-
posed the dynamic test functions, application instances
and solving method of DMOPs, dynamic multi-objective
optimization algorithms (DMOOAs) gradually got some
scholars’ attentions. Many researchers have designed a
lot of DMOOAs [8]–[10], [17]–[19] based on evolutionary
computation [9], immune-based algorithms [20], and particle
swarm optimization (PSO) [21].

The goal of a DMOOA is to track the changing PS and
respond to the environmental changes effectively, so it is
important to react to the changes for a DMOOA when envi-
ronment changes, this paper makes a simple summary of the

representative works on solving DMOPs from the perspective
of the adopted response mechanisms.

1) DIVERSITY INTRODUCTION STRATEGY
To some extent, it is necessary to introduce diversity [17],
[22]–[24] when an environmental change occurs, so that algo-
rithms can respond to the environmental change effectively.

Deb et al. [17] proposed two typical diversity introduc-
tion strategy. For the first method, part of individuals are
replaced by randomly generated new individuals to obtain ini-
tial population of new environment, known as DNSGA-II-A.
In another method, a certain proportion individuals of popu-
lation are disturbed by Gaussian noise when a change occurs,
called as DNSGA-II-B.

However, the DMOOAs based on the diversity introduction
need to analyze how to determine the proportion of diversity
introduction for different DMOPs.

2) DIVERSITY MAINTAINING STRATEGY
Diversity maintaining strategy focuses on maintaining diver-
sity when an environmental change occurs. For instance,
dynamic orthogonal multi-objective evolutionary algo-
rithm (DOMOEA) [25] directly adopted PS of the pre-
vious environment to act as initial population of new
environment.

This approach may be suitable for solving DMOPs with
small changes, but it may performs poorly when the change
is severe.

3) MEMORY-BASED STRATEGY
Memory-based strategy stores the old optimal solutions found
in previous environments and reuses the stored solutions in
the new environment.

Dynamic constrained multi-objective optimization artifi-
cial immune system (DCMOAIS) [26] performs well in deal-
ing with DMOPs. In DCMOAIS, T-module works to detect
the environmental changes and initialize the population based
on historical information. B-module is designed to search
for PS. M-model stores all non-dominated solutions, and
when a change occurs, M-model assists T-model to initialize
the population.

Memory-based strategy may be effective when envi-
ronmental changes are periodical and recurrent. However,
the stored information may cause the redundant and effect
the performance of algorithm.

4) PREDICTION STRATEGY
In certain cases, environment changes may follow a certain
pattern that can be predicted, therefore it is vital for us to find
the rule of the pattern to predict next environmental change.

Feed-forward prediction strategy (FPS) [27]was combined
with queuing multi-objective optimizer (QMOO) to deal with
DMOPs. A sequence of optimum solutions found in the pre-
vious environments is used to build forecasting model. When
the environmental change occurs, the forecasting model is
triggered to generate the individuals for next environment.
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In [10], PPS utilized historical information gathered from the
previous environments to predict initial population for new
environment. In PPS, the PS consists of a center point and
a manifold, which are predicted respectively. For the center
prediction, PPS uses the center of the previous 23 environ-
ments to conduct a univariate AR model to predict the center
point of new environment. PPS also uses the manifolds of
the previous two environments to predict the manifold for
new environment. Then the predicted center and manifold
are combined together to create the initial population of
new environment. Steady-state and generational evolutionary
algorithm (SGEA) [19] reused some outdated solutions with
better distribution and relocated other solutions according
to the information gathered from previous and new envi-
ronments. Directed search strategy (DSS) [18] reinitialized
the new population based on the moving direction of PS
and orthogonal direction when the environmental change
occurs.

Prediction strategy may be effective when the prediction
is correct. However, the prediction is based on historical
information, if the algorithms fail to track the optimal solu-
tions in the previous environments, the historical information
may be not helpful. Prediction approaches just suitable for
dealing with DMOPs that are easily to be predicted. If the
environmental changes are unpredicted, prediction strategy
may not perform well.

5) SELF-ADAPTIVE STRATEGY
To better handle DMOPs, some researchers proposed
self-adaptive approaches to respond to environmental
changes.

Liu et al. [28] proposed a self-adaptive diversity introduc-
tion (SADI) to solve DMOPs, in which, the ratio of intro-
duction diversity is adaptively determined by the extent of
environmental change. However, experimental results have
shown that SADI performed poorly on solving DMOPs.

So far, research on self-adaptive strategy is still in its
infancy, and an effective self-adaptive response strategy has
not yet been proposed.

C. SPECIAL POINTS
This section introduces the concepts of special points, includ-
ing boundary points, close-to-ideal (CTI) point and knee
point.

1) BOUNDARY POINTS
For the minimization problems, boundary points are those
individuals with the smallest objective function value in each
dimension in the objective space. Shown as Fig. 1, A and G
are the boundary points.

2) CTI POINT
CTI point [29] is the point closest to the ideal point. Suppos-
ing point H is the ideal point, whose description is shown as

FIGURE 1. Boundary points.

FIGURE 2. CTI point.

Eq. (2).

Hi = min
{
f (P1i ), . . . , f (P

num
i )

}
(2)

where i = 1, 2, . . . ,m, m represents the dimen-
sion of objective space. num represents the number of
non-domination solutions. f (Pnumi ) represents the i-th dimen-
sion objective function value of num-th individual. As shown
in Fig. 2, H represents the ideal point, D is CTI point, which
is the closest point to the ideal point.

3) KNEE POINT
The knee point [30]–[33] is refer to the point with the maxi-
mum marginal rates of return. As shown in Fig. 3, A and G
represent the boundary points. The connection of A and G
could obtain a line L. The knee point is the point with the
largest vertical distance to L. It can be seen from Fig. 3 that
the distance from D to L is the largest, therefore D is the knee
point.

The definition of the L is shown as Eq. (3).

ax + by+ c = 0 (3)
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FIGURE 3. Knee point.

Assuming that the coordinate of point K is (xk , yk ), the dis-
tance from K to L is defined as:

d(K ,L) =
|axk + byk + c|
√
a2 + b2

(4)

D. PPS
PPS predicts the initial population of new environment on
the basic of historical information gathered from previous
environments when a change is detected. The PS consists of
a center and a manifold which are predicted respectively.

In the t − th environment, the PS is divided into a center
C t and a manifoldM t , so PS t can be formulated as follows:

PS t = C t
+M t (5)

If the PS of the t − th environment is PS t = x t . Then the
center of PS t can be estimated as shown in Eq. (6).

C t
=

1
|PS t |

∑
xt∈PS t

x t (6)

where |PS t | is the cardinality of PS t . Then every point x t

in PS t can be defined as:

x t = C t
+ x̃ t (7)

With these in mind, we can derive that the manifold of PS t

is shown as Eq. (8).

M t
= x̃ t (8)

Followed are the detailed introduction of the prediction of
center and manifold.

1) CENTER PREDICTION
Firstly, an AR model is used to predict the center of popula-
tion of the (t + 1)− th environment, i.e. C t+1, and the order
of the model is set as p=3, the model is denoted as AR (3)
model which is described as:

C t+1
=
∑p

j=1 θ
jC t−j+1

+ εt (9)

where θ is the parameter of AR(3) model, εt ∼ N (0, σ1t )
is a white noise, and σ1t = (σ1t1, σ1

t
2, . . . , σ1

t
n)
T .

Considering the i− th dimension, and setting the length of
time series is M = 23. The parameters of AR(3) model are
calculated according to the information accumulated from the
previous 23 environments, which is described as follows.

C t
i = θ

1
i C

t−1
i + θ2i C

t−2
i + θ3i C

t−3
i

C t−1
i = θ1i C

t−2
i + θ2i C

t−3
i + θ3i C

t−4
i

· · ·

C t−20
i = θ1i C

t−21
i + θ2i C

t−22
i + θ3i C

t−23
i (10)

Let 9i = (C t
i ,C

t−1
i , . . . ,C t−20

i )T , and

8i =


C t−1
i C t−2

i C t−3
i

C t−2
i C t−3

i C t−4
i

...
...

...

C t−21
i C t−22

i C t−23
i

 (11)

Eq. (10) can be abbreviated as:

9i = 8i(θ1i , θ
2
i , θ

3
i )
T (12)

The least squares regression method is used to calculate θ ,
as described in Eq. (13).

(θ1i , θ
2
i , θ

3
i )
T
= (8T

i 8i)−18T
i 8i (13)

Finally, the parameter σ1ti is the average squared error,
shown as Eq. (14).

σ1ti =
1

M− p

t∑
k=t−M+p

[Ck
i − θ

1
i C

k−1
i − θ2i C

k−2
i − θ3i C

k−3
i ]

(14)

2) MANIFOLD PREDICTION
PPS uses the manifold of two previous environments,
M t and M t−1, to predict the manifold of population of the
(t + 1) − th environment, i.e. M t+1. Considering the i-th
dimension,M t+1

i is predicted by Eq. (15).

M t+1
i = M t

i + ε
t
i (15)

where εti ∼ N (0, σ2ti ), σ2
t
i is given as follows:

σ2ti =
1
n
D(M t ,M t−1)2 (16)

where D(M t ,M t−1) is the distance between manifoldsM t

and M t−1, defined as Eq. (17).

σ2ti =
1
|M t |

∑
x∈M t

min
y∈M t−1

‖x − y‖ (17)

Finally, the combination of C t+1 andM t+1 form the initial
population of the (t + 1)− th environment, i.e. POPt+1.

POPt+1 = C t+1
+M t+1 (18)

The framework of PPS is shown in Algorithm 1.
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Algorithm 1 PPS
Input: M (maximum length of historical center points

sequence), p (the order of AR(p) model), t (the time step);
Output: POPt+1 (initial population of the (t + 1) − th
environment)
Step 1: if t ≤ M , turn to Step 2, otherwise, turn to Step 3;
Step 2: POPt+1 consists of half randomly generated

individuals and half of the individuals inherited
from the PS t ;

Step 3: Generate POPt+1 according to Eq. (18);
For each individual x t+1 in POPt+1, if x t+1 is
outside the boundary, then it will be repaired
according to the following equation;

x t+1i =


x t+1i , if ai ≤ x

t+1
i ≤ bi

0.5(ai + x ti ), if x t+1i < ai
0.5(bi + x ti ), if x t+1i > bi

where i = 1, 2, . . . , n.
Step 4: Output POPt+1;

E. PRE&VAR METHOD
PRE&VAR method, firstly, generates a random number r ,
if r < 0.5, PRE is activated to generate the initial popula-
tion of new environment, otherwise, the VAR is triggered to
respond to react to the environmental changes. The mathe-
matic expression is shown as Eq. (19).

x t+1 =

{
PRE, if r < 0.5
VAR, otherwise

(19)

where r represents the random number in [0, 1].

1) PRE
Supposing that the PS of the t previous environments are
PS t ,PS t−1, . . . ,PS1, and x t , x t−1, ...x1, x i ∈ PS i, i =
1, . . . , t , then the individuals of initial population of the (t +
1)− th environment can be predicted as shown in Eq. (20).

x t+1 = F(x t , x t−1) = x t + (x t − x t−1) (20)

In PRE, for each individual x t ∈ PS t , its parent is the
nearest point x t−1 in PS t−1, as shown in Eq. (21).

x t−1 = arg min
x∈PS t−1

∥∥x − x t∥∥2 (21)

where ||x − x t ||2 denotes the Euclidean Distance between
x and x t .

2) VAR
VAR is introduced to enhance the diversity, in which, a ‘‘pre-
dicted’’ noise shown as Eq. (22) is added to the initial popu-
lation.

ε ∼ N (0, δI ) (22)

Algorithm 2 PRE&VAR
Input: t (the time step), PS t (the PS of t − th environment),
PS t−1 (the PS of (t + 1)− th environment);

Output: initial population of the (t + 1)− th environment)
Step 1: if t = 1, turn to Step 2, otherwise, turn to Step 3;
Step 2: Adding a Gauss noise on PS t to obtain the initial

population of the (t + 1)− th environment;
Step 3: Generate new individuals x t+1 according to

PRE&VAR method, defined as Eq. (19);
Step 4: Output the new population consisting of the indi-

viduals of x t+1;

where δ is the standard deviation, which is estimated as
Eq. (23).

δ2 =
1
4n

∥∥∥x t − x t−1∥∥∥2
2

(23)

where n is the number of decision vector.
Then, initial individuals in the (t + 1) − th environment

could be generated using the following Eq. (24).

x t+1 = x t + ε (24)

The PRE&VAR method is shown as Algorithm 2.

III. THE PROPOSED MOEA/D-DE-SHPS
This paper proposes a special points-based hybrid prediction
strategy (SHPS) to respond to the environmental changes.

PPS could predict the population after an environmental
change occurs. However, PPS relies on the historical infor-
mation collected in previous environments, the inaccurate
historical information may lead to the predicted population
to be located in incorrect search region. And AR model
works after the historical information is enough to establish
AR model, i.e. after the 23-rd environmental change in this
paper. When the historical information is not enough, the PPS
chooses half individuals randomly from the previous envi-
ronment and randomly generates another half individuals,
which is not a valid method to predict new population, so the
information collected from the previous environments may
not accurate, which could influence the predicted accuracy of
the AR model. To solve this problem, we employ PRE&VAR
method when the information is not enough to build AR
model. PRE&VAR only relies on historical information of the
previous two environments and the experimental results in [8]
have indicated that PRE&VAR is of better performance.

Meanwhile, PPS predicts the whole population based on
the historical information when the environmental change
occurs, once the collected information is not accurate,
the whole predicted population may be located in wrong
search region, and the algorithm can’t react to environmental
changed effectively. To solve this problem, we introduce the
special points to reduce the influence of incorrect prediction.

This article focuses on special points to avoid the fact
that population prediction depends completely on historical
information of central points and manifolds. At the same
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time, when the population’s center point and manifold are
not accurate, or when the population predicted by PPS is
not accurate enough, to some extent, the attention to special
points can weaken the impact of wrong prediction when the
environmental change occurs.

The main idea is that the predicted population is combined
with two parts of individuals, one part is the population
predicted by PPS, which is predicted according to historical
information of the center of the population and the manifold,
and the other part is the special points predicted by using the
historical information of the special points.

The flow of MOEA/D-DE-SHPS is given in Algorithm 3.

A. CHANGE DETECTION
Change detection mechanism aims to judge whether changes
have occurred in the environment, that is, whether the prob-
lem at the current environment is different from the problem
at the previous environment.

There aremainly twomechanisms to detect change, includ-
ing re-evaluating solutions [9], [10], [17], [18] and checking
population statistical information [34]. The former mecha-
nism selects a part of the individuals from the population
and re-evaluates them. If there is a difference between two
generations, then it is identified that the environment changes.
The main idea of the latter mechanism is that if the objective
solution set of two generations belongs to the different statis-
tical distribution, then it is considered that the environment
changes.

In this paper, we employ the first change detection
mechanism [15] to determine whether the environment
changes, which is described as Eq. (25).

ζ (k) =

∑ns
i=1

∥∥∥F(xi,k)−F(xi,k−1)R(k)−U (k)

∥∥∥
ns

(25)

where R(k) = (r1, r2, . . . , rm)T and U (k) =

(u1, u2, . . . , um)T represent the maximum and minimum
objective function values of those individuals used to detect
changes of k−th generation, ns represents the number of indi-
viduals selected to judge environmental changes. when ζ (k)
exceeds a certain threshold, it means that an environmental
change occurs, and the responsemechanism, i.e. SHPS, needs
to work to respond to environmental change. In this paper, ns
is set as the 10% of the population size.

B. SHPS
In SHPS, when the historical information collected from the
previous environments is not enough to build AR model,
the PRE&VAR method is used to generate initial population
of the new environment. If the information is enough to build
AR model, in order to avoid the predicted initial population
is located in wrong search region, SHPS introduces special
points-based strategy, the predicted population includes two
parts, one part of individual is predicted by PPS utilizing the
history information of center and manifold, the other part of
individuals is the predicted special points. As same as PPS,

Algorithm 3MOEA/D-DE-SHPS
Input: N (population size), T (the number of neighbor vec-

tors of each weight vector), Tmax (the number of environ-
mental changes);

Output: PS1, . . . ,PSTmax (the PS of each environment)
Step 1: Initialization:

Step 1.1: Set time step t = 0;
Step 1.2: Initialize a population POPt with the

individuals x1, . . . , xN , and compute the objective
value of each individual, FV i

= F(x i);
Step 1.3: Generate a group of evenly distributed

weight vectors: λ1, . . . , λN ;
Step 1.4: Compute Euclidean distance between λi

and other weight vectors, and find the T closest
weight vectors of λi. The T weight vectors form
the neighbor vectors of λi. For λi, the index of
each neighbor weight vector stores in B(i);

Step 1.5: Initialize reference point z = (z1, . . . , zm)T ,
where zj = min1≤i≤N fj(x i);

Step 2:Change detection: detect weather the environment
changes. If an environmental change occurs, out-
put PS t , and set t = t + 1, continue; otherwise,
turn to Step 4;

Step 3: React to environmental changes: generate the
initial population of new environment by SHPS;

Step 4:MOEA/D-DE:
For i=1:N

Step 4.1: Randomly choose three indexes from
B(i), then find the three individuals correspond-
ed by the above three indexes from popt as the
parent individuals and generate new offspring
individual y by genetic operators, including
differential crossover and polynomial mutation;

Step 4.2: If y exceeds the feasible region, it should
be fixed within the feasible region;

Step 4.3: For each j = 1, ..,m, if zj > fj(y), then
set zj = fj(y);

Step 4.4: For each k in B(i),
if gte(y|λk , z) ≤ gte(xk |λk , z),
then set xk = y and FV k

= F(y);
end

Step 5: Termination criteria: if termination criteria is
met, end; Otherwise, turn to Step 2;

each special point is predicted using AR model introduced in
Section II-D.1, based on the historical information of all the
special points. SHPS is shown as Algorithm 4.

IV. EMPIRICAL STUDIES
This section discusses the performance of our proposed
algorithm by conducting two empirical studies, includ-
ing a comparison between MOEA/D-DE-SHPS with other
five DMOOAs, i.e., DNSGA-II-A [17], DNSGA-II-B [17],
RM-MEDA based on PRE&VAR (RM-MEDA-PRE&VAR)
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Algorithm 4 SHPS
Input: t (the time step);
Output: initial population of the (t + 1)− th environment);
Step 1: If t ≤ M , turn to Step 2, otherwise turn to Step 3;
Step 2: Generate the initial population of the (t + 1)− th

environment using PRE&VAR;
Step 3: Use the historical information of special points to

predict the special points of the (t + 1)− th
environment through AR model;

Step 4: Use PPS to predict the individuals other than
special points of the (t + 1)− th environment;

Step 5: Combine the predicted special population and the
predicted population by PPS to obtain the initial
population of new environment;

[8], RM-MEDA based on PPS (RM-MEDA-PPS) [10], and
SGEA [19], and a comparison between SHPS and other two
response strategies, i.e., PRE&VAR and PPS.

A. TEST FUNCTIONS
Eight test functions including five FDA functions [15],
i.e. FDA1, FDA2, FDA3, FDA4, FDA5, and three dMOP
functions [9], i.e. dMOP1, dMOP2, dMOP3, are used to
examine the performance of different DMOOAs. The dynam-
ics of all test functions are realized by t = bτ/τT c /nT , where
τT and nT are the frequency and intensity of environmental
changes, respectively.

B. PERFORMANCE METRIC
Inverted generational distance (IGD) [10], [35] can measure
both convergence and diversity.

Supposing that Pt
∗

is true PF of the t − th environment, Pt

is the PF of the t − th environment obtained by a DMOOA,
then IGD could be defined as Eq. (26).

IGDt (Pt
∗

,Pt )

∑
v∈Pt∗ d(v,P

t )
|Pt∗ |

(26)

where d(v,Pt ) = minu∈Pt ‖F(v)− F(u)‖ means
Euclidean distance between individual v and its closest neigh-
bor in Pt . The smaller IGD, the better the performance of the
algorithm.

If the environment changes Tmax times, then the average
of IGDt of the Tmax environments, i.e. MIGD is denoted as
follows:

MIGD =
1

Tmax

Tmax∑
t=1

IGDt (Pt
∗

,Pt ) (27)

C. COMPARISON WITH OTHER FIVE WELL-KNOWN
DMOOAs
1) PARAMETER SETTINGS
This section carries out a comparison between MOEA/D-
DE-SHPS and DNSGA-II-A [17], DNSGA-II-B [17], RM-
MEDA-PRE&VAR [8], RM-MEDA-PPS [10], and SGEA
[19].Most parameters are set based on the original references.

TABLE 1. Parameter settings of the six algorithms.

All the six algorithms share some general parameters:
(1) population size: N = 100 (two-objective) or N = 210
(three-objective); (2) the number of individuals chosen to
detect environmental changes ns is set as ns = 0.1×N ; (3) the
number of environment changes Tmax is set as Tmax = 100;
(4) the max iteration generations IterMax is set as IterMax =
100× τT .
Table 1 presents the other key parameters of the six

algorithms.

2) EMPIRICAL RESULTS
This section measures the performance of the DMOOAs
under different types of environmental changes, i.e., (τT , nT )
is set as (5,10), (10,10), and (15,10). All the six
algorithms perform 20 independent runs on each test
function.

Table 2 presents the statistical results ofMIGD over 20 runs
for each algorithm, in which, the black represents the best
result of all six algorithms.

We could find that, for most test functions, MOEA/D-
DE-SHPS performs best, including FDA1, FDA3, FDA5,
dMOP3 under all different types of (τT , nT ); FDA2 and
FDA4 when (τT , nT ) is set to (5,10), (10,10); dMOP1 when
(τT , nT ) is set to (15,10); and dMOP2 when (τT , nT ) is set to
(10,10), (15,10).

For dMOP1, when (τT , nT ) is set to (5,10) and (10,10),
SGEA is of the best performance, MOEA/D-DE-SHPS takes
the second place. For dMOP2, when τT is set as 5, SGEA
outperforms MOEA/D-DE-SHPS. The reason of this phe-
nomenon may be that SHPS rely on the degree of accuracy
of history information. When τT is set to 5 or 10, the envi-
ronment changes quickly, the static algorithm have not found
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TABLE 2. The statistical results of MIGD of all six algorithms.

the optimal solutions, but the environment changes, so the
history information used to predict new population is not
accurate. So the predicted populationmay diverge the promis-
ing search region. SGEA introduces the external population,
which improves the performance of algorithm in some extent.
So for the problems that environment changes quickly, SGEA
is better than MOEA/D-DE-SHPS.

However, for FDA2 and FDA4, when (τT , nT ) is set to
(15,10), SGEA is the best and MOEA/D-DE-SHP is the

second best, but the performance between the two algorithms
is similar.

Meanwhile, MOEA/D-DE-SHPS is of poor stability, per-
haps because SHPS predicts population using the collected
information, so the degree of accurate of history information
may influence the power of MOEA/D-DE-SHPS.

To observe the performance of six algorithms more intu-
itively, we also show the obtained PF of the six comparison
algorithms when (τT , nT ) is set to (10, 10). In the following
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FIGURE 4. The PF of FDA1: (a) DNSGA-II; (b) DNSFA-II-B; (c) RM-MEDA-PPS; (d) RM-MEDA-PRE&VAR; (e) SGEA; (f) MOEA/D-DE-SHPS.

Figs. 4-10, the red represents the PF obtained by DMOOAs,
and the black represents the true PF.
Fig. 4 shows the PF obtained by the six algorithms

on FDA1 when t = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
and (τT , nT ) is set to (10,10). Due to the characteristic of
FDA1 that PS changes with time and PF remains fixed,
so we move the obtained PF and true PF simultaneously.
We can find that the six algorithms except RMMEDA-PPS
can converge to the truePF, meanwhile,MOEA/D-DE-SHPS
get the best results, followed is RM-MEDA-PRE&VAR.Both
MOEA/D-DE-SHPS and RM-MEDA-PRE&VAR have bet-
ter distribution and convergence, and other four algorithms
are poorly distributed.

Fig. 5 is the obtained PF of the six algorithms on
FDA2 when t = 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60,
and (τT , nT ) is set to (10,10). As shown in Fig. 5,
the best algorithm is MOEA/D-DE-SHPS, it could con-
verge to true PF and get better distribution. DNSGA-II-A,
DNSGA-II-B and SGEA have the similar performance just
behind MOEA/D-DE-SHPS. However the RM-MEDA-PPS
and RM-MEDA-PRE&VAR are not competitive.

Fig. 6 shows the obtained PF of the six algorithms on
FDA3 when t = 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
and (τT , nT ) is set to (10,10). We can see that
MOEA/D-DE-SHPS is of the best performance, SGEA
and MOEA/D-SHPS both can converge to true PF and
have better distribution. RM-MEDA-PRE&VAR can con-
verge to true PF, however, there are some isolated points.

DNSGA-II-A and DNSGA-II-B can converge to true PF, but
the distribution of solutions is not good. RM-MEDA-PPS has
the poorest performance.

Fig. 7 shows the obtained PF on FDA4 when t = 69,
and (τT , nT ) is set to (10,10). MOEA/D-DE-SHPS performs
best. DNSGA-II-A and DNSGA-II-B cannot converge to true
PF at all. Other three algorithms including RMMEDA-PPS,
RMMEDA-PRE&VAR and SGEA have the similar perfor-
mance. The solutions gotten by RM-MEDA-PPS have the
good distribution, however the solutions don’t converge to
true PF completely. We can see that solutions obtained by
MOEA/D-DE-SHPS converge to true PF completely, mean-
while, the solutions have the best distribution. The results
match the statistical results presented in Table 2.

Fig. 8 presents the PF obtained by the six algorithms on
dMOP1 when t = 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70,
and (τT , nT ) is set to (10,10). All the six algorithms performs
well on dMOP1, and we can’t get more information just
according to Fig. 8.

Fig. 9 presents the PF got by the six algorithms on
dMOP2 when t = 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74,
and (τT , nT ) is set to (10,10). Obviously, only MOEA/D-DE-
SHPS could converge to true PF and has better distribution.
The performance of SGEA just behindsMOEA/D-DE-SHPS,
the solutions gotten by SGEA approximately converge to
the true PF. RM-MEDA-PPS and RM-MEDA-PRE&VAR
just converge to the true PF at some environments, for
other environments, the solutions don’t converge. However,
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FIGURE 5. The PF of FDA2: (a) DNSGA-II; (b) DNSFA-II-B; (c) RM-MEDA-PPS; (d) RM-MEDA-PRE&VAR; (e) SGEA; (f) MOEA/D-DE-SHPS.

FIGURE 6. The PF of FDA3: (a) DNSGA-II; (b) DNSFA-II-B; (c) RM-MEDA-PPS; (d) RM-MEDA-PRE&VAR; (e) SGEA; (f) MOEA/D-DE-SHPS.
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FIGURE 7. The PF of FDA4: (a) DNSGA-II; (b) DNSFA-II-B; (c) RM-MEDA-PPS; (d) RM-MEDA-PRE&VAR; (e) SGEA; (f) MOEA/D-DE-SHPS.

FIGURE 8. The PF of DMOP1: (a) DNSGA-II; (b) DNSFA-II-B; (c) RM-MEDA-PPS; (d) RM-MEDA-PRE&VAR; (e) SGEA; (f) MOEA/D-DE-SHPS.
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FIGURE 9. The PF of DMOP2: (a) DNSGA-II; (b) DNSFA-II-B; (c) RM-MEDA-PPS; (d) RM-MEDA-PRE&VAR; (e) SGEA; (f) MOEA/D-DE-SHPS.

FIGURE 10. The PF of DMOP3: (a) DNSGA-II; (b) DNSFA-II-B; (c) RM-MEDA-PPS; (d) RM-MEDA-PRE&VAR; (e) SGEA; (f) MOEA/D-DE-SHPS.
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TABLE 3. The statistical results of MIGD of all three algorithms.

DNSGA-II-A and DNSGA-II-B performs the worst, and can
hardly converge.

Fig. 10 presents the PF obtained by the six algorithms
on dMOP3 when t = 30, 40, 50, 60, 70, 80, 90, 100, and
(τT , nT ) is set to (10,10). Due to the characteristic of
dMOP3 that PS changes with time and PF remains fixed,
so we move the obtained PF and true PF simultaneously.
From Fig. 10, we can see that MOEA/D-DE-SHPS has
the absolute predominance. Among the six algorithms, just

MOEA/D-DE-SHPS can converge to the true PF. There are
no comparability for other algorithms.

D. COMPARISON BETWEEN SHPS AND THE OTHER TWO
PREDICTION STRATEGIES
This section compares SHPS with other two prediction
strategies including PRE&VAR and PPS to prove the per-
formance of SHPS. PPS and PRE&VAR are also inte-
grated into MOEA/D-DE, so all the three algorithms are
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referred to as MOEA/D-DE-PPS, MOEA/D-DE-PRE&VAR
and MOEA/D-DE-SHPS. The parameter settings for all
algorithms are the same as those in Table 1 shown in
Section IV-C.1.

Table 3 gives the statistical results of MIGD over 20 runs
for different algorithms, in which, the black represents the
best result of all the three comparison algorithms.

MOEA/D-DE-SHPS significantly outperforms MOEA/D-
DE-PPS on all test functions when (τT , nT ) is set to (5,10),
(10,10) and (15,10). Meanwhile, MOEA/D-DE-SHPS per-
forms better than MOEA/D-DE-PRE&VAR on majority of
FDA and dMOP functions, except on FDA3 and FDA5 when
(τT , nT ) is set to (5,10). The reasonmay be that, for FDA3 and
FDA5, when τT is set to 5, environment changes quickly,
static algorithm can’t find the optimal solutions of current
environment, which will lead the history information col-
lected from the previous environment is inaccurate, and will
lead the predicted population to be located in the wrong
search region.

In a word, the proposed SHPS has a better performance
than PRE&VAR and PPS.

V. CONCLUSION
In this paper, we propose a special points-based hybrid
prediction strategy (SHPS) which is integrated into the
multi-objective optimization algorithm based on decompo-
sition with differential evolution (MOEA/D-DE) to handle
DMOPs. In SHPS, when historical information is not abun-
dant to conduct the predictionmodel (ARmodel), PRE&VAR
method is adopted to generate the initial population of
new environment. Meanwhile, owing to PPS has a strong
dependence of historical information gathered from previous
environments, so the inaccurate historical information may
lead the predicted population to be located in the wrong
search region. Therefore, this paper introduces the special
points-based strategy, in which, the initial population of the
new environment consists of two parts of individuals: the
predicted special points and the predicted population by PPS
(except the special points). The focuses of the special points
could avoid the prediction of the population completely
depends on the historical information of the central point
and manifold, which could reduce the influence of inaccurate
prediction of PPS.

Two empirical studies are conducted to verify the effective-
ness of MOEA/D-DE-SHPS. Firstly, MOEA/D-DE-SHPS
is compared with five well-known DMOOAs, which are
NSGA-II-A, NSGA-II-B, RM-MEDA-PPS, RM-MEDA-
LPS and SGEA. Empirical results show that MOEA/D-
DE-SHPS outperforms comparison algorithms on most test
functions except dMOP1 and dMOP2. Secondly, a compari-
son between SHPS and other two prediction strategies includ-
ing PRE&VAR and PPS indicates that SHPS outperforms
PRE&VAR and PPS on majority test functions.

Although MOEA/D-DE-SHPS is promising for dealing
with DMOPs. But there are still some problems needed to
be solved. When the historical information is not enough

to establish the AR model, a more effective response strat-
egy may be designed to respond to the environmental
changes and to promote algorithm converge to true PF as
far as possible. Because the accuracy of the collected his-
torical information extremely influence the performance of
MOEA/D-DE-SHPS.
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