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ABSTRACT The emergence of computation-intensive and delay-sensitive vehicular applications poses a
great challenge for individual vehicles with limited computation resources. Mobile edge computing (MEC)
is a new paradigm shift that can enhance vehicular services through computation offloading. However,
the high mobility of vehicles will affect offloading performance. In this paper, we investigate the vehicular
user (VU) computation overhead minimization problem in MEC-enabled vehicular networks by jointly
optimizing the computation and communication resources’ allocation (transmit power and uploading time
for communication, and the offloading ratio and local CPU frequency for computation). This optimization
problem is nonconvex and difficult to solve directly. To deal with this issue, we first transform the original
problem into an equivalent one. Then, we decompose the equivalent problem into a two-level problem.
In addition, we develop a low-complexity algorithm to obtain the optimal solution. The numerical results
demonstrate that the proposed algorithm can significantly outperform benchmark algorithms in terms of
computation overhead.

INDEX TERMS Mobile edge computing, vehicular networks, computation offloading, resource allocation.

I. INTRODUCTION
Along with the increasing number of connected autonomous
vehicles, various computation-intensive and delay-sensitive
applications are emerging, such as image-aided navigation
and augmented reality (AR) driving. These applications
require a significant amount of computation resources for
real-time processing and analysis of the huge volume of
sensing data, which imposes a great challenge to individual
VUs with limited computation resources.

To address the problem, mobile cloud computing (MCC)
is proposed as a promising approach, where the compu-
tation tasks are offloaded to remote cloud servers through
wireless networks. Although MCC significantly improves
computation performance and resource utilization, the delay
fluctuation greatly reduces the offloading efficiency due to

The associate editor coordinating the review of this manuscript and
approving it for publication was Eyuphan Bulut.

the long distance transmission between the VU and the cloud
servers [1]. Mobile edge computing (MEC) is immediately
introduced to copewith this issue, where computation-servers
are deployed at the edge of radio access networks [2], [3].
Thus, with MEC-enabled computation offloading, the
VU can get faster interactive response or lower delay. How-
ever, compared with traditional cloud servers with powerful
computation capabilities, theMEC servers usually endure the
computation resource limitation. On the other hand, com-
putation offloading brings some communication overheads
(i.e., bandwidth and power), which is similar to the data
offloading in [4], [5]. As a result, it is vital that how to effi-
ciently allocate communication and computation resources
for MEC-based vehicular networks to guarantee VU good
experience.

There have been many works focusing on computa-
tion offloading scheme designs and resource allocation for
MEC-enabled networks [6]– [12]. These offloading schemes
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is generally divided into two categories: binary offloading
and partial offloading. In [6], a binary offloading decision
has been proposed to minimize the energy consumption by
optimizing the local CPU frequency and the data transmis-
sion rate. In order to minimize the weighted sum energy
consumption and delay, a joint optimization framework of
binary offloading decision and local CPU frequency has been
proposed in [7]. In [8], the weighted improvement of energy
consumption and delay minimization problem has been con-
sidered through optimizing offloading decisions, local CPU
frequency, and transmit power. Binary offloading scheme
designs have been further extended to the wireless powered
MEC systems in [9], [10], where energy consumption min-
imization or computation rate maximization problems were
considered, respectively. However, for the data partitioned
oriented applications, partial offloading schemes are more
appropriate because it takes advantage of parallel process
between the local users and MEC servers. In [11], two par-
tial offloading schemes have been proposed to minimize the
energy consumption subject to a delay constraint or mini-
mize the delay subject to a energy consumption constraint,
respectively. Furthermore, various machine learning-based
approaches for MEC are also summarized in [12].

Recently, several offloading strategy designs have been
extended to the MEC-enabled vehicular networks [13]–[18].
A stackelberg game theory based approach has been proposed
in [13] to design an optimal multilevel offloading scheme,
where the author aimed to maximize the utilities of both the
vehicles and the VEC servers. In [14], a game theory based
offloading scheme has been proposed to minimize the delay.
In [15], the authors have proposed a joint load balancing
and offloading solution tomaximize system utility.Moreover,
some deep reinforcement learning approaches have been pro-
posed in [16]– [18] to determine the resource allocation pol-
icy for vehicular networks. In [16], a joint resource allocation
of communication, caching and computing based on deep
reinforcement learning has been proposed. This work has
been further extended in [17], [18] by taking the vehicles’
mobility and the hard service deadline into account.

Unfortunately, the aforementioned works, it is assumed
that the wireless channels keep constant during compu-
tation offloading. In fact, this assumption is impractical,
because the wireless channel may change when vehicles
move fast, which may influences the offloading performance.
Thus, in this paper, we consider more practical case that
the wireless channel changes during computation offloading.
Specifically, we study the computation overhead problem for
MEC-enabled vehicular networks, and propose a joint allo-
cation scheme of computation and communication resources
in order to minimize the computation overhead. The main
contributions of this paper are summarized as follows.
• With considering the impact of the channel change,
we aim at minimizing the weighted sum of the latency
and the energy consumption (referred to as computation
overhead) of the VU by jointly optimizing transmit
power, the uploading time, as well as the offloading ratio

FIGURE 1. The System Model.

and local CPU frequency. This problem of interests is
nonconvex and thus difficult to solve.

• In order to solve this problem, we first transform it into
an equivalent form. Then, we decompose the equiva-
lent problem into a two-level problem. In the lower-
level problem, we jointly optimize the transmit power,
offloading ratio, and the latency, given the uploading
time while in the higher-level problem, optimizing the
uploading time. Specifically, we derive the optimal solu-
tion in a semi-closed form for the lower-level problem by
leveraging Lagrange duality method. In the high-level
problem, one-dimensional line search method is used.

• In terms of the performance evaluation, we verify the
performance of the proposed algorithm through exten-
sive numerical simulations. Furthermore, we compare
the proposed algorithm with three solutions: local com-
puting only, partial offloading with fixed local CPU
frequency, and SDR-based Method [7]. The results
illustrate that the proposed algorithm can significantly
achieve a performance improvement from computation
offloading in terms of the computation overhead.

The rest of the paper is organized as follows. Section II
presents the system model, computation model, and problem
formulation. In Section III, we develop an efficient algo-
rithm to solve the proposed formulation. Sections IV provides
simulation results to verify the advantages of the proposed
method. Finally, conclusion is given in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
In this section, we first introduce the system model. Then,
computation model is presented. Finally, we formulate the
optimization problem.

A. SYSTEM MODEL
Consider aMEC-enabled vehicular system as shown in Fig.1,
where there exists a base station (BS) equipped with MEC
server and a mobile vehicle within the coverage of the BS.
The computing processor of vehicle is an on-chip micropro-
cessor with low computing capability while the MEC server
has a powerful processor. Thus, for computation-intensive
and delay-sensitive task, the VU needs to offload partial task

VOLUME 7, 2019 62625



J. Wang et al.: Computation Offloading for MEC-Enabled Vehicular Networks

to the MEC server for fast processing due to its limited
computation capacity.

For the sake of presentation, a three-dimensional Euclidean
coordinate is adopted. The BS is assumed to be located at
(0,D,H ), where D denote the distance between the BS and
highway and H is the height of the BS antenna. Moreover,
the VU unidirectionally moves along the highway from the
location (a, 0, 0) at speed v. Thus, the time-varying distance
from the VU to the BS can be expressed as

d (t) =
√
H2 + D2 + (a+ vt)2. (1)

As mentioned in [19], there will be many roadside units
(served as BSs) located along the road to provide services for
the VUs on the road in the future. Moreover, we consider the
VUs adopt the orthogonal channels to transmit information
and thus there is no interference between the VUs. Hence,
transmission performance from the VU to the BS is mainly
affected by the distance between them. Therefore, we here
use the same channel model as in [19], [20]. Although the
channel model is simple, the optimal solution obtained in our
paper can be served as a performance benchmark. For more
complicated channel models, we will leave it as our future
work. So the channel power gainG (t) between them is given
by

G (t) = ρ0d(t)−θ =
ρ0[

H2 + D2 + (a+ vt)2
] θ
2

, (2)

where ρ0 is the channel power gain at a reference distance
d0 = 1 and θ is the path-loss exponent.

Let p and σ 2 denote the transmit power of the VU and the
noise power at the BS receiver, respectively. Then, the instan-
taneous transmission rate r(t) between the VU and the BS can
be expressed as

r (t) = Blog2

(
1+

pG (t)
σ 2

)
, (3)

where B denotes the channel bandwidth.

B. COMPUTATION MODEL
At the location of (a, 0, 0), when the VU generates a
computation-intensive and delay-sensitive task, it needs to
offload to the BS/MEC server for fast processing. When
the computation is finished, the computation results will be
returned to the VU. In general, the task is modeled as a profile
with three parameters, {L,C,Tmax}, where L, C , and Tmax
denote the task input-data size (in bits), computation intensity
(in CPU cycles/bit), and maximum allowable delay (in s),
respectively. All three parameters rely on the nature of the
task and can be estimated through task profilers [21]. Similar
to the assumption in [11], [15], [22], the task can be divided
into two parts: (1− α)L bits for local computing and αL bits
for MEC server computing, where α is the offloading ratio.

1) LOCAL COMPUTING AT THE VU
Wefirst consider the (1−α)L bits data is processed at the VU.
Let fl denote the local CPU frequency (i.e. CPU cycles/s).

The local computing delay can be then given by

Tl =
(1− α)LC

fl
. (4)

As in [6], the energy consumption of local computing can be
expressed as

El = ζ f 3l Tl = ζLCf
2
l (1− α) , (5)

where ζ is the effective switched capacitance relating to chip
architecture.

2) COMPUTATION OFFLOADING
When αL bits data is offloaded to the MEC server, the com-
puting latency can be given by

Tr = tup + tcomp + tdn. (6)

In (6), tcomp is computation time at the MEC server and given
by tcomp =

αLC
Fmec

, where Fmec is the computation capability of
MEC. tup and tdn denote the uploading time and downloading
time, respectively. Similar to [9], [10], and [23], the down-
loading time tdn can be neglected since the data resulted
from computation is usually with a small size. Moreover,
tup is determined by the integral of the transmission rate∫ tup
0 r (τ )dτ = αL. The energy consumption of the VU in
this process is caused by uploading task data and thus can be
expressed as

Er = ptup. (7)

C. PROBLEM FORMULATION
Since local computing and computation offloading take place
simultaneously, the latency of the VU to execute the whole
task can be given by

T =max {Tl,Tr }=max
{
(1−α)LC

fl
, tup+

αLC
Fmec

}
. (8)

The energy consumption of the VU to finish the whole task
can be expressed as

E = El + Er = ζLCf 2l (1− α)+ ptup. (9)

Our goal is to minimize the computation overhead caused
by communication and computation. Here, the computation
overhead is defined as the weighted sum of the latency and the
energy consumption, βTT+βEE , where βT and βE represent
the weights of the latency and the energy consumption of
the VU, respectively. As a result, the optimization problem
of interests can be expressed as

min
p,α,tup,fl

βTT + βEE (10)

s.t. ϕ
(
p, tup

)
= αL, (10a)√

D2 + (a+ vTr )2 ≤ Rmax, (10b)

0 ≤ α ≤ 1. (10c)

0 ≤ p ≤ Pmax , (10d)

0 ≤ fl ≤ Fmax , (10e)
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where ϕ
(
p, tup

) 1
=
∫ tup
0 r (τ )dτ . In (10), the objective func-

tion could be considered as a tradeoff between the latency
and energy consumption. The weights can be dynamically
adjusted according to the remaining energy and maximum
allowable delay. For example, a VU with less remaining
energy can increase βE to save more energy at the expense
of longer task completion latency. Otherwise, if a VU is
sensitive to processing latency, it can increase βT to save
more latency at the expense of high energy consumption.
Constraint (10a) denotes the size of the task to be offloaded.
Constraint (10b) ensures that the link between the VU and
the BS is within the maximum transmission range.
Constraints (10c), (10d), and (10e) guarantee that the offload-
ing ratio, the transmit power, and local CPU frequency do not
exceed their maximum values, respectively.

It can be observed that problem (10) is nonconvex due to
the coupling ofmultiple variables, and hence is challenging to
solve directly. In the next section, we will first transform this
problem into a more tractable one and then derive the optimal
solution.

III. A TWO-LEVEL SOLUTION APPROACH
In this section, we first transfer problem (10) into an equiv-
alent form. Then, we derive the optimal solution of this
equivalent problem.

A. PROBLEM TRANSFORMATION
Substituting (8) and (9) into (10), the problem can be rewrit-
ten as

min
p,α,tup,fl ,T

βTT + βE
(
ζLCf 2l (1− α)+ ptup

)
(11)

s.t. ϕ
(
p, tup

)
= αL, (11a)

(1− α)LC
fl

≤ T , (11b)

tup +
αLC
Fmec

≤ T , (11c)

tup +
αLC
Fmec

≤ c, (11d)

(10c), (10d), and (10e),

where c 1=
√
R2max−D2−a

v .
It is easily observed that the objective function in (11)

decreases monotonically with decrease of fl . Moreover, from
constraints (10e) and (11b), we have (1−α)LC

T ≤ fl ≤ Fmax .
Therefore, the optimal fl is given by

f ∗l =
(1− α)LC

T
(12)

only when the following inequality holds

(1− α)LC
T

≤ Fmax. (13)

Moreover, we also discover that constraint (11a) can be
relaxed as

ϕ
(
p, tup

)
≥ αL. (14)

In fact, (11a) in problem (11) can be equivalently replaced

by (14). To prove this, we assume that
(
p∗, α∗, t∗up, f

∗
l ,T

∗

)
is the optimal solution of problem (11) with the relaxed
constraint (14). It is easy to see that if we decrease p∗

while guaranteeing that all the other constraints in (11)
are satisfied, the objective function will decrease. It contra-
dicts the assumption that

(
p∗, α∗, t∗up, f

∗
l ,T

∗

)
is the opti-

mal solution. Hence, for problem (11) with the relaxed
constraint (14), constraint (14) must be active at the
optimum.

As a result, (11) can be equivalently transformed into the
following problem

min
p,α,tup,T

βTT + βE

(
ζL3C3 (1− α)

3

T 2 + ptup

)
(15)

s.t. αL ≤ ϕ
(
p, tup

)
, (15a)

1− α ≤
Fmax

LC
T , (15b)

(11c), (11d), (10c), and (10d).

B. OPTIMAL SOLUTION
Although the original problem (10) is simplified to (15), it is
still hard to solve due to the coupling of multiple variables.
To cope with this challenge, we decompose (15) into a two-
level problem. In the lower-level problem,we jointly optimize
the transmit power p, offloading ratio α, and the latency
T given the uploading time tup while in the higher-level
problem, optimizing the uploading time tup.

1) LOWER-LEVEL PROBLEM
For a given value of tup, the resulting lower-level problem can
be expressed as,

min
p,α,T

βTT + βE

(
ζL3C3 (1− α)

3

T 2 + ptup

)
(16)

s.t. 0 ≤ α ≤ α, (16a)

(15a), (15b), (11c), and (10d),

where α 1
= min

{
1, (c−tup)Fmec

LC

}
.

In the objective function of (16), it is easy to observe
that the function ςL3C3 (1−α)3

T 2 is convex in (α,T ) and the
function ptup is linear in p. Thus, the objective function is
convex. For constraint (15a), the right-hand side ϕ

(
p, tup

)
is

concave due to the fact that the integral of a concave function
with respect to p is still concave. Hence, constraint (15a) is
convex. Therefore, problem (16) is convex, which can be
solved by the interior point method [24]. However, to provide
useful insights, we next exploit the Lagrange duality method
to obtain the optimal solution in a semi-closed form for
problem (16).

Let λ1, λ2, and λ3 denote Lagrange multipliers associated
with constraints (15a), (15b) and (11c), respectively. Define
λ

1
= (λ1, λ2, λ3). Then the partial Lagrangian of (16) is
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expressed as

L (p, α,T ,λ) = λ2+λ3tup+
(
βEptup−λ1ϕ

(
p, tup

))
+βEζL3C3 (1− α)

3

T 2

+

(
λ1L − λ2 + λ3

LC
Fmec

)
α

+

(
βT − λ2

Fmax

LC
− λ3

)
T . (17)

The dual function is given by

8(λ) = min
p,α,T≥0

L (p, α,T ,λ) (18)

s.t. (10d) and (16a). (18a)

As a result, the dual problem is given by

max
λ≥0

8(λ) (19)

As problem (16) is convex and satisfies the Slater’s condi-
tion, strong duality holds. Therefore, we can solve its dual
problem (19) to obtain the optimal solution for problem (16).
To solve dual problem (19), we need to evaluate8(λ) in (18)
under any given λ. Furthermore, we discover that (18) can be
decomposed into two subproblems as follows

8p (λ) = min
p

βEptup − λ1ϕ
(
p, tup

)
(20)

s.t. (10d). (20a)

8α,T (λ) = min
α,T≥0

λ2 + λ3tup + βEζL3C3 (1− α)
3

T 2 (21)

+

(
λ1L − λ2 + λ3

LC
Fmec

)
α

+

(
βT − λ2

Fmax

LC
− λ3

)
T

s.t. (16a). (21a)

In what follows, we separately evaluate 8p (λ) and
8α,T (λ) and then combine them to obtain8(λ) together. The
optimal solutions of (20) and (21) are given by the following
two lemmas.
Lemma 1: For a given λ, the optimal solution p∗ to (20) is

given by

p∗ =

 0, if p̂ < 0
p̂, if 0 ≤ p̂ ≤ Pmax
Pmax, if p̂ > Pmax

(22)

where p̂ is the root of the equation βE tup − λ1ϕ′
(
p, tup

)
= 0.

Proof: Observe that the objective function in (20) is
strictly convex in p. Thus, the equation βE tup−λ1ϕ′

(
p, tup

)
=

0 has an unique root, denoted as p̂, where ϕ′
(
p, tup

) 1
=

∂ϕ(p,tup)
∂p . If p̂ < 0, the objective function increases mono-

tonically in [0,Pmax]. In this case, p∗ = 0. If p̂ > Pmax,
the objective function decreases monotonically in [0,Pmax].
In this case, p∗ = Pmax. If 0 ≤ p̂ ≤ Pmax, the objec-
tive function increases monotonically in [0, p̂] and decreases
monotonically in (̂p,Pmax]. In this case, p∗ = p̂. �

Algorithm 1 Solve Problem (16) Using Ellipsoid Method
1: Initialize:Give an initial ellipsoid ε (λ, S) containing the

optimal solution λ∗ for (19).
2: repeat
3: Calculate (p∗, α∗,T ∗) under given λ from Lemma 1

and Lemma 2;
4: Update λ based on the ellipsoid method [24];
5: until λ converges with a pre-defined threshold.
6: Set λ∗ = λ.
7: Output:Calculate (p∗, α∗,T ∗) by using Lemma 1 and

Lemma 2 when λ = λ∗.

Moreover, note that βE tup−λ1ϕ′
(
p, tup

)
= 0 is a transcen-

dental equation with respect to p, we can find the root p̂ by
the bisection search method.
Lemma 2: For a given λ, the optimal solution (α∗,T ∗)

to (21) satisfies

α∗ =



0, if

√
λ1L−λ2+λ3 LC

Fmec
3βE ζL3C3 > 1

T ∗

[0, α], if

√
λ1L−λ2+λ3 LC

Fmec
3βE ζL3C3 =

1
T ∗

α, if

√
λ1L−λ2+λ3 LC

Fmec
3βE ζL3C3 < 1

T ∗

(23)

T ∗ =
1− α∗√

βT−λ2
Fmax
LC −λ3

2βE ζL3C3

. (24)

Proof: See Appendix A. �
Using Lemma 1 and Lemma 2, the dual function 8(λ) is

computed for any given λ. Next, we solve (19). Neverthe-
less, the dual function 8(λ) is generally concave but non-
differentiable, so we can use the subgradient method or the
ellipsoid method [24] to obtain the optimal solution λ∗

for (19). In this paper, we use the ellipsoid method. Finally,
by replacing λ in Lemma 1 and Lemma 2 as λ∗, we have the
optimal solution (p∗, α∗,T ∗) for (16).
Until now, we have solved (16) and obtained the optimal

solution (p∗, α∗,T ∗) for a given tup. The corresponding algo-
rithm is summarized in Algorithm 1, where ε (λ, S) denotes
an ellipsoid with the center of λ and the volume of S.

2) HIGHER-LEVEL PROBLEM
Let φ

(
tup
)
denote the optimal value of (16) for a given tup.

The higher-level problem aims at minimizing φ
(
tup
)
as

follows

min
tup

φ
(
tup
)

(25)

s.t. 0 ≤ tup ≤ tup, (25a)

where tup
1
= c can be obtained from constraint (11d) in

problem (11).
Since problem (25) only involves a single-variable tup

within the interval [0, c], we can adopt the one-dimensional
linear search to solve it. With enough small step size of the
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Algorithm 2 Solve Problem (25) Using One-Dimensional
Search
1: Initialize: φtemp

= Inf, t temp
up = 0, and 1.

2: for tup = 0 : 1 : c do
3: Calculate φ

(
tup
)
by carrying out Algorithm 1.

4: if φ
(
tup
)
< φtemp then

5: Set φtemp
= φ

(
tup
)
and t temp

up = tup.
6: end if
7: end for
8: Set toptup = t temp

up .
9: Output: The optimal solution toptup to (25) and corre-

sponding popt, αopt.

TABLE 1. Default simulation parameters.

search, we can obtain the global optimal solution. The whole
procedure is summarized in Algorithm 2.

IV. NUMERICAL RESULTS
A. EXPERIMENT SETUP
In this section, numerical results are provided to validate the
performance of the proposed algorithm in the MEC-enabled
vehicular networks. The default simulation parameters are
listed in Table 1 [14], [25], unless mentioned otherwise. For
comparison, we take the following threemost related schemes
as benchmarks.

• Local computing only (referred to as ’LC’ ): This scheme
corresponds to solving problem (11) (or problem (10))
by setting α = 0. The resulting optimization problem is
expressed as

min
fl

βT
LC
fl
+ βEζLCf 2l (26)

s.t. 0 ≤ fl ≤ Fmax. (26a)

Its optimal solution can be expressed as the following
closed-form

f optl =

{
3
√

βT
2βE ζ

, if 0 ≤ 3
√

βT
2βE ζ
≤ Fmax

Fmax, otherwise
(27)

• Partial offloading with fixed local CPU frequency fl
(referred to as ’PO with fl’ ): This scheme corresponds
to solving problem (11) under fixed fl . The resulting
optimization problem can be solved by using similar
method in this paper. Here, we set fl = 0.6Fmax .

• SDR-based Method [7]: In this scheme, the VU is static
and corresponding wireless channel remains constant
during the whole task execution process. To make a fair
comparison, we make the following assumptions: 1) the
VU is always located at the midpoint between the initial
point and allowable maximum location; 2) the task data
is transmitted at maximum power; 3) the VU has only
one task which can be either executed locally or be
offloaded to an AP.

In the proposed scheme and the above three schemes, the
proposed scheme and PO with fl belong to the type of partial
offloading while SDR-based method [7] belongs to the type
of binary offloading.

B. EFFECTIVE TASK OFFLOADING EVALUATION
1) IMPACT OF THE COMPUTATION TASK INPUT-DATA SIZE
Fig.2 shows the computation overheads of all the schemes
for different task input-data size. It is observed that both
the computation overheads of all the schemes increase with
task input-data size L. As expected, the proposed scheme
performs better than the other three schemes, since it takes
fully advantages of partial offloading (PO) and dynamic
voltage scaling (DVS) technology. Specifically, two partial
offloading schemes, i.e., the proposed scheme and the PO
with fl scheme, outperform the other two schemes, which
shows the superiority of PO. The reason is that two partial
offloading schemes, computation task can be processed in
parallel. Moreover, the proposed scheme surpasses the PO
with fl scheme, which confirms the benefit of DVS. This
is because that the proposed scheme uses DVS to choose
the optimal local CPU frequency so that more computation
overhead is saved. Furthermore, we note that the computation
overhead of the proposed scheme increases slowly with the
task input-data size L. The reason for this is that a larger
part of computation is offloaded to the MEC server as the
input data size L increases, which leads to a small increase in
computation overhead.

2) IMPACT OF THE TASK COMPUTATION INTENSITY
In Fig.3, we show the impact of the task computation
intensity on the computation overhead. Here, the task com-
putation intensity C is set as C = 330/8, 1300/8, 1900/8,
5900/8, 8900/8 cycles/bit [7], respectively. We observe that
the computation overhead of all the schemes increases with
the task computation intensity C . The proposed scheme per-
forms better than the other three algorithms. It is mainly
manifested in two aspects: one aspect is that the proposed
scheme has the lowest computation overhead over different
task computation intensity, the other is that the proposed
scheme increases more slowly than the other three scheme
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FIGURE 2. The computation overhead versus task input-data size L.

FIGURE 3. The computation overhead versus task computation
intensity C .

in terms of the computation overhead. This possible reason
for second advantage is that the larger the task computation
intensity, the greater the percentage of computation offloaded
to theMEC server. Thus, for the proposed scheme, increasing
task computation intensity only brings a little growth of the
computation overhead.

3) IMPACT OF THE WEIGHT OF THE LATENCY
Fig.4 shows the latency and energy consumption of the VU
when the weight of the latency βT increases from 0.1
and 0.9 meanwhile the weight of the energy consumption
βE = 1 − βT increases from 0.9 and 0.1. It is seen that the
latency decreases when βT increases, at the expense of larger
energy consumption. In other words, the smaller the latency,
the larger the energy consumption. It just exhibits the trade-
off between the latency and energy consumption. Besides,
we also observe that when L = 0.5, the VU experience a
lower latency and energy consumption than in the case when
L = 1. This observation agrees with the phenomenon shown
in Fig.2.

FIGURE 4. The proposed algorithm performance versus the weight of the
latency βT in terms of the latency and energy consumption.

FIGURE 5. The computation overhead versus maximum transmit power of
the VU.

4) IMPACT OF MAXIMUM TRANSMIT POWER
In Fig.5, we discuss the impacts of maximum transmit power
on the performance of two schemes with partial offloading
(i.e., the proposed scheme and the PO with fl scheme). It is
observed that as themaximum transmit powerPmax increases,
computation overhead decreases. In addition, when Pmax is
sufficiently large, the performance of the proposed scheme
reaches saturation point under different speed v. This is
because that 1) increasing maximum transmit power makes
theVUoffload larger part of computation to theMEC servers;
2) If the VU offloads more computation, the overhead caused
by offloading is greater than the overhead by local comput-
ing. So the total computation overhead do not decrease with
further increasing of Pmax . Besides, we can also see that the
faster the VU move, the larger the computation overhead.

In brief, the proposed method outperforms the other three
methods in terms of computation overhead. It is because
that the proposed method combines the advantages of partial
offloading and dynamic voltage scaling technology. More-
over, there exists a tradeoff between the latency and energy
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consumption through adjusting the weights of the objective
function.

V. CONCLUSION
In this paper, we investigate the computation overhead min-
imization problem by jointly optimizing communication and
computation resources in MEC-enabled vehicular networks.
The nonconvex problem is first transformed into an equiv-
alent problem. Then, we decompose the equivalent prob-
lem into a two-level problem. Furthermore, we present a
low-complexity algorithm to obtain the optimal solution.
Numerical results show that the proposed scheme can achieve
remarkable computation overhead saving.

APPENDIX A
PROOF OF LEMMA 2
Note that problem (21) is convex and satisfies the Slater’s
condition, so strong duality holds between it and its dual
problem. Next, we can solve (21) via KKT conditions. The
Lagrangian of problem (21) is given by

L̃ = λ2 + λ3tup − η2α + βEζL3C3 (1− α)
3

T 2

+

(
λ1L − λ2 + λ3

LC
Fmec

− η1 + η2

)
α

+

(
βT − λ2

Fmax

LC
− λ3 − ϑ

)
T (28)

where η1, η2, and ϑ denote the dual variables associated with
constraints α ≥ 0, α ≤ α, and T ≥ 0, respectively.

Let (α∗,T ∗) and
(
η∗1, η

∗

2

)
be the primal and dual optimal

values, respectively. Then, according to KKT conditions,
the following expressions hold

0 ≤ α∗ ≤ α, T ∗ ≥ 0 (29a)

η∗1 ≥ 0, η∗2 ≥ 0, ϑ∗ ≥ 0 (29b)

η∗1α
∗
= 0, η∗2

(
α∗ − α

)
= 0, ϑ∗T ∗ = 0 (29c)

∂L̃
∂α∗
= −3βEζL3C3 (1− α

∗)2

T ∗2
+ λ1L

−λ2 + λ3
LC
Fmec

− η∗1 + η
∗

2 = 0 (29d)

∂L̃
∂T ∗
= −2βEζL3C3 (1− α

∗)3

T ∗3
+ βT − λ3

−λ2
Fmax

LC
− ϑ∗ = 0 (29e)

From (29d), we have

1− α∗

T ∗
=

√
λ1L − λ2 + λ3 LC

Fmec
− η∗1 + η

∗

2

3βEζL3C3 (30)

Next, we discuss the tightness of constraint (16a).
1) When α∗ = α, that is η∗1 = 0, η∗2 > 0, we have

1− α∗

T ∗
=

1− α
T ∗
=

√
λ1L − λ2 + λ3 LC

Fmec
+ η∗2

3βEζL3C3

>

√
λ1L − λ2 + λ3 LC

Fmec

3βEζL3C3 (31)

2) When 0 < α∗ < α, that is η∗1 = 0, η∗2 = 0, we have

1− α∗

T ∗
=

√
λ1L − λ2 + λ3 LC

Fmec

3βEζL3C3 (32)

3) When α∗ = 0, that is η∗1 > 0, η∗2 = 0, we have

1− α∗

T ∗
=

1
T ∗
=

√
λ1L − λ2 + λ3 LC

Fmec
− η∗1

3βEζL3C3

<

√
λ1L − λ2 + λ3 LC

Fmec

3βEζL3C3 (33)

Similarly, from (29e), we have

1− α∗

T ∗
=

√
βT − λ2

Fmax
LC − λ3

2βEζL3C3 (34)

Based on (31)–(34) and with some algebraic operations,
we have (23) and (24).
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