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ABSTRACT This paper presents a novel synthetic aperture radar (SAR) imaging and autofocus algorithm
by exploiting the clustering property of the sparse scene in structured phase-noisy environments. The SAR
imaging and autofocus problem are reformulated in a Bayesian framework where a clustered sparsity-
inducing prior is imposed on the target scene and a correlated probabilistic model is assumed on phase error.
In particular, a pattern coupled Gaussian distribution and aMarkov random fields (MRF) model are assigned
to the scattering coefficients and the support of the sparse scatterers, respectively, to enforce the underlying
continuity of illuminated target scene. Furthermore, the multivariate Von Mises prior is incorporated to
capture the spatial fluctuation structures of the phase errors along with the aperture positions. The posterior
inference is then obtained by using the mean-field variational Bayesian expectation-maximization (VBEM)
method. By taking advantage of the inherent target correlation characteristics and the uncertain structures
introduced on phase errors, the devised method can result in enhanced imaging and autofocus performance.
The experimental results are provided to demonstrate the superiority of the devised scheme in obtaining the
concentrated target region over the other reported sparsity-driven SAR imaging and autofocus algorithms.

INDEX TERMS Synthetic aperture radar (SAR), phase noise, Markov random fields (MRF), multivariate
Von Mises distribution, variational Bayesian expectation-maximization (VBEM).

I. INTRODUCTION
Synthetic aperture radar (SAR) works well in all-weather and
dim-light circumstances and has been extensively applied in
target imaging. Recently, sparse representation (SR) based
SAR imaging has been proposed and attracted much attention
for its superiority in achieving high resolution with limited
measurements, see e.g. [1]–[5]. The sparsity-driven SAR
image formation problem is essentially an inverse problem,
in which we are desired to reconstruct an image of the com-
plex reflectivity field from the given noisy SAR measure-
ment. One common strategy to solve this inverse problem is
to regularize the solution space in a deterministic or proba-
bilistic manner by incorporating the sparsity-inducing prior.

The associate editor coordinating the review of this manuscript and
approving it for publication was Luca Barletta.

For instance, a variety of radar imaging algorithms have been
developed by exploiting the lp(0 ≤ p ≤ 1) norm based
sparse regularization term, see such as the greedy methods
in [6] with p = 0, the basis pursuit methods in [7] with
p = 1 and the sparse Bayesian learning methods in [3], [8]
with p ∈ (0, 1]. To further enhance the performance of radar
reconstruction, the inherent clustered structures of scatterers
underlying sparsity patterns are introduced in [9]–[13]. More
specifically, the first-order neighborhood scatterers are dis-
cussed in [9]–[11], and the extended second-order neighbor-
hood scatterers are investigated in [12]. In addition to the
above two structures, a more generalized clustered model
with the logistic Gaussian kernel is introduced in [13] to
obtain an improved imaging performance.

One drawback of the existing algorithms is that they may
fail when the measurements suffer multiplicative phase noise,
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which is induced due to atmosphere turbulence or naviga-
tional errors [14], [15]. The SAR sensor transmits pulses
to the ground at points corresponding to equal angular
increments on its flight path, and the error for each pulse
is different. Therefore, the most widely encountered phase
errors are in the cross-range direction [14]. If these errors
are not well compensated, the resulting target image of the
sparsity-driven algorithms would be substantially blurred.
To overcome this imperfection, the sparsity-driven autofocus
algorithms have been developed recently. For example, the
alternating regularization approaches [14]–[16] and sparse
Bayesian inference [17] have been applied to realize high-
resolution target imaging and phase error correction simulta-
neously. In particular, the autofocus sparse Bayesian learning
(AFSBL) method exploits uncertainty information during
iterations, and performs better than the deterministic reg-
ularization method. Although the sparsity-driven autofocus
methods are effective in some cases, theymay cause the unde-
sirable over-shrinkage problems. The reason for this is that
the sparsity-driven approach only seeks the sparse solution.
As a result, the weak scatterers may not be well-preserved
and the back ground noise may not be properly shrunk with
a simple sparsity constraint. To enhance the performance
of sparsity-driven approach, the concept of structured aut-
ofocus sparse Bayesian learning (SAFSBL) is proposed in
[18] by exploiting the correlation of the scatterers. Note
that the above algorithms do not impose any prior infor-
mation and/or constraint on phase error. As a result, they
may lead to the undesirable phase ambiguity as mentioned
in [14].

The drawbacks of the existing methods motivate us to
develop a novel adaptive SAR imaging and autofocus algo-
rithm in this paper. Our algorithm incorporates the struc-
tured prior knowledge about phase noise and the clustered
sparse constraints on the scene in a Bayesian framework.
More specifically, a pattern coupled Gaussian prior is intro-
duced in our method to characterize the dependencies among
neighboring scattering coefficients, thus making the cumber-
some pattern selecting procedure (indispensable in [9]–[12])
unnecessary. In the proposed method, the Markov random
fields (MRF) prior [19]–[21] is assumed on the support of
the target scene to enforce the nonzero or zero scatterers
to cluster in a spatial consistent manner. More importantly,
we utilize the multivariate Von Mises model [22] to capture
the spatial fluctuations along the aperture positions among
phase errors. To surmount the difficulty of the calculation
of posterior, the mean-field variational Bayesian expectation-
maximization (VBEM)method [23]–[25] is utilized to jointly
estimate the hidden variables and the model parameters.
In addition, the convergence of the proposed method can
be readily diagnosed by commonly used stopping crite-
rion. Since the inherent target correlation characteristics are
exploited and the uncertain structures on phase errors are
introduced, the devised method can obtain enhanced perfor-
mance on imaging and autofocus, as presented later in the
simulation part.

The rest of this paper is organized as follows. In Section II,
the phase-corrupted SAR observation model is described.
The problem is formulated by a Bayesian model in
Section III, and the subsequent Bayesian inference technique
is derived in Section IV. Synthetic and practical data exper-
imental results are given in Section V to demonstrate the
effectiveness of the proposed algorithm. Finally, Section VI
concludes the paper.

The following mathematical notations are used throughout
this paper. We denote the vectors by bold lowercase letters,
e.g., b and its mth element bm, and the matrices by bold
uppercase letters, e.g., A and its mth column am as well as
its (m, n)th entry am,n. In particular, we use I to denote the
identity matrix. (·)−1, (·)T , (·)∗ stand for the inverse, trans-
pose and conjugate transpose, respectively. x � y represents
the Hadamard product operator of vectors x and y. diag{·}
and blkdiag{·} stand for the diagonal matrix and the block
diagonal matrix, respectively. We use arg(·) to denote the
argument of a complex number,<(·) to represent the real part
and j 1=

√
−1 to stand for the imaginary unit.

II. PROBLEM STATEMENT
The ground-plane geometry for spotlight-mode SAR is
shown in Fig. 1. Data are collected by utilizing a radar
sensor traversing a flight path and pointing at a fixed ground
patch. At points corresponding to equal angular increments,
high-bandwidth pulses are transmitted and returns from the
ground patch of radius R0 are then received and processed
to form an image of the complex reflectivity field, denoted
as r(x, y). Using high-frequency assumption [26], the overall
response of a complex scene is well approximated as a super-
position of a set of the scene’s differential scatterers. Consider
that the radar transmits a time-limited linear frequency mod-
ulated signal as γ (t) = ej(2π f0t+αt

2), where f0 is the carrier
frequency and α is the chirp rate limited to time −T/2 <

t < T/2. After pre-processing steps of downconversion and
matched filtering, the measurement signal can be described

FIGURE 1. The ground-plane geometry for spotlight-mode SAR.
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as

w(t, φ) =
∫ ∫

x2+y2≤R20

r(x, y)e−jk(t)(x cosφ+y sinφ)dxdy

where φ is aspect angle, k(t) = 2
c (2π f0 + 2α(t − 2Rc

c )) is the
spatial frequency variable with Rc representing the distance
from radar to the center of the ground patch (0, 0) and c
denoting the speed of light. We can see that taking samples
in effective time interval is tantamount to acquiring measure-
ments over a frequency band. Assuming that the scene under
surveillance consists ofM point scatterers, the received signal
can be written as

w(k, φ) =
M∑
m=1

r(xm, ym)e−jk(xm cosφ+ym sinφ) (1)

where r(xm, ym) represents the scattering coefficient of the
scatterer located at (xm, ym). We suppose the measurements
are at F discrete frequencies and K discrete aspect angles.
Taking the multiplicative phase noise and additive noise into
account, (1) can be expressed in matrix formation as

w = 29r+ ε (2)

in which w ∈ CL is the received data with L = FK . 2 =
blkdiag{ejθ1IF , ejθ2IF , ..., ejθK IF } plays the role of the multi-
plicative phase noise. It is seen that the phase error is different
for every aperture position which means that it affects the
reconstructed image along the cross-range. 9 ∈ CL×M is the
two-dimensional (2D) Fourier transform operator, r ∈ CM

is the complex SAR imagery to be recovered, and ε ∈ CL

denotes the additive noise.
In the literature, model (2) has been already considered in

autofocus for radar imaging problems without any prior on
the phase noise [15], [17], [18]. Here we look for a more com-
plex and informative model enforcing uncertain structures on
the phase errors. Due to the circular nature of the phase errors,
it naturally leads to directional statistics [27]. Among them,
the most popular one is probably the multivariate Von Mises
distribution, defined as

p(θ ) =
1

B(%,1)
exp

(
%T g(θ ,µ)− s(θ ,µ)T1s(θ ,µ)

−g(θ ,µ)T1g(θ ,µ)
)

(3)

where µ represents the mean direction, % is the concentration
parameter and B(%,1) is a normalizing constant. Functions g
and s are defined by gk (θ ,µ) = cos(θk −µk ) and sk (θ ,µ) =
sin(θk − µk ), respectively. The matrix 1 is real-symmetric
with zeros on its diagonal and captures dependencies between
phase errors. Without loss of generality, we assume in the
sequel that µ = [0, 0, ..., 0]T 1

= 0K . In this paper, we con-
sider the particular case where only the first two subdiagonals
of1 are non-zero. Considering a small variance of the phases
θ , straightforward calculus leads to [22]

p(θ ) '
1

B(%,1)
exp

(
−

∑
k

((�−1θ )k,kθ2k

+2(�−1θ )k,(k−1)θkθk−1 + o(θ2k ))
)

(4)

where ∀(k, i) ∈ {1, ...,K }2, �−1θ is linked to the parameters
1 and % through

(�−1θ )k,i =

{
1k,i, if i 6= k
%k

2
−

∑
j 6=k

1k,j, if i = k.
(5)

Inspired by the idea in [28], expression (4) can be directly
identified to a Markov chain such as

p(θ ) =
K∏
k=2

p(θk |θk−1)p(θ1) (6)

where p(θk |θk−1) = N (β0θk−1, β−1), ∀k ∈ {2, ...,K }, θ1 ∼
N (0, β−1) and β0 ∈ R+, provided that

�−1θ =
β

2



1+ β20 − β0 0 · · · 0

−β0 1+ β20 − β0
. . .

...

0 − β0
. . .

. . . 0
...

. . .
. . . 1+ β20 − β0

0 · · · 0 − β0 1


.

In this case, according to formula (5), we have %k = (β0 −
1)2β for k ∈ {2, ...,K − 1}, %1 = (β20 − β0 + 1)β and
%K = (1 − β0)β. If |k − i| = 1, the connection between
phase errors can be denoted as 1k,i = −β0β/2. Otherwise,
we have 1k,i = 0. From a practical point of view, this phase
Markov model allows us to describe spatial fluctuations of
the phase errors along the aperture positions, and the strength
of the fluctuations is related to the value of parameter β.

III. BAYESIAN FORMULATION
We address the problem of reconstructing SAR image r from
noisy phase-corrupted data w. To that end, we first place
this problem into a Bayesian framework by defining suitable
additional prior distributions on the unknown quantities ε, r
and θ . Suppose that ε follows complex white Gaussian dis-
tribution with zero mean and precision τ , then the likelihood
of the measurement vector w follows:

p(w|29r, τ ) = CN (w|29r, τ−1I). (7)

To facilitate the inference of the noise precision, a Gamma
prior is placed on τ with parameters c and d , conjugate to
Gaussian distribution. Then the distribution for τ is expressed
as

p (τ ) = G (τ |c, d) . (8)

To account for the clustered sparsity of the coefficient vector
r, we utilize the fact that the sparsity patterns of neighboring
coefficients are statistically dependent. We assume that r =
h � d to separate the signal support d from the coefficient
vector. The support indicator encodes which dictionary ele-
ments are activated for phase history. Similar to [29], a pattern
coupled hierarchical prior is adopted for the sparse coefficient
vector h to encourage the spatial continuity of the target
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ln q(θ ) ∝ ln p(θ )+ 〈ln p(w|29r, τ )〉q(r)q(τ )

∝ ln p(θ )+

〈
2τ

L∑
l=1

<

{
wl

(
M∑
m=1

r∗mψ
∗
l,m

)
e−jθl

}〉
q(r)q(τ )

(15)

scene. Specifically, the Gaussian prior for each coefficient not
only involves its own hyperparameter, but also its immediate
neighboring hyperparameters. More precisely, a prior over h
is given by

p(h|σ ) =
M∏
m=1

CN (hm|0, η−1m ) (9)

with

ηm = σm + ι
∑
n∈Om

σn (10)

where Om is the set of the neighbors of m, and ι ∈ (0, 1]
is a parameter indicating the pattern relevance between hm
and its neighbors hn. Then we use a Gamma distribution as
hyperprior over the hyperparameter σ , i.e.,

p(σ ) =
M∏
m=1

G (σm|a, b) . (11)

On the other hand, it is well known that the MRF based
statistical dependency model has the capability to capture
the correlations of the investigated elements in the support
with its neighbors. Therefore, we adopt a special case of
MRF prior, the Ising model [21], to encourage the clustered
property of the support of the target scene d. The MRF prior
distribution is given by

p(d′;χ ) =
1

Z (χ )
exp


M∑
m=1

(χ0md ′m + χm
∑
n∈Om

d ′md
′
n)


where Z (χ ) is the partition function for normalizing the distri-
bution and χ is the model parameter vector. The contribution
of the interaction between two elements {d ′m, d

′
n} is controlled

by the parameter χm > 0, while the parameter χ0m controls
the spatial sparsity of scattered field. d′ ∈ {−1, 1}M is a
binary vector linked to the support indicator d with d ′m = −1
implying dm = 0 and d ′m = 1 indicating dm = 1. It is easy to
verify that the MRF encourages d ′m and its neighbors sharing
the same state since the consistence of adjacent states will
result in higher probability. Note that by exploiting the pat-
tern coupled Gaussian distribution and MRF prior, a general
model for clustered sparsity of the target scene is established
instead of the cumbersome model selection in [9]–[12].

Finally, the probabilistic model describing the behavior of
θ is given by (6). As mentioned in the previous section, this
simple model accounts for local variations of the position
errors due to atmosphere turbulence or navigational errors

along the aperture positions. Based on the probabilistic mod-
els presented, the posterior of the hidden variables given the
measurement vector w follows:

p(θ , r, σ , τ |w;χ , β) ∝ p(w|29r, τ ) · p(h|σ ) · p(d;χ )

·p(θ;β) · p(σ ) · p(τ ). (12)

The intractability of the marginal distribution, p(w), results in
the unattainability of the full posterior. As a result, we employ
mean-field VBEM method to infer the hidden variablesH =
{θ , r, σ , τ } and the model parameters including the MRF
parameter χ as well as the phase Markov model parameter β.

IV. THE PROPOSED PROCEDURE
In this section, the updating rules for the hidden variables
and the model parameters are derived. A two-stage procedure
is involved in VBEM. In the VB-E stage, an approximate
posterior, denoted by q(H), is calculated to approximate the
intractable posterior p(θ , r, σ , τ |w;χ , β). Then the updating
rules for all unknown hidden variables in H are obtained
based on q(H). The rules for updating the MRF and phase
Markov model parameters are given in the maximization
stage.

A. VB-E STAGE
In this stage, it is assumed that q(H) is factorizable with the
mean-field approximation, i.e.,

q(θ , r, σ , τ ) = q(θ )q(τ )
M∏
m=1

q(rm)q(σm). (13)

The optimal distribution of each element in the hidden vari-
ables H follows [23]:

ln q(Hz) = 〈ln p(H,w)〉q(H\Hz) (14)

where 〈·〉q(H\Hz) represents the expectation with respect to
q(H\Hz) and H\Hz denotes the set H without its zth ele-
ment Hz. The updated estimation for hidden variable Hz is
represented by H̃z.

1) PHASE ERROR ESTIMATION
The estimate of the phase error θ is obtained by comput-
ing the term of ln q(θ ) that depends on θ , as formulated in
(15), as shown at the top of this page. Then defining ξl

1
=

wl

(
M∑
m=1

r̃∗mψ
∗
l,m

)
, we have

ln q(θ ) ∝ ln p(θ )+ 2τ̃
L∑
l=1

<

{
ξle−jθl

}
VOLUME 7, 2019 70203
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ln q(rm) ∝ 〈ln p(w|29r, τ )p(h|σ )p(d;χ )〉q(θ )q(r\rm)q(σ )q(τ )

∝−τ̃

(ψ∗mψm + η̃m)r
2
m−2

L∑
l=1

<

{
w∗l ψl,m〈e

jθl 〉rm
}
+2<

∑
i 6=m

r̃∗i ψ
∗
i ψmrm


+〈ln p(d;χ )〉q(θ )q(r\rm)q(σ )q(τ ) (21)

∝ ln p(θ )+ 2τ̃
L∑
l=1

{
|ξl | cos

[
arg(ξl)− θl

]}
. (16)

To go further into the clarification of the procedure,
we employ the approximation that a Von Mises is equivalent
to a Gaussian distribution for small values of κ > 0 [27], i.e.,

exp
{
1
κ
cos (e1 − e2)

}
2π I0

(
1
κ

) '

exp
{
−

1
2κ (e1 − e2)

2
}

√
2πκ

. (17)

Under this condition, (16) can be rewritten as

ln q(θ )∝ ln p(θ )−
1
2

[
θ − arg(ξ )

]T
�−1

[
θ − arg(ξ )

]
(18)

where ξ 1
= [ξ1, ξ2, ..., ξL]T and �−1 = diag(2τ̃ |ξ |). Finally,

replacing ln p(θ ) by its expression (6), we obtain the estimate
of q(θ ) as a Gaussian distribution, i.e.,

q (θ) = N
(
µθ ,3θ

)
(19)

where 3θ = (�−1 +�−1θ )−1 and µθ = 3θ
[
�−1 arg(ξ )

]
.

Consequently, θ is updated by its mean µθ

θ̃ = µθ . (20)

2) SPARSE SCATTERERING COEFFICIENT ESTIMATION
The posterior of the sparse scatterering coefficient rm can be
expressed in (21), as shown at the top of this page, where

η̃m = σ̃m + ι
∑
n∈Om

σ̃n. (22)

More detailed derivation of (21) can be found in Appendix A.
According to [28], we have

〈ejθl 〉 '
I1(1/3θl )
I0(1/3θl )

ejµθl (23)

where I0(·) and I1(·) stand for the modified Bessel of the
first kind of order 0 and order 1, respectively. Recalling that
q(rm) = q(hm, dm), we obtain

q(hm|dm) = CN
(
µhm (dm),3hm (dm)

)
(24)

and

q(dm) ∝
√
3hm (dm) exp

{
[µhm (dm)]

2

3hm (dm)

}

· exp

χ0mdm + χmdm ∑
n∈Om

q(dn = 1)

 (25)

with

3hm (dm) =
(
η̃m + dmτ̃ψ∗mψm

)−1 (26a)

µhm (dm) = 3hm (dm) · dmτ̃ψ
∗
mρ̃m (26b)

ρ̃m = w̄−
∑
i 6=m

q(di = 1)µhi (di = 1)ψ i (26c)

w̄ =

[
wle−jµθl

I1
(
1/3θl

)
I0
(
1/3θl

)]
l={1,...,L}

. (26d)

With the above notations, we can obtain the updating rule for
rm as

r̃m = q(dm = 1)µhm (dm = 1). (27)

3) COEFFICIENT PRECISION PARAMETER ESTIMATION
Due to the conjugacy of Gamma and Gaussian distribu-
tion, the approximated posterior of the coefficient precision
parameter σm can be obtained by

ln q(σm) ∝ 〈ln p(σ )+ ln p(hm|σm)〉q(σ\σm)q(hm)
∝ (a− 1) ln σm − bσm

+

ln η̃m +
∑
n∈Om

ln η̃n

− υmσm
∝ (a− 1) ln σm − (b− δm + υm)σm (28)

where

υm = 〈h2m〉 + ι
∑
n∈Om

〈h2n〉 (29a)

〈h2m〉 = µ
2
hm (dm = 1)+3hm (dm = 1). (29b)

Moreover, denoting by δm the first-order item of the Taylor
expansion of the term (ln η̃m +

∑
n∈Om

ln η̃n), one can express

δm as

δm =

ι ∑
n∈Om

σ̃n

−1 + ∑
n∈Om

ι

σ̃n + ι ∑
i∈On\m

σ̃i

−1 .
On this basis, q(σm) can be approximately treated as aGamma
distribution G(σm|âm, b̂m) with âm = a and b̂m = b−δm+υm.
As a result, the updating rule for σm can be given by

σ̃m = âm/b̂m. (30)

4) NOISE PRECISION ESTIMATION
The variational distribution of the noise precision τ is simi-
larly computed as

ln q(τ ) ∝ 〈ln p(w|29r, τ )p(τ )〉q(θ )q(r) = lnG(τ |ĉ, d̂)

70204 VOLUME 7, 2019
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d̂ = d + w∗w− 2
M∑
m=1

<
{
〈dmhm〉w̄∗ψm

}
+

M∑
m=1

M∑
i=1

(〈dmdih∗mhi〉ψ
∗
mψ i) (31)

〈dmdih∗mhi〉 =
{
q(dm = 1)

{
[µhm (dm = 1)]2 +3hm (dm = 1)

}
, if m = i

q(dm = 1)q(di = 1)[µhm (dm = 1)]∗µhi (di = 1), if m 6= i
(33)

χ = argmax
χ
〈ln p(d′;χ )〉q(d′) (35a)

= argmax
χ
− lnZ (χ )+

〈
M∑
m=1

(χ0md ′m + χm
∑
n∈Om

d ′md
′
n)

〉
q(d ′m)

(35b)

= argmax
χ

M∑
m=1

〈
− ln

∑
d ′m∈{−1,1}

e
χ0md ′m+χm

∑
n∈Om

d ′md
′
n
+ χ0md ′m + χm

∑
n∈Om

d ′md
′
n

〉
q(d ′m)

. (35c)

β = argmax
β

〈ln p(θ;β)〉q(θ ) (38a)

= argmax
β

K
2
lnβ −

〈∑
k

(
(�̂−1θ )k,kθ2k + 2(�̂−1θ )k,(k−1)θkθk−1

)〉
q(θk )

·
β

2
(38b)

where ĉ = c+L, and the expression of d̂ can be found in (31),
as shown at the top of this page. The term 〈dmhm〉 in (31) is
expressed as

〈dmhm〉 = q(dm = 1)µhm (dm = 1) (32)

and the expression of 〈dmdih∗mhi〉 is defined in (33), as shown
at the top of this page. Finally, τ is updated by

τ̃ = ĉm/d̂m. (34)

B. VB-M STAGE
The parameters χ and β are estimated in the maximization
stage of the VBEM.

1) MRF MODEL PARAMETER ESTIMATION
The maximization is intractable due to the difficulty in calcu-
lating Z (χ ). We follow the idea of [12] by using a mean field
assumption of p(d′) to alleviate this problem. The parameter
χ can be estimated by (35) on the top of this page. Then,
χ0m, χm can be approximately expressed as

[χ0m, χm] = argmax
χ0m,χm

− ln
∑

d ′m∈{−1,1}

e
χ0md ′m+χm

∑
n∈Om

d ′md̃
′
n

+χ0md̃ ′m + χm
∑
n∈Om

d̃ ′md̃
′
n. (36)

For simplicity, we assume that χ0m = δ is a constant for m ∈
{1, 2, ...,M}. Thus, by calculating the derivative of (36) with
respect to χm and setting it to zero, we obtain the estimation

of χ̃m as

χ̃m =
ln[(1+ d̃ ′m)/(1− d̃

′
m)]− 2δ

2
∑

n∈Om

d̃ ′n
. (37)

2) PHASE MARKOV MODEL PARAMETER ESTIMATION
The solution to β can be found by maximizing the expected
log-likelihood function, as formulated in (38) on the top of
this page. In (38), �̂

−1
θ is given by

�̂−1θ =



1+ β20 − β0 0 · · · 0

−β0 1+ β20 − β0
. . .

...

0 − β0
. . .

. . . 0
...

. . .
. . . 1+ β20 − β0

0 · · · 0 − β0 1


(39)

with β0 ∈ R+ being a constant. Then compute the derivative
of (38) with respect to the parameter β and set it to zero,
we obtain the following formula to update the parameter β:

β̃ =
K

µTθ �̂
−1
θ µθ

. (40)

The iterative procedure is repeated until the convergence
criterion ‖h(j) − h(j−1)‖2/‖h(j)‖2< ρ0 is achieved, where j
denotes the iterative index and ρ0 > 0 is a user-selected
parameter (e.g. 10−2), or the number of iterations exceeds a
predefinedmaximum iteration number Jiter . Since the VBEM
is guaranteed to converge, our algorithm always converges
to a global or a local optimum [12]. To make the above
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descriptions clear, we summarize the proposed method in
Algorithm 1.

Algorithm 1 The Proposed Bayesian Clustered Sparsity-
Driven SAR Imaging and Autofocus Algorithm
Input: The measurement data w and corresponding dictio-

nary 9.
1: Initialize the latent variables H = (θ ,h,d, σ , τ ), MRF

and phase Markov model parameters χ and β, hyper-
parameters and variables a, b, c, d, ρ0, Jiter ; set iteration
counter j = 0;

2: while ‖h(j) − h(j−1)‖2/‖h(j)‖2< ρ0 or j < Jiter do
3: Hidden variables updating:
4: Update θ by (20);
5: Update rm by (27);
6: Update σm by (30);
7: Update τ by (34);
8: Model parameters updating:
9: Update χm by (37);
10: Update β by (40);
11: end while
Output: The final focused image r and estimated phase

error θ .

V. EXPERIMENTAL ANALYSIS
Two datasets are used to show the merits of our proposed
algorithm in this section. The first dataset is synthetic scene
and the second one is the simplified tank dataset generated
by an electromagnetic scattering calculation software. We
compare the proposed algorithm with three benchmark meth-
ods: the polar format algorithm (PFA) [30], the regularization
based sparsity-driven autofocus (SDA) algorithm [14] and
the structured autofocus sparse Bayesian learning (SAFSBL)
algorithm [18].

TABLE 1. System parameters for simulated-data.

TABLE 2. Performance evaluation against VPN.

A. PERFORMANCE METRICS
In this section, the performance metrics used on the experi-
ments are outlined to verify the imaging and autofocus abili-
ties of the proposed approach. The mean square error (MSE)
of phase error estimation is given by

PMSE = ‖arg(2̂)− arg(2)‖2F/K (41)

where 2̂ is the estimated phase error and 2 is true phase
error. To quantitatively evaluate the imaging and autofocus
performance, we use the measures of correlation and entropy.
Supposing that the obtained image by different methods is
denoted as r̂, the correlation is then defined as

Corr =
|r̂T r|

‖r̂‖2 · ‖r‖2
(42)

which measures the similarity of the recovered image with
the true one. The higher the correlation value that a method
can provide, the better the method preserves the information
of the target. The entropy of the image is given by

Entropy = −
∑

p · log2p (43)

where p is the histogram of the recovered gray level
image. The entropy evaluates the concentration quality of
the obtained SAR image. The more the image is focused,
the smaller its entropy is.

B. SIMULATED DATA EXPERIMENTS
The radar system parameters of the synthetic dataset are
given in Table 1. The simulated scene is shown in Fig. 2(a)
consisting of isolated scatterers and continuous areas, where
their amplitudes are set to be 5 and phases are random. The

TABLE 3. Performance evaluation against SNR.

FIGURE 2. Simulated data. (a) Original scene; (b) SAR image obtained by
the PFA algorithm.
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image obtained by PFA, free of additive and multiplicative
noises, is given in Fig. 2(b). In the subsequent experiments,
the received signal is corrupted by both the additive Gaus-
sian noise and the phase noise obeying the phase Markov
model. We represent the variance of phase noise (VPN) by
reciprocal of the phaseMarkovmodel parameter β (i.e., β−1).
To evaluate the performance of the proposed algorithm, it is
necessary to perform experiments by using different VPN
under different conditions of signal-to-noise ratio (SNR).

Fig. 3 shows the imaging results obtained by using the four
methods in terms of various VPNswhen SNR is 15 dB.We set
the phase Markov model parameter β0 as 0.8, β−1 as 0.6 ,0.3
and 0.1, respectively. It is seen that the PFA reconstructions
contain substantial blurring in cross-range dimension. The
three sparse imaging results which have the capability of
denoising, are better than those of PFA. However, the target is
not well focused using SDA method because it makes use of
merely sparsity. Due to utilization of clustered sparsity, both
the SAFSBL and the devised algorithm can preserve the weak
scatterers in the target region and remove the noise outside
target region. It can be validated that our proposed method
maintains the most focused target imaging results because of
the multivariate Von Mises prior introduced to enforce the
connections exist between the phase errors, instead of the
uninformative prior on phase errors in SAFSBL. In Table 2,
quantitative results, including PMSE, correlation and entropy,

are given to evaluate the imaging and autofocus performance.
The results are averaged over 50 independent realizations at
different VPN regimes. As indicated in Table 2, the PFA cases
exhibit the worst performance since it doesn’t have the ability
of phase noise mitigation. The results obtained by the deter-
ministic SDA method are worse than the Bayesian inference
techniques. This is because in the iterative procedure, the esti-
mation error propagation phenomenon inevitably exists in
regularization problems which have been solved by MAP
estimation, while the Bayesian formulation of the clustered
sparsity and the phase structural correlation in the devised
scheme can conveniently preserve the estimation uncertainty
information during iterations, which can alleviate effect of
error propagation. More concretely, the VBEM technique can
help to refine the reconstruction accuracy, since the fully pos-
terior distributions are provided instead of the point estimates.

The image estimates obtained by four methods with dif-
ferent SNRs are presented and compared in Fig. 4. The
VPN is set to be 0.05. In general, all of these compared
algorithms except PFA can achieve reasonable results when
SNR is 10 dB, where the obtained target image is well con-
centrated. However, when SNR decreases, degraded imagery
results appear, particularly those obtained by the regulariza-
tion based method. This may attributes to the fact that the
regularized parameters are selected by experience in SDA,
while all the necessary parameters are directly learned from

FIGURE 3. Comparison of SAR images of synthetic scene against different VPNs and four algorithms.
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FIGURE 4. Comparison of SAR images of synthetic scene against different SNRs and four algorithms.

FIGURE 5. Measured data. (a) Photograph of the simplified tank; (b) SAR
image obtained by the PFA algorithm.

data under Bayesian inference framework. Table 3 shows the
influence of SNR on the performance of the algorithms. A
Monte Carlo experiment with 50 times under each SNR is
adopted. It’s quite obvious that higher SNR generally leads
to improved estimation. For all the tested SNRs, it is seen
that the performance of the proposed algorithm highly distin-
guishes from that of the benchmark ones under the same con-
ditions, indicating better performance of suppressing noise
and preserving target information.

C. SIMPLIFIED TANK DATA EXPERIMENTS
In the second example, we present reconstruction results
based on the simplified tank dataset. The photograph of the

simplified tank model is shown in Fig. 5(a) and the image
obtained by PFAwithout additional noise is given in Fig. 5(b).
The simplified tankmodel is sized by 9.51m×3.56m×2.57m
(length×width×height). The phase history data is collected
at frequencies 8.5 − 9.5GHz in 0.01GHz intervals and over
the azimuth range [86.6◦, 93.4◦] in 0.05◦. The incident plane
wave is 30◦ in zenith angle and is horizontally polarized.
In Fig. 6, the performances are evaluated in terms of differ-

ent VPNs under SNR of 10 dB. The phase error is added into
the data according to the phase Markov model by setting β−1

as 0.5 and 0.1, respectively. As observed in Fig. 6, the PFA
approach almost fails to obtain a meaningful image, and the
SDA method can hardly obtain a simplified tank profile with
a limited number of true scatterers. The SAFSBL method
shows a relatively reasonable profile of the simplified tank,
but the image blurring effects still exist in these images,
and some of the true scattering points (e.g., the barrel of
the simplified tank) are not recovered. In contrast, the pro-
posed algorithm can effectively estimate the phase errors and
achieve better concentration results by recovering more true
scattering points.

Fig. 7 presents the imaging results obtained by different
methods under SNRs of -5 dB and 5 dB. The phase error
is added using β−1 = 0.1. When the SNR is as low as -
5 dB, the images obtained by PFA are too noisy and the
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FIGURE 6. Comparison of SAR images of simplified tank against different VPNs and four algorithms.

FIGURE 7. Comparison of SAR images of simplified tank against different SNRs and four algorithms.

target can hardly be noticed. The results of SDA appear
to have too many artificial points outside the target region
and suffers from loss of scattering coefficients. SAFSBL
removes most of the undesirable additive noise but is still not
well focused. The proposed method demonstrates promising
imagery results with more concentrated target region and less
artifacts around the region. When the SNR increases, it is

observed that the results of all methods are improved. More
importantly, it is shown that our proposed one can preserve
weak scatterers and give much more concentrated images
by making good use of the cluster-promoting feature and
phase structural dependence. With these comparisons, it is
reasonable to conclude that the devised method is able to
obtain superior imagery results from different SNR scenarios.
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ln q(rm) ∝ 〈ln p(w|29r, τ )p(h|σ )p(d;χ )〉q(θ )q(r\rm)q(σ )q(τ )

∝

〈
−τ ||w−29¬mr¬m −2ψmrm||

2
+ ln p(h|σ )p(d;χ )

〉
q(θ )q(r\rm)q(σ )q(τ )

∝

〈
−τ

[
(ψ∗mψm + ηm)r

2
m − 2<

{
(w−29¬mr¬m)∗2ψmrm

}]
+ ln p(d;χ )

〉
q(θ )q(r\rm)q(σ )q(τ )

∝ −τ̃

(ψ∗mψm + η̃m)r
2
m − 2

L∑
l=1

<

{
w∗l ψl,m〈e

jθl 〉rm
}
+2<

∑
i 6=m

r̃∗i ψ
∗
i ψmrm


+〈ln p(d;χ )〉q(θ )q(r\rm)q(σ )q(τ ) (44)

VI. CONCLUSIONS
In this paper, an adaptive sparsity-driven technique for joint
SAR imaging and phase error correction has been proposed
by considering the spatial continuity of the scene in structured
phase-noisy environments. The SAR imaging and autofocus
problem is reformulated in a Bayesian framework exploiting
two types of priors. One is the MRF model as well as the
neighboring correlated precision priors on the spatial continu-
ity structure, and the other is the particular case of Von Mises
model on phase noise. By incorporating the informative pri-
ors, the devised approach is able to providemore concentrated
target image and preserve the weak scatterers in the target
region. In addition, all the necessary parameters are directly
learned from data via VBEM method, avoiding a tedious
parameter-tuning procedure. Representative simulations have
been presented to verify the effectiveness and superiority of
the proposed algorithm under various scenarios. Future work
will focus on the improvement of the computational burden.
By employing program optimization and parallel computing
technology, the program can be further accelerated for real-
time applications.

APPENDIX A
DERIVATION OF (21)
The variational distribution ln q(rm) satisfies (44), as shown
at the top of this page, where 9¬mresults from the dictionary
9 after removing its mth column ψm, r¬m results from r
after the exclusion of its mth element. This completes the
derivation of the result in (21).
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