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ABSTRACT Betweenness centrality measures the centrality of nodes and edges in a graph based on the
concept of shortest paths. However, such a definition is unsuitable for uncertain graphs due to the uncertainty
of links. In the possible-world semantics, the Monte Carlo method is proposed to estimate the betweenness
centrality of uncertain graphs. However, thismethod is computationally intensive. To address this challenging
issue, in this paper, we propose the concept of possible shortest paths and develop a metric to approximate the
betweenness centrality for uncertain graphs. We demonstrate that the new metric of betweenness centrality
generalizes the deterministic one. Unfortunately, it is NP-hard to enumerate all possible shortest paths
between two nodes exhaustively. To tackle this difficulty, we design a heuristic algorithm to explore the
majority of possible shortest paths efficiently. Our method avoids the sampling process in the Monte Carlo
method, and thus significantly improves the computational efficiency. We conduct extensive experiments to
evaluate the effectiveness and efficiency of our method. The experimental results show that our approach can
approximate the centrality of uncertain graphs accurately with high efficiency. Finally, we apply our method
to the Internet network to evaluate the importance of autonomous systems.

INDEX TERMS Uncertain graphs, betweenness centrality, possible shortest paths, connectivity.

I. INTRODUCTION
Many network-based systems such as the Internet, social
networks, and biological networks are inherently dynamic.
Consequently, link uncertainty arises as the network evolves,
e.g., links observed at an earlier time may no longer be
present or active at the time of analysis [1]. In addition, noisy
measurements, inference models, and privacy preserving per-
turbation processes also produce uncertain link data [2]. The
probabilistic graph model has been proposed to capture the
uncertainty of links by associating each link with a presence
probability [3].

With the introduction of link uncertainty,1 conven-
tional centrality measurement methods such as node
degrees [4], average length of the shortest paths [5], between-
ness centrality [6], clustering coefficients [7], and pairwise

The associate editor coordinating the review of this manuscript and
approving it for publication was Saad Bin Qaisar.

1In this paper, we use the terms node and vertex, edge and link, graph and
network interchangeably.

connectivity [8] may not be capable for the assessment of
probabilistic graphs. Dinh and Thai investigated the vulnera-
bility assessment bymeasuring the expected pairwise connec-
tivity of probabilistic graphs [3]. By treating a probabilistic
graph as a generative model of a set of deterministic graphs
which are possible realizations of the probabilistic graph, they
formulated the problem as a stochastic optimization prob-
lem. They proposed a Fully Polynomial Time Randomized
Approximation Scheme to estimate the expected pairwise
connectivity with any desired accuracy. However, the method
is still too computationally intensive to measure large-scale
uncertain graphs.

Pfeiffer and Neville studied the measures of path lengths,
betweenness centrality, and clustering coefficients for proba-
bilistic graphs [1]. They developed a probability-based algo-
rithm to calculate these measures. However, they only con-
sider the most probable paths. It underestimates the metrics
because some neglected possible paths may also contribute
to the measures. For instance, Fig. 1 presents a toy example
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FIGURE 1. An example of a probabilistic graph.

of a probabilistic graph with presence probabilities illustrated
on the edges. There are three possible paths between v1 and
v2, namely S1, S2, and S3. The conditions for the paths S1,
S2, and S3 to be the shortest one are dependent. For instance,
the condition for S2 to be the shortest path relies on the
absence of S1, and the condition for S3 to be the shortest path
depends on the absence of both S1 and S2. In addition, v1
and v2 also have a probability to be disconnected. Ignoring
the dependency and disconnection possibility may result in
unpredictable biases.

In this paper, we propose a novel approach to efficiently
approximating the betweenness centrality of probabilistic
graphs. Motivated by the possible-world semantics in the
computation of probabilistic graphs [2], [9], we define the
concept of possible shortest paths between two nodes. Each
possible shortest path has a probability of being the shortest
one between the two nodes in one of the realizations, e.g.,
S1, S2, and S3 as illustrated in Fig. 1. Additionally, the prob-
abilities of these paths are inter-dependent (i.e., a path to be
the shortest one depends on the absence of paths which are
shorter than it).

Based on the definition of possible shortest paths, we for-
mally define the betweenness centrality for probabilistic
graphs. Similar to the conventional definition of betweenness
centrality for deterministic graphs whichmeasures the sum of
the fraction of all-pairwise shortest paths that pass through a
node or an edge, our definition measures the sum of the frac-
tion of all-pairwise possible shortest paths that pass through
a node or an edge. Besides, the contribution of a possible
shortest path to the computation of betweenness centrality
is relevant with its probability to be the shortest path in a
realization of the probabilistic graph.We demonstrate that the
new definition of betweenness centrality is a general case of
the deterministic one.

However, it is time-consuming to explore all possible
shortest paths between two nodes exhaustively. To tackle this
issue, we develop a heuristic algorithm to improve efficiency.
Instead of exploring all possible shortest paths, the algorithm
uncovers those paths with high probabilities. It significantly
improves the computational efficiency while maintains high
accuracy. Then we develop an efficient algorithm to approx-
imate the betweenness centrality of a probabilistic graph.

Finally, we conduct extensive experiments to validate the
effectiveness and efficiency of our method. Compared with
the state-of-the-art approaches, our method is both effec-
tive and efficient in estimating the betweenness centrality of
homogeneous and heterogeneous probabilistic graphs.

In summary, we make the following contributions:

1) To the best of our knowledge, we are the first to propose
the concept of possible shortest paths and formally
define the possible shortest path based betweenness
centrality for probabilistic graphs. The definition gen-
eralizes the deterministic betweenness centrality and
measures the centrality of nodes and edges for prob-
abilistic graphs.

2) We design a heuristic algorithm to efficiently explore
possible shortest paths between two nodes in a proba-
bilistic graph.We also develop an efficient algorithm to
approximate the betweenness centrality of a probabilis-
tic graph. Compared with the Monte Carlo method, our
algorithm avoids the computationally intensive sam-
pling process and thus is more efficient.

3) We evaluate the effectiveness and efficiency of the
proposed method. The experimental results show that
our method outperforms state-of-the-art methods.

The rest of this paper is organized as follows. In Section II,
we introduce the probabilistic graph model and its compu-
tation. In Section III, we present the definitions of possible
shortest paths and probabilistic betweenness centrality for
probabilistic graphs. In Section IV, we develop algorithms to
compute the betweenness centrality efficiently. In Section V,
we conduct experiments to validate the effectiveness and
efficiency of our method. After reviewing the relevant work
in Section VII, we conclude this paper in Section VIII.

II. PROBABILISTIC GRAPH MODEL
Denote a probabilistic graph by G(V ,E,P), where V repre-
sents the set of nodes; E ⊂ V × V corresponds to the set
of edges; and P contains the probabilities associated with the
edge set E . Let Pr[(vi, vj)] ∈ [0, 1] be the probability of the
edge between vi and vj; Pr[(vi, vj)] = 0 if there is no edge and
Pr[(vi, vj)] = 1 if there is a definite edge between vi and vj.
In the rest of this paper, we also use pij as an alternative of
Pr[(vi, vj)] for convenience if it does not confuse. We assume
that edges are independent of one another.

In the possible-world semantics, a probabilistic graph G
is viewed as a generative model for discrete deterministic
graphs. A deterministic graph Gs(V ,Es) can be generated
from G by independently sampling each edge eij ∈ E with
the associated probability pij. We refer to Gs @ G as a
realization or a sample of G. Since edge independence is
assumed, the probability of Gs can be calculated by:

Pr(Gs) =
∏
eij∈Es

pij
∏

eij∈E\Es

(1− pij). (1)

Each Gs is a possible world of G and there are totally 2|E|

possible worlds. Given a measure φ (e.g., betweenness cen-
trality, clustering coefficients), let φ(Gs) denote the value
of the measure obtained from a sampled graph Gs. Then,
we can calculate the expected value of the measure for a
probabilistic graph G by enumerating all the possible worlds
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Gs and applying the formulation:

φ̂ = E[φ(G)] =
∑
GsvG

φ(Gs) Pr(Gs) (2)

However, computation of the expected value needs enumer-
ate all possible worlds which grows exponentially with the
number of uncertain edges. It is intractable for graphs with
even some dozens of uncertain edges.

A common approach to overcoming the intractability of
computing the expected measure is the Monte Carlo (MC)
method which consists of the following steps:

1) Randomly sample r discrete graphs from the proba-
bilistic graph according to P;

2) Compute the values of the measure for all sampled
graphs;

3) Approximate the expected value of the metric by cal-
culating the mean of the obtained values.

The Chernoff bound theorem [1] guarantees that the cal-
culated mean is an unbiased estimate of the concerned
measure:
Theorem 1 (Chernoff Bound): Let X1,X2, . . . ,Xr be inde-

pendent and identically distributed random variables
bounded by the interval [0, 1]. We define the empirical mean
of these variables by X̄ = 1

r

∑r
i=1 Xi. The expectation of

these variables is µ = E[Xi]. If r ≥ 3
ε2µ

ln( 2
δ
), then we have

Pr
(
|X̄ − µ| ≥ εµ

)
≤ δ. We say that the r samples provide

with an (ε, δ)-approximation of µ.
Theorem 1 guarantees that we can obtain an unbiased esti-

mate of a measure without enumerating all possible worlds
of a probabilistic graph. However, the sampling process of
a probabilistic graph is still computationally intensive. For
instance, let µ ≈ 0.1, we have to do at least 15,895 samples
to provide with an (0.1, 0.01) approximation ofµ. To address
this issue, in this paper, we develop a novel approach to
estimating the betweenness centrality of a probabilistic graph
efficiently.

III. DEFINITIONS
In this section, we first present the concept of possible short-
est paths and then formally define the betweenness centrality
for probabilistic graphs.

A. POSSIBLE SHORTEST PATHS
For deterministic graphs, the shortest paths between two
nodes are definite. However, for probabilistic graphs, since
there are many possible realizations of a probabilistic graph,
the shortest paths between two nodes in different realizations
are not necessarily identical. There are many possible shortest
paths between two nodes in a probabilistic graph. In this
paper, we define the possible shortest paths between two
nodes in a probabilistic graph as follows:
Definition 1 (Possible Shortest Paths): Given a proba-

bilistic graph G(V ,E,P) and a node pair (vi, vj), the pos-
sible shortest paths between vi and vj is defined as a set

P(vi, vj) = {S1, S2, . . . , SHij} constituted by all shortest paths
existing in any possible realizations of G between vi and vj.
In the rest of this paper, we also write P(vi, vj) as Pij

for simplicity if no ambiguity arises. Hij = |Pij| is the
number of all possible shortest paths between vi and vj. Sk =
[e1, e2, · · · , e|Sk |] is one of the possible shortest paths repre-
sented by a sequence of connected edges; and |Sk | represents
the length of the path Sk .
As mentioned in Section II, each possible realization of

a probabilistic graph has a presence probability. Then each
shortest path in a possible realization also has an associ-
ated probability. Since edges are independent of one another,
motivated by the implication of possible worlds, we define
the absolute probability of a path Sk as the product of edge
probabilities in Sk :

Pr(Sk ) =
∏
e∈Sk

Pr(e). (3)

The absolute probability of a possible path does not depend
on the existence of other paths. Take the probabilistic graph
in Fig. 1 as an example, there are three possible shortest paths
between v1 and v2, namely:

S1 = [(v1, v2)],

S2 = [(v1, v4), (v4, v2)],

S3 = [(v1, v4), (v4, v3), (v3, v2)],

respectively. The absolute probabilities for the three paths are:

Pr(S1) = 0.2,

Pr(S2) = 0.7× 0.3 = 0.21,

Pr(S3) = 0.7× 0.6× 0.4 = 0.168,

respectively. However, the probability for a possible path
to be the shortest one in a realization depends on the
non-existence of other shorter possible paths. Formally,
the relative probability of Sk to be the shortest path in a
realization of G is defined as:

P̂r
[
Sk |Sk ∈ Sij

]
≈

∏
Sl∈Pij,|Sl |<|Sk |

[1− Pr(Sl)] Pr(Sk ). (4)

That is, the relative probability of a path to be the shortest one
is dependent on the existence of other paths shorter than it. It
is worth noting that a path may share links with the shorter
one, e.g., the path S3 shares a common link (v1, v4) with S2.
Therefore, the right part in (4) is only an approximation of
the relative probability. However, we prove that the approx-
imation has a bounded error with 0.083 (See the Appendix).
The relative probability of the shortest path inPij equals to its
absolute probability. The relative probabilities of other paths
in Pij can be calculated recursively. For instance, the relative
probabilities of the three paths in Fig. 1 can be calculated as:

P̂r(S1) = Pr(S1) = 0.2,

P̂r(S2) ≈ (1− Pr(S1)) Pr(S2) = 0.168,

P̂r(S3) ≈ (1− Pr(S1))(1− Pr(S2)) Pr(S3) = 0.106
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It is worth noting that there is also a probability that two nodes
are disconnected.We employ3ij to represent a non-exist path
between vi and vj, and |3ij| = ∞. Then the probability that
vi and vj are disconnected can be calculated by:

P̂r(3ij) =
∏

Sk∈Pij

(1− Pr(Sk )) (5)

We define the connectivity of two nodes as follows:
Definition 2 (Probabilistic Connectivity): Given a proba-

bilistic graph G(V ,E,P) and a node pair (vi, vj), the proba-
bilistic connectivity ϕij of vi and vj is the probability that there
is at least one path between vi and vj in an arbitrarily selected
realization of G.
Accordingly, the connectivity of vi and vj can be calculated
by:

ϕij = 1− P̂r(3ij) = 1−
∏

Sk∈Pij

(1− Pr(Sk )) (6)

For example, the connectivity of nodes v1 and v2 in Fig. 1 is

ϕ12 = 1− (1− Pr(S1))(1− Pr(S2))(1− Pr(S3)) = 0.474,

indicating that v1 and v2 have a probability of 0.474 to be con-
nected in an arbitrarily selected realization of the probabilistic
graph. Obviously, if the absolute probability of a possible
shortest path is 1.0, then P̂r(3ij) = 0 and ϕij = 1, indicating
a definite connection between vi and vj.

B. BETWEENNESS CENTRALITY
The betweenness centrality of a node v for a deterministic
graph G(V ,E) is defined as:

cB(v) =
2

(|V | − 1)(|V | − 2)

∑
s,t∈V

σ (s, t|v)
σ (s, t)

, (7)

where σ (s, t|v) =
∑

Sk∈Pst
1Sk (v) is the number of the short-

est paths between s and t passing through the node v; Pst is
the set of the shortest paths between s and t; σ (s, t) = |Pst |
is the total number of the shortest paths between s and t; |V |
is the number of nodes in G(V ,E).
Without loss of the generality, we define the betweenness

centrality for probabilistic graphs based on the definition of
possible shortest paths.
Definition 3 (Betweenness Centrality of a node for Prob-

abilistic Graphs): Given a probabilistic graph G(V ,E,P)
and a node v, the probabilistic betweenness centrality of v
is defined as:

cB(v) =
2

(|V | − 1)(|V | − 2)

∑
s,t∈V

σ (s, t|v)
σ (s, t)

ϕst , (8)

where σ (s, t|v) =
∑

Sk∈Pst
1Sk (v)P̂r(Sk ) is the sum of relative

probabilities of possible shortest paths between s and t that
pass through the node v; 1Sk (v) is the indicator function which
is 1 when Sk passes through v, and 0 otherwise; σ (s, t) =∑

Sk∈Pst
P̂r(Sk ) is the sum of relative probabilities of all

possible shortest paths between s and t; ϕst is the connectivity

of the nodes s and t; and |V | is the number of nodes in
G(V ,E,P).

According to the definition, the betweenness centrality of a
node in probabilistic graphs measures the fraction of relative
probabilities of possible shortest paths passing through the
node. Similarly, we can define the probabilistic betweenness
centrality of an edge as:

cB(e) =
2

(|V |)(|V | − 1)

∑
s,t∈V

σ (s, t|e)
σ (s, t)

ϕst , (9)

where σ (s, t|e) =
∑

Sk∈Pst
1Sk (e)P̂r(Sk ) is the sum of relative

probabilities of possible shortest paths between s and t that
pass through the edge e; 1Sk (e) is the indicator function which
is 1 when Sk passes through the edge e, and 0 otherwise;
σ (s, t) =

∑
Sk∈Pst

P̂r(Sk ) is the sum of relative probabilities
of all possible shortest paths between s and t; ϕst is the
connectivity of the nodes s and t; and |V | is the number of
nodes in G(V ,E,P).

It is worth noting that the probabilistic definition of
betweenness centrality is consistent with deterministic one.
When the presence probabilities of all edges in a probabilistic
graph equal to 1.0, indicating a deterministic graph, Equa-
tion 7 degrades into Equation 8 since P̂r(Sk ) = 1.0 and
ϕ = 1.0.

IV. ALGORITHMS
In this section, we first develop a heuristic algorithm to
explore possible shortest paths between two nodes efficiently.
Then we present the algorithm to calculate the betweenness
centrality for probabilistic graphs.

A. POSSIBLE SHORTEST PATH EXPLORATION ALGORITHM
Determining the connection probability of two nodes in
a probabilistic graph has been shown as a #P-complete
problem [10]. As a consequence, finding all possible shortest
paths between two nodes in a probabilistic graph is also a #P-
hard problem. To address this issue, we develop a heuristic
algorithm to explore possible shortest paths between two
nodes in a probabilistic graph efficiently. The pseudo-code is
presented in Algorithm 1, which includes the following four
major steps:

1) We view the probabilistic graph as a deterministic
graph by ignoring the probabilities of edges (Line 1)
and apply any shortest path algorithms (e.g., the Dijk-
stra algorithm or the breadth-first search algorithm) on
the deterministic graph to find all the shortest paths
between two nodes (Line 2).

2) For each of the shortest paths returned, we add the
path into Pst . Then we find the edge with the smallest
probability within the path and remove it from the
deterministic graph. (Lines from 4 to 7).

3) We find the shortest paths between the two nodes in the
modified deterministic graph (Line 8) and calculate the
connectivity of s and t based on Pst (Line 9).
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Algorithm 1 Possible shortest path exploration algorithm
Input: A probabilistic graph G(V ,E,P); the source

node s and the destination node t; a predefined
threshold θ .

Output: Pst : A set of possible shortest paths
Initialization: Pst = ∅;ϕst = 0

1 G← ignoring the probabilities in G;
2 P ′← all the shortest paths between s and t in G;
3 while ϕst < θ & P ′ 6= ∅ do
4 foreach S in P ′ do
5 Add S into Pst ;
6 emin← edge with the smallest probability in S;
7 Remove emin from G;

8 P ′← all the shortest paths between s and t in G;
9 ϕst ← connectivity of s and t based on Pst ;

4) Repeat Step 2 to 3 until one of the following conditions
is satisfied (Line 3): i) There are no paths between s and
t due to edge removals; ii) The connectivity between
s and t based on the current set of obtained possible
shortest paths is greater than a predefined threshold θ ,
e.g., θ = 0.99.

The time complexity of Algorithm 1 depends on the short-
est path algorithm selected to explore the shortest paths.
For unweighted undirected graphs, the time complexity of
the breadth-first search algorithm is O(|V | + |E|). If an
average of d̄ loops are required for the algorithm, the time
complexity of the heuristic algorithm is O[d̄(|V | + |E|)].
Intuitively, the value of d̄ is relevant to the distribution of
edge probabilities. For deterministic graphs, we have d̄ = 1.
Our algorithm is guaranteed to converge because we set a
connectivity threshold of θ . We can also further to improve
the efficiency of our algorithm by setting a threshold of
the maximum number of possible paths between two nodes.
However, it sacrifices some calculation accuracy.

B. BETWEENNESS CENTRALITY ALGORITHM
Based on the possible shortest path explored, we then develop
an algorithm to calculate the betweenness centrality of a prob-
abilistic graph. The pseudo-code is presented in Algorithm 2,
which contains the following major steps:

1) For each node pair, we calculate the set of possible
shortest paths based on Algorithm 1. We then calculate
the connectivity of the two nodes (Lines from 1 to 3).

2) For each possible shortest path, we traverse every node
and edge in the path and update the betweenness cen-
trality of the corresponding nodes and edges (Lines
from 4 to 8).

3) Repeat Step 1 to 2 until all node pairs are traversed.
4) Normalize the betweenness centrality of nodes and

edges (Lines from 9 to 10).
More precisely, we first calculate the possible shortest

paths between all node pairs and cumulatively update the

Algorithm 2 Betweenness centrality algorithm
Input: A probabilistic graph G(V ,E,P)
Output:Mnode: A node map;Medge: An edge map
Initialization:Mnode = {};Medge = {}

1 foreach node pair (s, t) do
2 Pst ← possible shortest paths between s and t;
3 ϕst ← connectivity of s and t based on Pst ;
4 foreach S ∈ Pst do
5 foreach v ∈ Intr(S) do
6 updateMnode(v) with

P̂r(S)
σ (s,t)ϕst

7 foreach e ∈ S do
8 updateMedge(e) with

P̂r(S)
σ (s,t)ϕst

9 Normalize the values ofMnode with (n− 1)(n− 2)/2;
10 Normalize the values ofMedge with n(n− 1)/2;

betweenness centrality of the internal nodes and edges.
Finally, we normalize the calculated values. The time com-
plexity of Algorithm 2 isO[d̄(|V |+|E|)|V |2/2]. Algorithm 2
calculates the betweenness centrality of an uncertain graph.
In each loop, it calculates the set of all possible shortest
paths between a node pair by invoking Algorithm 1 and
cumulatively updates the betweenness centrality. The algo-
rithm terminates when all node pairs are traversed. However,
we believe that the efficiency of our algorithm could be
improved by randomly sampling a fixed number of node
pairs. Riondato et al. [11] proposed an efficient randomized
algorithm for betweenness estimation in deterministic graphs.
The algorithm approximates betweenness centrality with the
desired accuracy and confidence by calculating the shortest
paths of a fixed number of randomly sampled node pairs. The
number of samples needed does not depend on the number
of nodes in the graph. However, it is still an open problem
whether the sampling method is suitable for uncertain graphs
in the sense of possible shortest paths. More theoretical
analysis is needed before we apply the scheme to uncertain
scenarios.Wewill explore this research direction in our future
work.

It is worth noting that Algorithm 1 cannot guarantee to
obtain all the possible shortest paths for any node pairs. For
example, in Fig. 2, the algorithm will not find the path S2 =
[(v1, v2), (v2, v4), (v4, v3)] between v1 and v3 if p1 ≤ p2 since
the edge (v1, v2) is removed after the algorithm identifies
the primary shortest path S1 = [(v1, v2), (v2, v3)]. However,
we argue that such a failure does not affect the results dramat-
ically since the error is up-bounded by a small value. Besides,
the exceptional case presented in Fig. 2 leads to the maximum
error amongst all exceptional cases. We present the rigorous
theoretical proof of the claim in the Appendix.

V. EXPERIMENTS
In this section, we evaluate the effectiveness and efficiency of
our method in assessing the centrality of probabilistic graphs.
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FIGURE 2. An exceptional case where algorithm 1 fails finding a possible
shortest path from v1 to v3 if p1 < p2 ≤ 1.

TABLE 1. Default parameter settings.

A. EXPERIMENTAL SETTINGS
We conduct the experiments based on artificial networks gen-
erated by two classical network models, namely the Erdős-
Rényi model (ERmodel) and the Barabási-Albert preferential
attachment model (BA model). We select these two models
because they generate homogeneous (random) and hetero-
geneous (scale-free) networks, respectively [12]. Given the
number of nodes n, the ER model generates a graph by
choosing each of the possible edges with a fixed probability
p. Given the number of nodes n and the number of edges m
to attach from a new node to existing nodes, the BA model
generates a graph whose node degree follows a power-law
distribution. Given a network generated, we assign each edge
with a probability uniformly drawn from the range [pmin, 1],
where 0 ≤ pmin ≤ 1 is a parameter to evaluate the impacts
of the lower bounds of edge probabilities. The threshold
θ is used to indicate when the algorithm terminates the
exploration process of possible shortest paths between two
nodes. Large θ leads to more substantial coverage of possible
shortest paths in the output of Algorithm 1. According to our
experiments, when θ ≈ 0.8, our algorithm achieves the best
performance. Hence, we set θ = 0.8 the default value. In the
following experiments, we use the default parameter settings
listed in Table 1 unless it is pointed out. To guarantee the
statistical significance, we repeat the experiments 50 times
and calculate the average of the results unless it is pointed
out.

B. EFFECTIVENESS VALIDATION
We validate the effectiveness of our method by evaluating
the impacts of the threshold θ , the edge probabilities of
probabilistic graphs, and the network properties such as the
number of nodes and edges (or densities).

1) EVALUATION METRICS
To evaluate the effectiveness of our method, we employ the
Monte Carlo (MC) method as a baseline. Given a proba-
bilistic network with parameters n and m, we sample r =
2
ε2

ln 2
δ
realizations of the network. Then we calculate the

betweenness centrality of the deterministic realization using
Ulrik Brandes’ algorithm [13]. In the experiments, we set ε =
10−2 and δ = 0.05, respectively. To evaluate the divergence
of an estimation method from the MC approach, we employ
two metrics including the mean absolute error (MAE) and
Spearman Correlation Coefficient (SCC). Explicitly, given an
uncertain graphG, we calculate the betweenness centrality for
each node with the MC method and the evaluating method,
respectively. Suppose the values calculated by the two meth-
ods for node v are BMCv and B∗v , respectively, the MAE is
defined as

MAE =
1
n

∑
v∈G
|BMCv − B

∗
v |. (10)

where n is the number of nodes. This metric evalu-
ates the absolute errors of a method compared with the
MC method.

SCC is also a useful metric to evaluate the effectiveness.
The primary goal of calculating the betweenness centrality is
to evaluate the importance of nodes. Thus, the orders of nodes
are somewhat more essential than the absolute values of node
betweenness centrality. The SCC metric evaluates the order
fluctuations of nodes with the MC method as a baseline. To
calculate the SCC,we sort the nodes according to the obtained
betweenness centrality. Let XMCv and X∗v be the ranks of node
v according to the MC method and the evaluating method,
then the SCC can be calculated as

SCC = 1−
6
∑

v∈G(X
∗
v − X

MC
v )2

n(n2 − 1)
(11)

where n is the number of nodes. The SCC metric evaluates
how well an evaluating method to rank the nodes with the
MC method as the baseline.

2) IMPACTS OF THE THRESHOLD θ

In this experiment, we evaluate the impacts of the param-
eter θ on the effectiveness of our method. The parameter
θ is the connectivity threshold to indicate when the algo-
rithm terminates with acceptable accuracy. A more signifi-
cant value of θ ensures a more substantial coverage of all
possible shortest paths between a node pair. Fig. 3 presents
the violin plot of calculated absolute errors. The top bars
in the figures represent the maximum errors, and the inner
bars show the mean of the errors. Besides, the outer shape
represents all possible values, and the thickness indicates how
common the value is. We find that our method has a very
small MAE for both network models. Moreover, most errors
concentrate in the range from 0 to 0.005 even θ is small
(e.g., 0.09). It demonstrates the effectiveness of our method.
Additionally, the MAE and maximum error decrease with the
increase of θ when θ < 0.79. However, when θ > 0.79,
the MAE and maximum error increase slightly versus θ .
It strongly indicates that a very large θ may over-estimate
the betweenness centrality. Comparisons between the two
network model show that the maximum errors for the BA
model are much larger than that for the ER model. It is
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FIGURE 3. Violin plot of absolute errors versus θ . (a) ER model. (b) BA
model.

FIGURE 4. SCC versus θ .

because the BAmodel has more exceptional structures shown
in Fig. 2.

Fig. 4 presents the Spearman Correlation Coefficients. The
results show that the SCC is always greater than 0.99 for
both network models, indicating high effectiveness of our
method in ordering the nodes according to their central-
ity in the possible-world semantics. However, analogous to
MAE, SCC is not always monotonically increasing versus the
increase of θ . When θ > 0.79, our method over-estimates
the betweenness centrality, resulting in a lower SCC. Com-
parisons between the results of the two network models show
that our method performs better for the ERmodel than the BA
model because the BAmodel is easier to form the exceptional
structures.

3) IMPACTS OF EDGE PROBABILITIES
In this experiment, we evaluate the impacts of edge prob-
abilities on the effectiveness of our possible-shortest-path
based method (PSP). To further demonstrate the advance of
our method, we compare our method with the most probable
path method (MPP) [1]. TheMPPmethod computes the most
likely paths in much the same way that shortest paths are
computed on weighted discrete graphs (edge weights are
calculated by − log(pij)), by applying the Dijkstra’s shortest
path algorithm. Instead of expanding on the shortest path,
the method expands the most probable path. In the experi-
ment, we adjust the lower bound pmin of the edge probabil-
ity in the probabilistic graphs. Then we apply the PSP and
MPP methods on the graph and calculate the SCC for both
methods.

FIGURE 5. SCC versus pmin. (a) ER model. (b) BA model.

FIGURE 6. Scatter plots of the MC-based Betweenness versus estimated
one. (a) ER model. (b) BA model.

Fig. 5 illustrates the results. Our method outperforms the
MPPmethod in both accuracy and stability. The lower bounds
of edge probabilities have little impact on the effectiveness of
our method. However, the SCC of the MPPmethod decreases
versus the increase of the lower bound. It is because the
generated probabilistic graphs are becoming more determin-
istic with the increase of the lower bounds of edge prob-
abilities. Thus, using the most probable paths to approxi-
mate the shortest paths results in more substantial estimation
errors.

To gain an insight into the results, we randomly select
one of the experiments and present the scatter plot of the
MC-based betweenness versus the betweenness estimated
by our method and the MPP method. Fig. 6 presents the
results. We obtain similar results for other SCC experi-
ments. We find that the results obtained by our method
are linearly correlated with the MC-based betweenness for
both network models. However, the MPP approach tends
to under-estimate the betweenness of the nodes which
are not essential and over-estimate the betweenness of
the nodes which have relatively high MC-based between-
ness. These findings further verify the effectiveness of our
method.

4) IMPACTS OF NETWORK PROPERTIES
In this experiment, we investigate how the number of nodes
impacts the effectiveness of our method.We keep the network
density as a constant in the experiment. Fig. 7 illustrates how
SCC changes versus the number of nodes. The results show
that our method is more effective in estimating the between-
ness centrality of nodes. Our method obtains much higher
correlation coefficients than the MPP method. Additionally,
our method is also more stable than the MPP method for both
network models.
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FIGURE 7. SCC versus the number of nodes. (a) ER model. (b) BA model.

FIGURE 8. Violin plot of absolute errors versus the number of nodes.
(a) ER model. (b) BA model.

FIGURE 9. SCC versus the network densities. (a) ER model. (b) BA model.

To gain an insight into the performance of our method,
we also calculate the absolute errors of our method and the
MPP method. Fig. 8 presents the violin plot of the results.
The MAE for both the ER and BA models are not sensitive
to the change of the number of nodes. Moreover, the majority
of the absolute errors are sufficiently small for both network
models, further confirming the effectiveness of our method.
Besides, the absolute errors of the MPP method are much
larger than that of ours for both network models. The results
also show that the MPP method has much more significant
variances of absolute errors than ours, indicating the effec-
tiveness of our algorithm in estimating the actual values of
betweenness centrality.

We also examine the impacts of network densities on the
effectiveness of our method. In the experiment, we keep
the number of nodes as a constant. Fig. 9 plots the SCC
versus the network density. The results show that the net-
work density has little impacts on the results of our method.
Besides, the accuracy of the MPP method decreases ver-
sus the increase of network density. It indicates that the
most probable path is not a good substitution for the
shortest path, especially when the probabilistic graphs are
dense.

FIGURE 10. Efficiency evaluation of the parameter θ .

C. EFFICIENCY EVALUATION
In this experiment, we evaluate the efficiency of our method
by examining the computation time used to calculate the
betweenness centrality of nodes. The experiments are imple-
mented in Python 2.7 and run on a server with 64-bit Ubuntu
16.04.5, Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz and
128.0GB RAM.

1) IMPACTS OF THE THRESHOLD θ

We first evaluate the impacts of the parameter θ on the
efficiency of our method. The parameter θ is the connectivity
threshold to indicate when the algorithm can terminate with
acceptable accuracy. Although a more significant value of
θ ensures a more substantial coverage of the all possible
shortest paths between a node pair, it demands more com-
putations. By adjusting the value of θ , we examine the total
computation times used to explore the possible shortest paths
between all node pairs of the network. Fig. 10 illustrates
the computation times for different values of θ . The results
show that the computation time gradually increases versus θ .
When θ approaches to 1.0, indicating an exhaustive explo-
ration effort of all possible shortest paths between a node
pair, the computation time increases sharply. Given that the
estimation accuracy maximizes at θ ≈ 0.8, we strongly
suggest that θ = 0.8 is a suitable choice to achieve high
effectiveness and efficiency.

2) IMPACTS OF NETWORK DENSITY
Since the MC method may converge earlier than the theoret-
ical number of samples, we define a new metric to indicate
the convergence of the MC method. In each round of the
MC method, we calculate the average betweenness centrality
of all nodes. Then we calculate the differences of the aver-
age betweenness centrality between two consecutive epochs.
If the differences of the average betweenness centrality are
less than 10−6 within five consecutive rounds, we say that the
MC simulation converges. Fig. 11 presents the convergence
time of the MC method based on the ER and BA models,
respectively. The red points mark the convergences based
on our metric. The results show that the simulations reach
convergence with much fewer samples than the theoretical
number of samples.
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FIGURE 11. Convergence time of the MC simulations. (a) ER model. (b) BA
model.

FIGURE 12. Computation time versus the number of edges. (a) ER model.
(b) BA model.

Fig. 12 presents the computation time versus the network
density. We find that the computation time used by the
MC method increases linearly versus the number of edges
approximately. It is because the MC method has to sam-
ple the probabilistic graph. Therefore, more edges indicate
more trials to instantiate a realization of the probabilistic
network. It is precisely why the computation time grows
linearly versus the network density for the Monte Carlo
method. Compared to the MC method, the MPP method and
our method cost much less time to calculate the between-
ness centrality. The inset figures present the details of the
two methods. The results show that the computation time
used by our method increases slightly versus the increase
of network density. The MPP method costs the least com-
putation time. It is because the MPP method only computes
the probable paths. Our algorithm consumes more time than
the MPP method. However, our method is more efficient
than the MC approach while obtains comparable accuracy.
Although the MPP method has much higher computational
efficiency, it has more calculation errors in the possible world
semantics.

As shown in the inset figure, there is a transition phase of
the computation time for our method. Before the transition
point, the computation time is almost constant as the net-
work density increases. However, after the transition point,
the computation time grows slight versus the network den-
sity. It can be explained as follows: when the density of a
probabilistic network is lower than a threshold, the number of
possible shortest paths between pairs of nodes is almost con-
stant. However, when the density is higher than the threshold,
the number of possible shortest paths increases if the network
contains more edges. To verify this conjecture, we plot the
number of possible shortest paths between node pairs versus

FIGURE 13. Number of possible shortest paths between node pairs
versus network density.

TABLE 2. A summary of the number of edges.

the network density in Fig. 13. The vertical lines illustrate the
error bars at each data point. The average number of possible
shortest paths displays a transition phase with the increase
of network density. Besides, the number variance of possible
shortest paths between two nodes becomes more significant
when the probabilistic graphs become denser. We believe
that the transition point is relevant to the distribution of edge
probabilities, though the exact relationship between them is
still an open problem.

VI. APPLICATION
In this section, we apply the proposed metrics to evaluate the
importance of autonomous systems (ASes) on the Internet.

A. DATASET
We mainly focus on the core Internet composed of the top
autonomous systems ranked by the CAIDA [14] since these
ASes are more vital than others. The CAIDA ranks the ASes
with four different metrics, namely the number of ASes
in customer cone (#ASes), the number of IPv4 prefixes in
customer cone (#Pref), the number of IPv4 address in cus-
tomer cone (#Addr), and the AS transit degree (#Tran). We
retrieve the top 1000 ASes for each metric and get 1996 dis-
tinct ASes. We then build the topology of these ASes using
the BGPStream platform, which is an open-source software
framework for the analysis of both historical and real-time
Border Gateway Protocol (BGP) measurement data [15]. To
capture the dynamics of the Internet on different timescales,
we construct two types of deterministic networks from
2015 to 2016 by day and by month, respectively. We obtained
731 daily and 24monthly deterministic networks. A summary
of the number of edges is presented in Table 2.

In order to examine the dynamic nature of the Internet,
we calculate the edge overlapping ratio between consecutive
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FIGURE 14. Edge overlapping ratios between consecutive daily networks.

deterministic networks as:

r =
|Et ∩ Et+1|
|Et ∪ Et+1|

where Et is the edge set of the network at time t , and | · |
represents the cardinal of a set. Fig. 14 shows the overlap-
ping edge ratio of the daily networks. The dashed horizontal
line illustrates the mean overlapping ratio which is about
0.76. We find that nearly a quarter of the edges change over
time, indicating that a proper model is desired to capture the
dynamic nature of the Internet. As demonstrated in previous
sections, the probabilistic graph model is a suitable choice in
modeling dynamic networks. In this following experiments,
we build probabilistic graphs based on the above obtained
deterministic networks of the Internet.

B. EFFECTIVENESS VALIDATION
We evaluate the importance of obtained nodes in two
approaches. The first is to compare the ranks of ASes based
on our proposed probabilistic betweenness centrality with
the AS ranks ordered by the CAIDA. Since the ranks of
ASes ordered by the CAIDA are based on the dataset up
to 1st June 2016, we build the probabilistic graph of the
Internet based on the three monthly deterministic networks
from March to May 2016. We explicitly remove the stub
nodes in the built probabilistic graph for computation effi-
ciency. The final probabilistic graph contains 1893 nodes and
54241 edges.

Table 3 lists the top 10 ASes for different metrics. Btwn
indicates the probabilistic betweenness centrality of the AS
calculated based on the built probabilistic graph. Deg repre-
sents the degree of the AS in the probabilistic graph. #ASes is
the number of ASes in customer cone. #Addr is the number of
addresses in customer cone. #Pref is the number of prefixes
in customer cone. #Trans is the transit degree of the AS. The
last four metrics are used by the CAIDA to rank the ASes.
Comparing the top 10 ASes obtained by different metrics,
we find that the proposed probabilistic betweenness central-
ity can retrieve most of the substantial ASes promoted by
the CAIDA metrics. Besides, the probabilistic betweenness

TABLE 3. Top 10 ASes for each metric.

centrality also promotes ASes which might be underesti-
mated by other metrics. We highlight these ASes with bold
in the second column in Table 3. AS9498 is owned by Bharti
Airtel Limited [16] which is a leading global telecommu-
nications company with operations in 20 countries across
Asia and Africa. AS24482 is operated by SG.GS which is a
Singapore Network Provider [17]. AS12989 is registered by
ORG-EIS3-RIPE, owned by a Netherlands Internet provider,
Eweka Internet Services B.V. [18]. All of these ASes are
Internet Service Providers that play essential roles in the
global communication of the Internet. It is worth noting that
most of the top 10 ASes promoted by the Degmetric are also
similar to those promoted by other metrics. It indicates that
most of the critical ASes have many connections with other
ASes. It coincides with the intuition that important ASes tend
to be allocated with more resources.

To further validate our speculation, we also calculate the
Spearman correlations of the top 100 ASes across these met-
rics. The Spearman correlation is defined as:

ρ = 1−
6
∑

(r iX − r
i
Y )

n(n2 − 2)

where r iX and r iY is the rank of i-th object according to X
and Y , respectively; and n is the number of objects. Table 4
shows the results. The results demonstrate that the metric
of probabilistic betweenness centrality has high correlations
with the metrics used by the CAIDA. It indicates that the met-
ric of probabilistic betweenness centrality indeed captures the
importance of the ASes on the Internet. The highest correla-
tion is 0.7347 with the metric of AS transit degree. This fact
shows that the metric of probabilistic betweenness centrality
does not depend on any of the existing metrics. The moderate
correlations between the metrics suggest that our proposed
probabilistic betweenness centrality reconciles the conflicts
of the current metrics with a global perspective. Moreover,
the metric of node degree also has high correlations with the
CAIDA metrics. It is because the probabilistic graph is built
with a period of three months. Therefore, active ASes tend
to have relatively high degrees in the graph. Those results
show that both probabilistic betweenness centrality and node
degree are useful metrics to evaluate the importance of an AS
on the Internet.
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TABLE 4. Spearman correlations.

The second approach is to evaluate the disintegration of the
network via the removal of nodes [19] in an order sorted by
different metrics. The disintegration of a deterministic graph
G is defined as:

η =
1
n

∑
s<smax

nss2

where ns is the number of connected components containing
s nodes; and n is the number of nodes inG. The disintegration
measure the average size of the connected components except
for the giant one after the removal of a node. According to the
percolation theory [20], [21], the divergence point of the dis-
integration indicates a phase transition of network collapse.
A useful metric should lead to a relatively earlier collapse
of the network if we remove the nodes continually in the
order of the metric. In the experiment, we remove the nodes
continually according to their ranks ordered by different
metrics and then calculate the disintegration of the networks
after the removal of each node. As for probabilistic graphs,
we calculate the expected disintegration after the removal of
a node. Explicitly, we instantiate N realizations of the prob-
abilistic graph and approximate the expected disintegration
with the mean disintegration of these instantiated networks.
We set N = 100 in the experiments. Fig. 15 presents the
results. Besides the four CAIDA metrics, we also compare
the effectiveness of probabilistic betweenness centrality with
the metric of node degree. We find that node removals based
on the four CAIDA metrics do not result in any apparent net-
work collapses. In contrast, both the metrics of probabilistic
betweenness centrality and node degree successfully result
in network collapses with the continual removals of nodes.
However, our metric achieves an earlier collapse (around
at the 550th node) than that of node degree (about at the
950th node). It demonstrates that the proposed probabilistic
betweenness centrality is more effective in assessing the vul-
nerability of the Internet.

Conclusion: The proposed metric of probabilistic
betweenness centrality can promote these important ASes
ranked high by the four CAIDA metrics. Besides, the metric
also results in the earliest collapse of the network compared
to other metrics. These results validate the effectiveness of the
metric in evaluating the importance of ASes on the Internet.

VII. RELATED WORK
Link uncertainty arises due to various reasons from the
dynamics of networks to data processing. Frank Harary

FIGURE 15. Effectiveness evaluation of proposed metrics based on
expected disintegration.

coined the notion of probabilistic graphs in 1969 [22]. Since
then, the probabilistic graph is widely used to characterize the
link uncertainty of graphs in many domains from biological
networks [23], [24], social networks [25], [26], and commu-
nication networks [27], [28], to database queries [29]–[31].
Due to the primary importance and great theoretical value of
probabilistic graphs, there are many studies relevant to this
work.

Several studies focus on measuring the criticality of nodes
and edges in probabilistic graphs. Frank first studied the
problem of finding shortest-path probability distributions in
graphs [22]. Sigal et al. [32] studied the shortest routing
problem in probabilistic graphs. Ji [33] studied the short-
est path problem with stochastic link length. They initially
proposed the concepts of the expected shortest path and
the most probable shortest path based on different deci-
sion criteria. Potamias et al. [2] studied the problem of the
k-nearest neighbor queries in probabilistic graphs. They pro-
posed novel distance functions by extending the concept of
the shortest path in deterministic graphs. The Monte Carlo
methods are used to determine the shortest path probabilities
between the edges. Hua and Pei [34] extend this to find the
shortest weighted paths most likely to complete within a
specific time constraint. Pfeiffer and Neville [1] developed
measures of path length, betweenness centrality, and clus-
tering coefficient in probabilistic graphs based on sampling
and probabilistic paths. In this paper, we complement the
study of the shortest path in probabilistic graphs by firstly
proposing the concept of possible shortest paths. Different
from previously studied where the length of the shortest path
between two nodes in a graph (either deterministic or prob-
abilistic) is deterministic, our definition of possible shortest
paths allows these paths have different lengths and associates
a probability to each of these paths. Besides, we further
formally define the measure of probabilistic betweenness
centrality based on the concept of possible shortest paths,
which fill the gap between probabilistic and deterministic
graphs.

There have been some studies addressing the vulnerability
assessment of probabilistic networks. Aggarwal et al. [35]
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studied the reliability of communication systems where links,
as well as nodes, have a certain probability of failure.
Colbourn [36] formulated the resilience of a network as the
expected number of node pairs which can communicate
in the network. They examined the analysis and synthesis
problems for resilience in a setting where links fail inde-
pendently with known probabilities. Karger [37] introduced
the first fully polynomial randomized approximation scheme
for the all-terminal-reliability problem where each of the
edges causes failures independently with some given prob-
ability. Neumayer and Modiano [38] proposed some network
performance metrics to evaluate the average two-terminal
reliability in polynomial time under independent random
line-cuts. Agarwal et al. [39] developed a unified framework
to evaluate the vulnerability of communication networks
when the disruptive event has a probabilistic nature, defined
by an arbitrary probability density function. They employed
computational geometric tools to achieve efficient algo-
rithms to identify vulnerable points within the network under
various metrics. Dinh and Thai [3] adopted the expected
pairwise connectivity as a measure to quantify global con-
nectivity in probabilistic graphs and utilized it to formulate
vulnerability assessment as a stochastic optimization prob-
lem. Their method avoids considering all possible realiza-
tions of probabilistic graphs and can efficiently estimate the
expected pairwise connectivity with any desired accuracy.
However, these methods are still computation-intensive
and are not capable of the evaluation of large-scale
networks.

In this paper, we formally define the probabilistic between-
ness centrality based on the concept of possible shortest
paths. Moreover, we propose a heuristic algorithm to find
possible shortest paths between two nodes and thus cal-
culate the betweenness centrality efficiently. The extensive
experiments demonstrate the effectiveness and efficiency
of our method in assessing the centrality of probabilistic
graphs.

VIII. CONCLUSION
In this paper, we propose the concept of possible shortest
paths in probabilistic graphs. Then we formally define the
betweenness centrality of probabilistic graphs. The defini-
tion can be generalized to the case of deterministic ones.
To solve the efficiency issue, we develop a heuristic algo-
rithm to explore the possible shortest paths and implement
an efficient algorithm to calculate the betweenness centrality.
The algorithms avoid the sampling process and thus signif-
icantly improve the computational efficiency. We validate
the effectiveness and efficiency of our method with exten-
sive experiments. The experimental results show that our
approach well captures the centrality of probabilistic graphs
in the possible-world semantics. In future work, we would
like to investigate the applications of probabilistic graphs on
the evaluation of dynamic graphs such as evolving social
networks.

APPENDIX. ALGORITHM ERROR ANALYSIS
Theorem 2: The betweenness centrality error of Algo-

rithm 2 caused by the exception presented in Fig. 2 is
up-bounded by a small value of 0.083.

Proof: First, we prove that the case presented in Fig. 2
leads to the maximum errors amongst all exceptional cases.
According to Eqn (8), the values of betweenness centrality
are inversely proportional to and dominated by the square
of the number of nodes. Thus, the errors are also inversely
proportional to and dominated by the square of the number
of nodes. That is, networks with fewer nodes have more sub-
stantial calculation errors. The graph presented in Fig. 2 has
the fewest nodes amongst all exceptional cases. Therefore,
the errors of our algorithm are up-bounded by the maximum
error of the graph presented in Fig. 2.
Second, we calculate the maximum error of the graph

presented in Fig. 2. It is easy to see that the error is maximized
when p3 = p4 = 1.0. In the following, we compute the
maximum error under the condition that p3 = p4 = 1.0 and
p1 < p2. In this case, all possible shortest paths sets are:

S12 =

{
S121 = [v1, v2]

}
,

S13 =

{
S131 = [v1, v2, v3], S132 = [v1, v2, v4, v3]

}
S14 =

{
S141 = [v1, v2, v4]

}
S23 =

{
S231 = [v2, v3], S232 = [v2, v4, v3]

}
S24 =

{
S241 = [v2, v4]

}
S34 =

{
S341 = [v3, v4]

}
According to the Equation 8, the Betweenness Centrality of
v1 can be calculated theoretically by:

cB(v1) =
2

(4− 1)(4− 2)

[
P̂r(S121 )

P̂r(S121 )
ϕ12

+
P̂r(S131 )+ P̂r(S132 )

P̂r(S131 )+ P̂r(S132 )
ϕ13 +

P̂r(S121 )

P̂r(S121 )
ϕ14

]
=

1
3
(ϕ12 + ϕ13 + ϕ14)

However, Algorithm 1 fails to find the path S132 . Thus
the connectivity of nodes v1 and v3 is different from the
theoretical value, and the Betweenness Centrality of v1 is
computed as

c′B(v1) =
2

(4− 1)(4− 2)

[
P̂r(S121 )

P̂r(S121 )
∗ ϕ12

+
P̂r(S131 )

P̂r(S131 )
∗ ϕ′13 +

P̂r(S121 )

P̂r(S121 )
∗ ϕ14

]
=

1
3
(ϕ12 + ϕ′13 + ϕ14)
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Then the absolute error of v1 can be calculated by:

1v1 =
1
3
|ϕ13 − ϕ

′

13| (12)

We can easily find out that:

ϕ13 = 1− (1− P̂(S131 ))(1− P̂r(S132 )) = p1 + p21p2 − p
2
1p

2
2

ϕ′13 = 1− (1− P̂r(S131 )) = P̂r(S131 ) = p1p2

while P̂(S131 ) = p1p2 and P̂(S132 ) = p1(1 − p2). On the basis
of the prerequisite that p1 < p2 ≤ 1, we can figure out that:

1v1 =
1
3
[(p1 + p21p2 − p

2
1p

2
2)− p1p2]

=
1
3
[p1(1− p1p2)− p1p2(1− p1p2)]

=
1
3
[p1(1− p2)(1− p1p2)] <

1
3
[p2(1− p2)(1− p1p2)]

<
1
3
[p2(1− p2)] =

1
3
[−(p2 −

1
2
)2 +

1
4
]

<
1
3
∗
1
4
=

1
12
≈ 0.083

Analogously, we can compute the absolute error for other
vertexes as:

cB(v2) =
1
3
(ϕ12 + ϕ13 + ϕ23 + ϕ24)

c′B(v2) =
1
3
(ϕ12 + ϕ′13 + ϕ23 + ϕ24)

cB(v3) =
1
3
(ϕ13 + ϕ23 + ϕ34)

c′B(v3) =
1
3
(ϕ′13 + ϕ23 + ϕ34)

cB(v4) =
1
3
(

P̂r(S131 )

P̂r(S131 )+ P̂r(S231 )
ϕ13 + ϕ14 + ϕ24 + ϕ34)

=
1
3
[(1− p2)ϕ13 + ϕ14 + ϕ24 + ϕ34]

c′B(v4) =
1
3
(ϕ14 + ϕ24 + ϕ34)

Apparently, the absolute errors of v2 and v3 equal to that of
v1:

1v2 = 1v3 = 1v1 =
1
3
|ϕ13 − ϕ

′

13| (13)

while absolute error of 1v4 is

1v4 =
1
3
(1− p2)ϕ13

=
1
3
(p1 − p21p2 + 2p21p

2
2 − p1p2 − p

2
1p

3
2) (14)

Since p1 − p21p2 + 2p21p
2
2 − p1p2 − p

2
1p

3
2 = p1(1 − p2)(1 −

p1p2 + p1p22) < p1(1− p2), we can safely conclude that

1v4 <
1
3
∗
1
4
=

1
12
≈ 0.083 (15)

According to equation(15) and (13), the absolute errors
of our algorithms is bounded to a maximum value of 0.083,
which has a limited impact on the result.
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