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ABSTRACT In this paper, a novel planar dual circularly polarized (CP) endfire antenna composed of
a magnetic dipole Yagi element (MDYE) and electric dipole Yagi element (EDYE) is presented for
5.8-GHz WLAN application. Two orthogonal components Ex and Ey are provided by the EDYE and MDYE.
By adjusting the amplitude of each component, the CP radiation is formed. Besides, a hybrid network
composed of microstrip lines and parallel strip lines is used to excite MDYE. Dual circular polarization
can be achieved by a simple and feasible 90f directional coupler to control the radiation mode with no need
of complex feeding structure. Moreover, the parameters of the proposed antenna are studied and the antenna
is fabricated and measured. The theoretical design method has been numerically verified and experimentally
validated. The simulation and measurement results show that the impedance bandwidth (|S11| < —10dB) is
170 MHz (5710-5880 MHz) and 175 MHz (5715-5890MHz) at two feed ports. Besides, good radiation
characteristics with the peak gains of 5.3 and 5.2 dBic can be obtained with an 18-dB front-to-back
ratio (FTBR) at its resonance frequency. The simulated and measured results show that the standard PCB

process is a reliable method for antenna fabrication.

INDEX TERMS Dual-CP antenna, axial ratio (AR), low profile, endfire radiation, WLAN.

I. INTRODUCTION

With the development of radar, satellite communication, elec-
tronic warfare and other technologies, the application of
circularly polarized (CP) antennas are used more and more
widely [1]-[3]. CP antenna has many advantages over lin-
early polarized (LP) antenna, such as ensuring a good match
between the receiver and the transmitter and eliminating mul-
tipath reflections caused by many other objects. Planar CP
antennas are attractive because they can be integrated with
a conformable carrier surface [4]-[6]. In the past decades,
various designs of dual-CP antennas have been reported.

A dual-band CP antenna fed by a dual-band substrate inte-
grated coaxial line coupler is proposed in [7]. A microstrip
patch array with dual circular polarization, using sequential
rotating feeding network, is introduced in [8]. A broadband
single layer dual-CP reflectarrays with LP feed is introduced
in [9]. The unique structure of a compact dual-CP dielectric
resonator antenna (DRA) is proposed in [10], of which the
CP pattern is generated by multiple orthogonal modes and
the polarization is determined by the phase of the feeding
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signal. A low profile dual-CP cavity-backed ring-slot antenna
is introduced in [11]. However, all these antennas focus on
producing broadside radiation pattern or omni-directional
radiation pattern. In the published articles, there are few
introductions of the dual-CP endfire antenna.

The Yagi array antenna [12] proposed in 1928 is a typical
endfire antenna. The microstrip patch Yagi array antenna was
firstly used for satellite communication in 1989 [13], [14].
After that, many planar Yagi array antennas were proposed
in [15]-[21]. However, all antennas above are designed to
realize linear polarization. The antenna is generated vertically
polarized in [15]-[18] and horizontal polarized in [19]-[21].
Recently, planar endfire CP antennas combined with an aper-
ture and a printed dipole is proposed in [22]-[24]. As studied
in [22]-[24], a planar CP antenna with an endfire beam in
parallel with the antenna’s plane can be realized. But it could
not achieve dual circular polarization.

In this paper, the proposed dual-CP endfire antenna is
composed of a MDYE, a EDYE and a 90-degree directional
coupler. The antenna has a simple structure with low profile,
and could realize dual-CP and endfire radiation. The CP
radiation pattern is achieved by the MDYE and EDYE, which
create two orthogonal modes with a 90-degree phase shift.
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FIGURE 1. Planar endfire complementary CP antenna equivalent source
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FIGURE 2. The geometry of the proposed antenna. (a) Top view.
(b) Bottom view.

LHCP or RHCP radiation is achieved by selecting different
feeding ports. Furthermore, there is an isolation of than 14 dB
between two ports. Based on this configuration, the antenna
can be easily realized and is very practical.

The paper is organized as follows. Details of the operating
principle and the antenna design procedure are presented in
Section II. Some main parameters of the designed antenna
are studied in Section III. The simulation and measurement
results of the proposed antenna are summarized and discussed
in Section IV. Finally, the conclusion is in the Section V.

Il. ANTENNA OPERATING PRINCIPLE AND DESIGN

Conceptual configuration consisting of electric dipole and
magnetic dipole is shown in Fig. 1. Configurations of the
proposed dual-CP endfire antenna is shown in Fig. 2. The
antenna can be divided into three parts, a MDYE, an EDYE
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TABLE 1. Parameters for the proposed antenna.

Parameter \(/nii?j Parameter Xzi;lg Parameter Xzi;lg
L, 99 L 13.3 Ls 5.25
W, 60 W 2.2 L 8.6
Ly 14.92 L, 33 Ly 13
Wy 8.26 L, 19 Lg 9
L, 31 L, 8 /4 1.5
L, 16 Ls 8.82 W, 0.71
W, 2 Ly 8.82 Ws 1.5
L 34.5 W, 0.6 W 0.4
Cy 2 s 0.6 d 1.5
C, 1 C; 2.5 Cy 1.1

FIGURE 3. Electric field distribution for the main radiator of EDYE.

and a 90-degree directional coupler. A series of strips and
patches are printed on the two sides of the substrate. The
relative dielectric constant of the substrate is 2.65 with the
thickness of # = 1 mm (0.02), A is the free-space wave-
length of the center frequency), and the dielectric loss tangent
of 0.002. The size of the antenna is 99 mm x 60 mm x 1 mm.

In order to achieve a good dual-CP property, the 90-degree
directional coupler is designed to realize the desired ampli-
tude and phase distribution of the MDYE and the EDYE. The
antenna is placed horizontally in practical use. The proposed
antenna is optimized by HFSS (High Frequency Structure
Simulator) and final dimensions are listed in Table 1.

For the horizontally polarized Yagi element, the microstrip
half-wave dipole is used as the main radiator of the EDYE.
The horizontal strip added in front of the main radiator is
used as the director, and the truncated ground is used as the
reflector. From the electric field distribution in Fig.3, it can be
illustrated that the EDYE can generate horizontally polarized
components Ex.

For the vertically polarized Yagi element, the one-edge-
shorted rectangular patch is used as the main radiator of
MDYE. A similar one-edge-shorted rectangular patch with
a gap in the middle serves as the director, while the trun-
cated ground serves as the reflector. Because of the mag-
netic current distribution of the rectangular patch aperture,
the one-edge-shorted rectangular patch could generate ver-
tically polarized wave [25]. Fig. 4 shows the electric field
distribution of the MDYE. From the electric field distribution,
the MDYE will produce vertically polarized component Ey.
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FIGURE 4. Electric field distribution for the main radiator of MDYE.

It can be seen from the analysis above that the EDYE
and MDYE can generate two orthogonal electric field
components Ex and Ey. Both elements can generate linearly
polarized endfire radiation pattern. We regard the two ele-
ments as electric dipole and magnetic dipole. Conceptual con-
figuration consisting of electric dipole and magnetic dipole
is shown in Fig. 1. As studied in [26], the far field pattern
generated by the electric dipole is expressed as

- ouolyl
E, =]
4 nr
and the far field pattern generated by the magnetic dipole is
expressed as

(0 cos 0 sing + @ cos p)e 0" (D

N Iyl ~ ~ i
E, = jwﬂo 9% @ cos © + @ cos 6 sin g)e K" 2

4nr

where Iy is the amplitude, / is the length of dipole, 7 is the
intrinsic impedance of vacuum, p¢ is the permeability in free
space.

When the phase difference between the two sources is §
(6 = 8o+¢, where d is the output phase difference of the feed
network, ¢ indicates the phase that is caused by the current
flowing from the output of the feed network to the aperture,
and ¢ is equal to kA /4 = 7 /2), the following components of
the total fields can be obtained:

Et _ Em + o~/ (kod sin® sin<p+6)Ee
— jwﬂolol ) (cos ¢ + cos O singf (6, 9)) oikor
4rnr | +¢ (cosO sin g + cos of (6, @) '
3
where
f (9 (ﬂ) — e—j(kod sin 6 sin ¢+§)
= cos (kod sin 0 sin ¢ +8) —j sin (kod sin 0 sin ¢ +6)
4)

When 6 = 90°, ¢ = 0,5 = 0°r180°, the total fields
along the endfire direction (the u-axis) is

= .wpolo
Eilfu =]

|~ .
O F pj)ekor )
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According to theoretical analysis, the phase difference
between the wave radiated by MDYE and EDYE is
90-degree in the far field, when the feeding phase is
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FIGURE 5. Configuration of the network.

TABLE 2. The detailed resistance values of the power divider.

Zy Z, Z, Z3 Z,
Resistance(Q) 100 70.71 120 70.71 110

same or has 180-degree difference. In order to obtain a dual-
CP endfire radiation pattern, we need to make the feed-
ing phase of MDYE and EDYE equal or opposite. Hence,
we introduce a 90-degree directional coupler with a 90-degree
phase delay strip line into the proposed antenna.

Fig. 5. shows the 90-degree directional coupler with
90-degree phase delay strip line. The detailed resistance val-
ues of the feeding network are described in Table 2. The
length of the microstrip lines marked as Zj, Z; and Z3
in Fig.5 is a quarter of A. The detailed value of the parameters
are listed in Table 1.

It can be found that the far-field polarization of the EDYE
and the MDYE is orthogonal. Moreover, both the EDYE
and the MDYE are endfire radiation modes. By adjusting
the amplitude and the phase of the EDYE and the MDYE,
the desired dual-CP endfire antenna can be achieved.

IIl. PARAMETRIC STUDY AND DESIGN OF

PROPOSED ANTENNA

To verify the performance of the final designed antenna,
we investigate the influence of some important parameters
on S parameters, AR and front-to-back ratio. HFSS software
is used to implement the simulation analysis.

A. MDYE PARAMETER OPTIMIZATION

The MDYE provides Ey component for the circular polariza-
tion of the proposed antenna in this paper. Actually,for the
vertically polarized electric field, the low-profiled reflector
can hardly influence its radiation. Usually, an extra reflector
need to be added to improve the front-to-back ratio. In this
paper, the top metal of the director element in the front of
MDYE is split to enhance the mutual coupling of the driven
element and director element, which is effective for improv-
ing the front-to-back ratio. The operation principle of the
proposed MDYE is similar to that in [18]. Besides, a groove
(C1 x Cy) is introduced on the driven element and the director
element to improve impedance matching. Fig. 6 (a) is the
geometry of a conventional MDYE, and (b) is the geometry
of an improved MDYE of which director element is split.
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FIGURE 6. Evolution process of the proposed MDYE with front-to-back
ratio enhancement. (a) Conventional MDYE. (b) Improved MDYE.
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FIGURE 9. Photograph of the fabricated antenna. (a) Top view. (b) Bottom
view.

FIGURE 7. The influence of the front-to-back ratio of MDYE under two
different configurations in Fig. 6 at 5.8 GHz. (a) Conventional MDYE.
(b) Improved MDYE.
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FIGURE 8. Parameter study of the AR (a) and Phase difference (b) with
varied Ly, at 5.8 GHz.

As shown in Fig. 7, the front-to-back ratio of the traditional
MDYE is small, and the improved MDYE has a front-to-
back ratio of up to 18dB. This method can solve the problem
that the low-profiled reflector can hardly affect the vertical
polarization of the electric field. In order to get desired front-
to-back ratio, the length of Cy4 is the key parameter. It is
observed that the lowest front-to-back ratio is achieved when
Cs4 =1.1 mm.

B. PHASE DELAY LINE

As shows in Fig. 8, the length between port C and
port D (Ly,) has great impact on AR because the phase dif-
ference between EDYE and MDYE can be controlled by Ly,.
Fig. 8 (a) shows that the AR at the endfire direction varies
with the change of L;. Fig. 8 (b) shows that the phase
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FIGURE 10. Measured and simulated S parameters of the proposed
antenna. (a) Reflection coefficient of port A. (b) Reflection coefficient of
port B. (c) Transmission coefficient.

difference decreases as the length Ly increases within a
certain range. The proposed antenna can guarantee a nearly
90-degree difference between two orthogonal components
in far field with L, = 34.5 mm. Moreover, the maximum
amplitude of the EDYE and MDYE in far field is along the
endfire direction (the z-axis). By adjusting the amplitude of
the EDYE and the MDYE with 90-degree phase difference,
the dual-CP endfire antenna can be achieved.

IV. EXPERIMENTAL VERIFICATION

The prototype of the antenna has been fabricated to verify
the proposed design. Photograph of the fabricated antenna
is shown in Fig. 9. Then the antenna was also measured
in the anechoic chamber to confirm the dual-CP endfire
property.

The S parameters are measured using Agilent’s N5230A.
Measured and simulated reflection and transmission coef-
ficients are shown in Fig. 10. Good agreements can be
observed. It is worth mentioning that the isolation of two ports
in the operating band is higher than 14 dB.
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FIGURE 11. The normalized radiation patterns on yoz and xoz plane for
the proposed antenna at 5.8 GHz. (a) Port A is excited. (b) Port B is
excited.
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FIGURE 12. Simulated and measured AR and endfire realized gains for
the proposed antenna. (a) Port A is excited. (b) Port B is excited.

The radiation characteristics of the antenna are also mea-
sured in anechoic chamber. The designed antenna has two
ports, named port A and port B. In antenna measurements,
the RF cable is linked to one port and the other port is
connected with the 50-ohm matching load. Both measured
and simulated normalized radiation patterns of the proposed
antenna are presented in Fig. 11.

As can be seen from Fig. 11, when port A is excited,
the co-polarization of the antenna is LHCP, and the cross-
polarization is RHCP. The simulation and measurement
results show that the LHCP is 28 and 22 dB higher than RHCP
in the endfire direction. Similarly, when port B is excited,
the RHCP is 29 and 22 dB higher than LHCP in the endfire
direction.

The measured and simulated AR and endfire realized gains
for the proposed antenna are shown in Fig. 12. As can be
seen from Fig. 12, the measured results show that the 3-dB
AR bandwidth are 200 MHz (5660-5865 MHz) and 220 MHz
(5670-5890 MHz) with the peak gains of 5.3 and 5.2 dBic for
Port A and B, respectively.
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TABLE 3. Comparison between reported works and the proposed
antenna.

Beam Dimensions Polarization Band- Gain FTBR
Direction M) width (%) (dBi) (dB)
[51 Endfire

0.74x0.58x0.04  Single CP 2.5 2.6 8
[7] Endfire  0.95%0.72x0.04 Single CP 1.9 2.3 10

Ref

[12] Broadside 0.5x0.5x0.06 Dual CP 4 6 30
[22] Endfire 1.7x3.1x0.07  Single LP 5 10.1 18
[23] Endfire  1.11x1.11x0.05 Single CP 13 8 11
[27] Endfire N.A. Dual CP 22.5 12.8 N.A.
ggi Endfire  1.90x1.16x0.02  Dual CP 3 53 18

V. CONCLUSION

A novel low profile, single layer, dual-CP endfire radiation
antenna is designed. The proposed dual-CP endfire antenna
is composed of a MDYE, a EDYE and a 90-degree direc-
tional coupler. The CP radiation pattern is achieved by the
MDYE and EDYE, which create two orthogonal modes.
Then, in order to realize the dual circular polarization modes,
we introduce a 90-degree directional coupler into the pro-
posed antenna. A comprehensive comparison with other typ-
ical CP endfire antennas is also listed in Table 3, including
beam direction, dimensions, polarization, bandwidth, gain
and FTBR. From Table 3, it is clear that the newly proposed
antenna has a low profile planar structure (0.024), and can
realize the dual-CP radiation mode. It produces strong endfire
radiation, including a 5.2 dBic peak gain along the z-axis and
a 18 dB front-to-back ratio. Therefore, the designed antenna
is suitable for WLAN applications, and also provides a new
option for designing an endfire array antenna.
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