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ABSTRACT In this paper, we present the adjustment of controller parameters using multiobjective opti-
mization techniques. Unlike other works, where only the Pareto optimal solutions are considered, we also
consider the set of nearly optimal solutions nondominated in their neighborhood. These solutions are
potentially useful for two reasons: 1) they are similar to the optimal solutions for the optimized objectives,
and; 2) they differ significantly in their parameters. This last point makes them interesting, since they
bring diversity and different characteristics to the set of solutions for analyzing in the decision stage.
In problems of controller parameter adjustment, especially for multivariable processes, there are many
conflicting objectives. To simplify the optimization problem and decision stage, it is common to aggregate
some of the objectives, and so simplify the initial problem. In this scenario, some controllers that were
optimal for the initial problem can become nearly optimal in the simplified case. When these controllers are
nondominated in their neighborhood, they are especially interesting because they usually present a different
trade-off for the initial objectives. For the calculation of nearly optimal solutions nondominated in their
neighborhood, the evolutionary algorithm nevMOGA was used. In this paper, the usefulness of considering
these solutions is revealed in two controller design problems: the Wood & Berry distillation column and the
CIC2018 control benchmark.

INDEX TERMS Multiobjective optimization, multivariable control systems, nearly optimal solutions.

I. INTRODUCTION
Problems in many areas of engineering are solved using
optimization tools [18], [34] including, for example, control
system design problems [11], [37]. In this paper, the design of
control systems is addressed through the optimal adjustment
of the controller parameters [7] and not through the deter-
mination of the optimal control actions, which is commonly
known as optimal control [47]. Typically, the controller tun-
ning parameters problem contain conflicting objectives: per-
formance, control effort, robustness, etc. For this reason, it is
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natural to pose them as multiobjective optimization prob-
lems (MOPs [18], [19], [21], [42]) for the design of control
systems [7]. In an MOP, there is usually no single optimal
solution, but a set of optimal solutions where none is better
than the rest for all the proposed objectives [8], [27], [41].
The stages of an MOP are: problem definition, optimization
process [9], and multicriteria decision stage (MCDM).

Many industrial processes include multivariable control
systems. In these systems, the number of objectives increases
considerably: performance of each output to be controlled,
the control effort of each control action, and so on. The
greater the number of objectives in MOPs, the more com-
plex becomes the optimization process and especially the
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decision stage. For this reason, it is common to aggre-
gate objectives and so simplify both stages. However, this
approach has drawbacks. Let us look at a specific example.

Suppose we have a multivariable system with three inputs
and three outputs that we wish to control using three propor-
tional controllers. An MOP is defined with six design goals
(f11, f12, f13. f21, f22, f23) and three parameters (Kc1, Kc2
and Kc3) for adjustment. We will call this a complete MOP.
The first three objectives are the integral absolute errors (IAE)
in each of the three outputs; while the last three are the integral
of absolute variation of control signal (IAVU) of each of the
controllers. The three parameters to adjust correspond to the
gain of each of the three proportional controllers of the con-
trol system. We have four control systems (each with its three
proportional controllers) as shown in Table 1, and for which
we obtain the value of the design objectives (see Table 2).
None of the systems is dominated by another and we will
assume that all the control systems are optimal alternatives
for the proposed MOP.

TABLE 1. Proposed control systems with three decision variables
(Kc1, Kc2, and Kc3) and design objectives for the reduced MOP (f1 and f2).

TABLE 2. Value of the design objectives of the complete MOP for the
control systems defined in Table 1.

To simplify the optimization process and decision stage,
the design objectives are aggregated to form two single objec-
tives: one is the aggregation of the IAEs of all the outputs,
and the other is the aggregation of the IAVUs of the control
efforts. We obtain f1 = f11 + f12 + f13 and f2 = f21 + f22 +
f23 to define a new MOP that we will call MOP reduced.
When making this aggregation (see Table 1), x1 and x2 are
optimal alternatives and have the same value in the objectives
(multimodal solutions [38]). In addition, x3 and x4, which
were optimal in the full MOP, are no longer optimal in
the reduced MOP, despite having a performance similar to
x1 and x2. These alternatives (x3 and x4) may be useful
for the designer, and as a consequence of having objectives
added, they have stopped being optimal solutions (becoming
nearly optimal) and a traditionalMO optimizer would obviate
them. These solutions can continue to be considered with the
use of an optimizer that maintains the set of nearly optimal
solutions, that is, solutions with performances similar to the
optimal solutions.

In general, finding all of the nearly optimal alternatives
can considerably increase the number of solutions and this
has two drawbacks: it slows down the algorithm and makes
the decision stage more complex. Therefore, it is important to
reduce the number of nearly optimal alternatives to consider
and discard those that are irrelevant.

Let us suppose we have the four control systems as
in Table 1. In this case, for the reduced MOP previously
described (with design goals f1 and f2), we have two opti-
mal solutions (x1 and x2) and two nearly optimal solutions
(x3 and x4). x3 is a control system with parameters sig-
nificantly different from x1 and x2. Therefore, there is no
control system that dominates it with similar parameters,
that is, there is no better control system in their neighborhood
(same parameter zone). This solution gives the designer an
interesting option in a different neighborhood. Maintaining it
enables an analysis a posteriori (for example, when including
new indicators or when considering the physical sense of
the solutions), and it can be considered as a possible final
solution to the detriment of x1 and x2. x4 is a control sys-
tem dominated by x1 and both parameters are very similar,
meaning that they are neighboring solutions. These alterna-
tives will presumably have similar characteristics. Therefore,
the designer will choose the best of the two options for the
design objectives (x1). For this reason, under our criteria,
x4 is a non-essential or irrelevant option.
Therefore, we consider potentially useful options to be

optimal and nearly optimal solutions that are nondominated
in their neighborhood (x1, x2 and x3 in the reduced MOP).
These options can be useful in any MOP [1] as they produce
diversity in the set found without excessively increasing the
number of possible alternatives. In an MOP where objectives
are aggregated, these solutions will presumably have differ-
ent trade-offs among the aggregated objectives and give the
designer more information at the decision stage.

In the multicriteria decision stage, it is possible to study
new features that were not included in the design objectives
before choosing the final control system. This procedure
may be appropriate because of: the impossibility of including
them in the optimization phase due to limited resources (time
or economic reasons), or decision support (change of sce-
nario, validation objectives, analysis of the design objectives).
Obtaining nearly optimal solutions that are nondominated
in their neighborhood enables studying these new indicators
on alternatives with characteristics that differ to the optimal
options. Perhaps nearly optimal solutions offer better value
with respect to the new indicators than the optimal options
and are therefore preferred.

For example, in the decision-making phase of the pro-
posed MOP, the robustness of each control system found can
be analyzed as a new indicator. x1, x2 and x3 are signifi-
cantly different (not neighboring), and they will presumably
have different characteristics and differing levels of robust-
ness. If we assume that x3 is more robust than x1 and x2,
the designer could choose x3 (nearly optimal) to the detriment
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x1 and x2 (optimals). So, the nearly optimal controllers
are specially relevant, since when uncertainty is consid-
ered in the controlled process, they can result more robust,
while they maintain the nearly optimal response in closed
loop [46].

It is clear that the design objectives included in the opti-
mization stage, and for which the set of optimal and nearly
optimal solutions nondominated in their neighborhood are
obtained, are ‘‘preferred’’ to the objectives not included in the
optimization phase (although these objectives can condition
the final decision, they cannot condition the obtained set,
in this sense we mean that they are preferred).

This paper highlights the importance in controller design
problems of considering nearly optimal alternatives nondom-
inated in their neighborhood. To obtain these alternatives the
nevMOGAalgorithm1 is used [1]. Bymeans of two controller
design problems, it is shown how nearly optimal solutions
can be preferable to the optimal solutions following a detailed
analysis in the final stage of decision making.

In the literature, there exist other different methodologies
to obtain the optimal solutions, or the nearly optimal solutions
that are of interest for the designer ([44], [47]). One of them is
game theory [43] based on Nash equilibrium [40]. By means
of this technique, an equilibrium solution is obtained, and it
is possible to gather different solutions by defining various
games [44]. However, this methodology has two drawbacks:
1) it cannot be guaranteed that the Nash equilibrium solutions
are optimal (there may be better solutions with respect to
the design objectives that are not obtained) and 2) the set
of solutions that it provides may be poorer distributed [45].
The nearly optimal alternatives can be useful for the designer.
However, in order to assess their usefulness, it is necessary
to compare their performance with the performance of the
optimal solutions. Moreover, game theory ignores, according
to our criterion, potentially useful solutions for the designer
(optimal and nearly optimal solutions nondominated in their
neighborhood). Consequently, the designer would choose the
final solution with less information than is desired. For all
these reasons, the use of this technique has not been studied
in this work.

This work is structured as follows. In Section 2 some
basic definitions are presented. In Section 3 the nevMOGA
algorithm used in this work is described in detail. In Section 4
the problems of designing controllers as MOPs and the
results obtained using nevMOGA are presented. Finally, the
conclusions are presented in Section 5.

II. BACKGROUND
In this section, the concepts ofMOP, Pareto set and ε-efficient
solutions are formally introduced. A multiobjective

1Multiobjective Evolutionary Algorithm available in Matlab Central:
https://www.mathworks.com/matlabcentral/fileexchange/71448-nevmoga-
multiobjective-evolutionary-algorithm

optimization problem2 can be stated as follows:

min
x∈Q

f (x) (1)

subject to:

xi ≤ xi ≤ xi, i = [1, . . . , k]

where x = [x1, . . . , xk ] is defined as a decision vector in the
domain Q ⊂ <k and f : Q → <m is defined as the vector
of objective functions f (x) = [f1(x), . . . , fm(x)]. xi and xi are
the lower and upper bounds of each component of x.
Definition 1 (Dominance [4]): A decision vector x1 is

dominated by any other decision vector x2 if fi(x2) ≤ fi(x1)
for all i ∈ [1, . . . ,m] and fj(x2) < fj(x1) for at least one j,
j ∈ [1, . . . ,m]. This is denoted as x2 � x1.
Definition 2 (Pareto Set): the Pareto set (denoted by PQ)

is the set of solutions in Q that is nondominated by another
solution in Q:

PQ := {x ∈ Q| 6 ∃x′ ∈ Q : x′ � x}

Definition 3 (Pareto Front): given a set of Pareto optimal
solutions PQ, the Pareto front f (PQ) is defined as:

f (PQ) := {f (x)|x ∈ PQ}

Definition 4 (−ε-Dominance [3]): Define ε= [ε1, . . . , εm]
as the maximum acceptable performance degradation.
A decision vector x1 is −ε-dominated by another decision
vector x2 if fi(x2) + εi ≤ fi(x1) for all i ∈ [1, . . . ,m] and
fj(x2) + εi < fj(x1) for at least one j, j ∈ [1, . . . ,m]. This is
denoted by x2 �−ε x1.
Definition 5 (ε-Efficiency [2]): The set of ε-efficient solu-

tions (denoted by PQ,ε) is the set of solutions in Q which are
not −ε-dominated by another solution in Q:

PQ,ε := {x ∈ Q| 6 ∃x′ ∈ Q : x′ �−ε x}

Generally, the manner to proceed is to obtain the two
discrete sets P∗Q ⊂ PQ and P∗Q,ε ⊂ PQ,ε , in such a way that
P∗Q and P∗Q,ε appropriately characterize PQ and PQ,ε , respec-
tively. This is because determining PQ and PQε is usually
unapproachable, since they may have infinite solutions. Note
that the sets P∗Q and P∗Q,ε are not unique.

In any MOP there may be multimodal solutions [29]–[31]
or nearly optimals [32], [33] that are ignored and can be useful
for the designer. These options are sometimes used as an
intermediate population [23], [24] to find the optimal alter-
natives more efficiently and are rarely alternatives provided
to the designer [2], [28]. The usefulness of these solutions is
even greater when objectives are added [1].

Figure 1 shows an example to illustrate the optimal, nearly
optimal, and nearly optimal solutions nondominated in their
neighborhood. The Figure 1a shows a monobjective prob-
lem, while in Figure 1b a multiobjetive problem is shown.

2A maximization problem can be converted into a minimization problem.
For each of the objectives that have to be maximized, the transformation:
max fi(x) = −min(−fi(x)) can be applied.
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FIGURE 1. A monobjective example (on the left) and a multiobjective example (on the right). In the monobjective problem, the optimal solution is
x1 (blue triangle) and the nearly optimal solution nondominated in their neighborhood is x2 (green triangle). In the multiobjective problem,
the optimal solutions are the ones in set SETn1 (blue front) and the nearly optimal solutions nondominated in their neighborhood are the
ones in SETn2 (green front).

Let us assume the monobjective case. In this case we have
a single optimal solution x1 (PQ). In addition, the shaded
alternatives in gray are the set of optimal and nearly opti-
mal solutions (PQ,ε). These alternatives are found in two
different neighborhoods n1 and n2, while the neighborhood
n3 is discarded because it does not contain any nearly opti-
mal solution. Therefore, a new neighborhood is observed,
that differs from the neighborhood where the Pareto front
is located (n1), in which there are new feasible alternatives
for studying differing characteristics and making the final
decision with greater criterion. But adding the whole set PQ,ε
could slow down the algorithm and excessively complicate
the decision stage. Therefore, the potentially useful solutions
for the designer are the best solutions of each neighborhood,
that is, the nearly optimal solutions nondominated in their
neighborhood. In this case, these alternatives are x1 and x2.
We believe these solutions provide the designer with useful
knowledge without adding options that are dispensable (solu-
tions dominated by x1 and x2 and with parameters similar to
x1 and x2 respectively). Now let us look at the multiobjective
case (see Figure 1b). In this case, we have a set of optimal
solutions SETn1 that are in the neighborhood n1. In addition,
we have a set of optimal and nearly optimal solutions PQ,ε .
All nearly optimal solutions could again slow down the
algorithm and overcomplicate the decision stage. Therefore,
in this case extrapolating the previous case, the potentially
useful options are the sets SETn1 and SETn2. The neighbor-
hood n3 is discarded because it does not contain any nearly
optimal solution.

III. nevMOGA
In this workwe use the algorithm nevMOGA [1], based on the
algorithm ev-MOGA [6]. nevMOGA is an evolutionary algo-
rithm designed to find the discrete set of optimal and nearly
optimal solutions nondominated in their neighborhood. This
set is defined as the set of n−efficient options (PQ,n, see
Definition 8).

FIGURE 2. Structure of nevMOGA formed by four populations.

Definition 6 (Neighborhood): Define n = [n1, . . . , nk ] as
the maximum distance between neighboring solutions. Two
decision vectors x1 and x2 are neighboring solutions (x1 =n
x2) if |x1i − x

2
i | < ni for all i ∈ [1, . . . , k].

Definition 7 (n−Dominance): A decision vector x1 is
n−dominated by another decision vector x2 if they are neigh-
boring solutions (Definition 6) and x2 � x1. This is denoted
by x2 �n x1.
Definition 8 (n−Efficiency): The set of n−efficient solu-

tions (denoted by PQ,n) is the set of solutions of PQ,ε which
are not n−dominated by another solution in PQ,ε :

PQ,n := {x ∈ PQ,ε | 6 ∃x′ ∈ PQ,ε : x′ �n x}

Normally, the manner to proceed is to obtain a discrete set
P∗Q,n ⊂ PQ,n, in such a way that P∗Q,n appropriately char-
acterizes PQ,n. This is because determining PQ,n is usually
unapproachable, since it may have infinite solutions. Note
that the set P∗Q,n is not unique.

nevMOGA manages four populations (see Figure 2):
1) P(t) is the main population. The goal is that this pop-

ulation converges towards PQ,n and not only on PQ,
in order to achieve diversity in the set of solutions.
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The number of individuals in this population is constant
and equal to NindP.

2) Front(t) is the archive where P∗Q is stored, i.e., a discrete
approximation of the Pareto front. The size of this
population varies but is always less than or equal to a
given maximum size which depends on the number of
boxes previously defined by the user.

3) Sub-front(t) is the archive where P∗Q,n \ P
∗
Q is stored,

i.e., a discrete approximation of the nearly optimal
solutions nondominated in their neighborhood. Its size
is variable but bounded, depending on the number of
boxes.

4) G(t) is an auxiliary population where the new individ-
uals generated by the algorithm in each iteration are
stored. The number of individuals of this population
is NindG, which must be multiple of 4.

IV. CONTROL EXAMPLES
This section presents the methodology for the optimal design
of controllers with two real examples: the Wood & Berry
distillation column and the CIC2018 control benchmark.

FIGURE 3. P&ID of the Wood & Berry distillation column [5].

A. WOOD & BERRY DISTILLATION COLUMN
The design of the control system of the Wood & Berry distil-
lation column is proposed as the first application example [5]
(see Figure 3). This control problem has been studied by
many authors [15]–[17]. The system has two manipulated
variables: steam flow V and reflux R in lb/min; and two out-
puts: concentration of distilled product xD, and at the bottom
xB by weight of methanol. In addition, the feed flow F is a
system disturbance in lb/min. The model of the plant for the

point of operation (xD = 0.96, xB = 0.02, R = 1.95 lb/min,
S = 1.71 lb/min y F = 2.45lb/min) is:

Y =
(
xD
xB

)
= G(s)

(
R
V

)
+ Gd(s) F

G(s) =


12.8e−s

16.7s+ 1
−18.9e−3s

21s+ 1
6.6e−7s

10.9s+ 1
−19.4e−3s

14.4s+ 1



Gd(s) =


3.8e−8.1s

14.9s+ 1
4.9e−3.4s

13.2s+ 1

 (2)

where time and delays are measured in minutes.
In this paper, the control structure is defined as amulti-loop

PI control which uses a diagonal pairing scheme, i.e., output
xD is controlled by R and xB by V . That is to say,

V = Kc1

(
e1(s)+

1
Ti1

1
s
e1(s)

)
R = −Kc2

(
e2(s)+

1
Ti2

1
s
e2(s)

)
(3)

where Kc1 and Kc2 are the proportional gains, Ti1 and Ti2 are
the integral time constants (in minutes) and e1 = spxD − xD
and e2 = spxB−xB are the output errors, where spxD and spxB
are the setpoints for xD and xB respectively.

FIGURE 4. Steps regarding the operation point independently introduced
for the control of the Wood & Berry distillation column.

To analyze the performance of the controller, three situa-
tions are analyzed with respect to the operation point: a step
in spxD with spxB = F = 0, a step in spxB with spxD = F = 0
and a step in the disturbance F with spxD = spxB = 0. These
three steps are shown in Figure 4.

The Wood & Berry MOP is stated as follows:

min
x
f (x) = [f1(x) f2(x) (4)
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where

f1(x) =
16∑
i=11

fi

f2(x) =
26∑
i=21

fi

x = [Kc1 Ti1 Kc2 Ti2] (5)

where

f11(x) =
IAE1(x)

IAE1(xR)

∣∣∣ spxD=1spxB=0

F=0

dt (6)

f12(x) =
IAE2(x)

IAE2(xR)

∣∣∣ spxD=1spxB=0

F=0

dt (7)

f13(x) =
IAE1(x)

IAE1(xR)

∣∣∣ spxD=0spxB=1

F=0

dt (8)

f14(x) =
IAE2(x)

IAE2(xR)

∣∣∣ spxD=0spxB=1

F=0

dt (9)

f15(x) =
IAE1(x)

IAE1(xR)

∣∣∣ spxD=0spxB=0

F=1

dt (10)

f16(x) =
IAE2(x)

IAE2(xR)

∣∣∣ spxD=0spxB=0

F=1

dt (11)

f21(x) =
IAVU1(x)

IAVU1(xR)

∣∣∣ spxD=1spxB=0

F=0

dt (12)

f22(x) =
IAVU2(x)

IAVU2(xR)

∣∣∣ spxD=1spxB=0

F=0

dt (13)

f23(x) =
IAVU1(x)

IAVU1(xR)

∣∣∣ spxD=0spxB=1

F=0

dt (14)

f24(x) =
IAVU2(x)

IAVU2(xR)

∣∣∣ spxD=0spxB=1

F=0

dt (15)

f25(x) =
IAVU1(x)

IAVU1(xR)

∣∣∣ spxD=0spxB=0

F=1

dt (16)

f26(x) =
IAVU2(x)

IAVU2(xR)

∣∣∣ spxD=0spxB=0

F=1

dt (17)

where

IAEi =
∫ 100min

0
|ei(t)| dt

IAVUi =
∫ 100min

0

∣∣∣∣dui(t)dt

∣∣∣∣ dt
xR = [0.6523 16.7 − 0.1237 14.4] (18)

subject to

x ≤ x ≤ x

fij(x) < 2 ∀i = [1, 2], j = [1, . . . , 5]

and where

x = [0.01 0.1 − 0.5 0.1]

x = [2 50 − 0.01 50]

In this MOP, different objectives have been aggregated
to simplify the optimization process and the decision phase.
This aggregation is made with the same weight because they
have same units and the relative importance of these objec-
tives is the same. Therefore, we have anMOPwith two design
objectives. To calculate the first objective f1 the IAEs are
added in both outputs relativized on the reference controller
xR calculated using the S-IMC technique [36] in each of the
three cases: set point on output 1 (f11 and f12), set point on
output 2 (f13 and f14) and disturbance (f15 and f16). In the
same way, the derivatives of the control actions relativized
on the reference controller are measured (xR) in each of the
three mentioned cases (f21, f22, f23, f24, f25 and f26). These
values are added to form f2. The decision variables are Kc
and Ti of the two PIs proposed for the control of the plant
(see Equation 3).

To optimize the Wood & Berry MOP defined in (4)
nevMOGA is used with the following configuration:

NindG = 8

NindP = 250

Iterations = 1000

n_box = 80

ε = [0.5 0.5]

n = [0.25 5 0.025 5]

for the definition of the remaining parameters, the values sug-
gested in [39] are used for the original algorithm (ev-MOGA).

Figure 5 shows a set of controllers found using nevMOGA
(optimals and nearly optimals) for the problem posed. There
is also an isolated neighborhood (Neighborhood1, solutions
in green) with higher values of Ti1. These solutions are the
nearly optimal options with performances more similar to the
optimal Pareto front. Two solutions are chosen to compare
behavior. Firstly, the controller with the lowest infinite norm
of the Pareto front (x1) is chosen. This alternative has a
compensated trade-off and could be the final choice of the
designer if just the Pareto front solutions were analyzed.
Secondly, we choose a solution (x2) of the isolated neigh-
borhood (Neighborhood1) that has a similar performance to
the solution x1 (see Table 3).

The values of the aggregated objectives of both options can
be seen in Table 4. Firstly, it can be seen that in response
to the step on xD (Figure 6) the nearly optimal solution
produces a slightly lower error for both outputs (f11 and f12).
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FIGURE 5. Set of optimal controllers (red) and nearly optimal controllers nondominated in their neighborhood (green and yellow) for the
Wood & Berry MOP. Figure 5a shows the objective value of each of the options found. Figure 5b shows the decision variables represented with
Level Diagrams (LD [35]) using the infinite norm.

TABLE 3. Controllers x1 and x2 for a Wood & Berry distillation column.

TABLE 4. Objective value of the controllers x1 and x2 for a Wood & Berry
distillation column.

With respect to the control actions, the controller x1 obtains
smoother control actions in R (f21) and more abrupt actions
in V (f22) with respect to x2. Secondly, the setpoint tracking
for xB (see Figure 7) the greatest difference between the
controllers is observed. While in xB (f14) the controller x2

has a slightly smaller error, in xD (f13) it is controller x1 that
produces a significantly smaller error. Both control actions
(f23 and f24) are smoother for the controller x2. Finally,
a response to a step in the disturbance can be seen (see
Figure 8). In this case the controller x1 obtains a smaller
error for xD (f15) with smoother control actions in R (f25).
In addition, x2 obtained smaller errors for xB (f16) with
smoother control actions V (f26).

Therefore, if we focus on the value of the optimized
targets, the controller x1 dominates x2. But as seen in
their responses, despite having similar values for f1 and f2,
both controllers have different characteristics. After observ-
ing their responses, you may wish prioritize, for example,
a controller with less overshoot, which would favor a choice
towards x2 (with significantly lower overshoot in xD the
setpoint tracking in spxB, see Figure 7). Therefore, it is very
useful to compare controllers from different neighborhoods.

This detailed comparison provides us with new information
for making a final decision with more criteria on which
control to use.

We now analyze a new indicator, related to robustness, that
is not included in the optimization phase. For the study of the
robustness of the controllers x1 (optimal) and x2 (nearly opti-
mal), we will obtain the singular minimum values of the mul-
tiplicative uncertainty [10]–[12]. To do this, we observe the
frequency plot (see Figure 9). The controller x2 has a singu-
lar minimum value of multiplicative uncertainty (γ = 0.55)
greater than x1 (γ = 0.5). This value indicates that the nearly
optimal controller x2 is more robustly stable than the Pareto
front controller x1. This characteristic has not been taken
into account in the design objectives and could change the
choice towards a nearly optimal solution, since both have very
similar f1 and f2 and one of them (x2) is slightly more robust.
Therefore, in this PI multi-loop controller design problem,

it is clear that obtaining nearly optimal solutions nondomi-
nated in their neighborhood can be useful for the designer.
With them, a detailed study can be made that enables the
designer to choose with greater criteria an optimal or nearly
optimal option, since both can perform similarly with respect
to the design objectives.

B. CIC2018 CONTROL BENCHMARK
In the contest in control engineering 2018 (CIC2018 [14]) the
design of a refrigeration system control was proposed. This
process has two controlled variables: evaporator secondary
fluid outlet temperature Te,sec,out and degree of overheating
TSH in oC . There are two manipulated variables: opening of
the expansion valve Av in (%) and compressor speed N in
Hz. There are also two disturbances: inlet temperature of the
secondary fluid of the evaporator (Te,sec,in) and the condenser
(Tc,sec,in) in oC (see Figure 10).

The control structure is defined as a multi-loop PI con-
trol which uses the following loop pairing scheme: output
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FIGURE 6. Comparison of the response to a setpoint for xD of the controllers x1 and x2 in a Wood & Berry
distillation column.

FIGURE 7. Comparison of the response to a setpoint for xB of the controllers x1 and x2 in a Wood & Berry
distillation column.

Te,sec,out is controlled by Av and TSH by N . That is to say,

Av = Gr1(s) e1(s) = −Kc1

(
e1(s)+

1
Ti1

1
s
e1(s)

)
N = Gr2(s) e2(s) = Kc2

(
e2(s)+

1
Ti2

1
s
e2(s)

)
(19)

where Kc1 and Kc2 are the proportional gains, Ti1 and Ti2
are the integral time constants in seconds and e1 = spTsec −
Te,sec,out and e2 = spTSH − TSH are the output errors,
where spTsec and spTSH are the setpoints for Te,sec,out and
TSH respectively. For the first phase of the contest, four
profiles are provided: two for the setpoints spTsec and spTSH
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FIGURE 8. Comparison of a response to a step for F of the controllers x1 and x2 in a Wood & Berry distillation
column.

FIGURE 9. Singular value of multiplicative uncertainty for the Wood &
Berry of the controllers x1 and x2.

(see Figure 12) and two for the disturbances Te,sec,in and
Tc,sec,in (see Figure 13). In addition, the operating point is
defined (see Table 5).

1) MONOBJECTIVE OPTIMIZATION PROBLEM
Firstly, the problem is defined with a single design objective.
This objective is the aggregation of various objectives. This
simplifies the optimization process and the decision phase.
For the calculation of these aggregate objectives, we start
with a reference controller xR provided by the contest that is

FIGURE 10. Schematic picture of one-compression-stage,
one-load-demand vapor-compression refrigeration cycle [14].

defined byGr1 output controller Te,sec,out andGr2 and output
controller TSH :

Gr1(s) =
−0.6000s2 − 0.0300s+ 0.5000

s2 − 1.9853s+ 0.9853

Gr2(s) =
0.238s+ 0.25

0.95s
(20)

The optimization problem is stated as follows:

min
x
f (x) (21)

where

f (x) =
∑18

i=11 fi∑8
i=1 wi

x = [Kc1 Ti1 Kc2 Ti2] (22)
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FIGURE 11. Control system for the CIC2018 benchmark control [14].

FIGURE 12. Profile introduced for spTsec and spTSH for the
CIC2018 control benchmark.

FIGURE 13. Profile introduced for the disturbances Te,sec,in and Tc,sec,in
for the CIC2018 control benchmark.

where

f11(x) = w1 · RIAE1(x, xR)

f12(x) = w2 · RIAE2(x, xR)

f13(x) = w3 · RITAE1(x, xR, tc1, ts1)

f14(x) = w4 · RITAE2(x, xR, tc2, ts2)

f15(x) = w5 · RITAE2(x, xR, tc3, ts3)

f16(x) = w6 · RITAE2(x, xR, tc4, ts4)

f17(x) = w7 · RIAVU1(x, xR)

f18(x) = w8 · RIAVU2(x, xR) (23)

TABLE 5. Operation point for CIC2018 control benchmark.

where

IAEi =
∫ 40min

0
|ei(t)| dt

ITAEi =
∫ tci+tsi

tci
(t − tci) |ei(t)| dt

IAVUi =
∫ 40min

0

∣∣∣∣dui(t)dt

∣∣∣∣ dt (24)

RIAEi(x, xR) =
IAEi(x)
IAEi(xR)

RITAEi(x, xR, tci, tsi) =
ITAEi(x, tci, tsi)
ITAEi(xR, tci, tsi)

RIAVUi(x, xR) =
IAVUi(x)
IAVUi(xR)

(25)

subject to

x ≤ x ≤ x

f (x) < 0.2

and where

x = [−35 0.75 0.25 1.75]

x = [−5 1.5 1.25 3.75]

w1 = 0.229 w2 = 0.120 w3 = 0.224 w4 = 0.114

w5 = 0.114 w6 = 0.113 w7 = 0.0264 w8 = 0.0593

tc1 = tc2 = 10min ts1 = ts2 = tc3 = 17 min

ts3 = tc4 = 25 min ts4 = 40 min

Eight aggregate performance goals are evaluated for the
calculation of the design objective. The first two aggregate
goals are the integral absolute errors (IAEs) in both con-
trolled variables (Te,sec,out and TSH ). The third is the integral
time absolute error (ITAE) for the first controlled variable
(Te,sec,out ) evaluated after the step that occurs at 10 min (see
Figure 12). The fourth, fifth, and sixth aggregate goals are the
ITAE for the second controlled variable (TSH ) evaluated after
the three steps that occur at 10, 17 and 25 min (see Figure 12).
The seventh and eighth aggregate objectives are the integral
of absolute variation of control signal (IAVU) for the two
manipulated variables (Av and N ). The overall objective to
be optimized is obtained using the average value of the eight
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FIGURE 14. Optimal controller (red) and nearly optimal controllers nondominated in their neighborhood (green) for the CIC2018 benchmark
control. Shown with LD using norm 2. The Figure shows the design objective. Figure b shows the decision variables.

FIGURE 15. Comparison of the controller responses x1 and x2 and for the CIC2018 control benchmark. Details of the
moments in time when setpoint changes occurred.

individual aggregate objectives with a weighting factor wi
(proposed by the benchmark) for each aggregate objective.

To optimize the problem defined in (21) nevMOGA is used
with the following configuration:

NindP = 250

NindG = 4

Iterations = 800

N_box = 100

ε = [0.025]

n = [5 0.1 0.25 1]

for the definition of the remaining parameters, the default
values suggested by [39] are taken from the original algorithm
(ev-MOGA).

Firstly, the optimal solution and the set of nearly optimal
solutions nondominated in their neighborhood are obtained –
as shown in Figure 14.

The optimal solution x1 is now selected together with the
nearly optimal solution x2, which is in a different neighbor-
hood. In Figures 15 and 16 the response of both controls is
observed. In addition, their aggregate objectives and overall
target value are shown in the Tables 6 and 7. The controller x1

has a lower error in the outputs as shown in Figure 15 and the
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FIGURE 16. Comparison of the controller control actions x1 and x2 for the CIC2018 benchmark control.
Detail of the moments in time when changes in the setpoints occurred.

TABLE 6. Controllers x1 and x2 for the monobjective approach of the
CIC2018 benchmark control.

TABLE 7. Value of the aggregated objectives for the controllers x1 and x2.

value of the aggregated objectives f11 and f16. The controller
x2 shows smoother control actions as seen in Figure 16 and
the aggregated objectives f17 to f18. This reveals the conflict
between the aggregate objectives relative to the errors in the
outputs and control actions. This conflict has been revealed
because we have found the set of nearly optimal options
nondominated in their neighborhood. To analyze this conflict
in greater detail, a multiobjective optimization problem is
posed with two objectives, where aggregate objectives that
enter into conflict are grouped independently. The results of
this multiobjective approach are discussed in the next section.

2) MOP
Two objectives are defined for the design of the multiob-
jective optimization problem. The first objective is formed
by the first six aggregate objectives defined in (23) with
their weighting factors wi. The second objective is formed

by the last two aggregate objectives with their correspond-
ing weighting factors. In this way, the aggregate objectives
related to the errors on the outputs and the control actions
are studied independently. The MOP for the CIC2018 control
benchmark is:

min
x
f (x) = [f1(x) f2(x)] (26)

where

f1(x) =
∑16

i=11 fi∑6
i=1 wi

f2(x) =
∑18

i=17 fi∑8
i=7 wi

x = [Kc1 Ti1 Kc2 Ti2] (27)

subject to

x ≤ x ≤ x

fi(x) < 1.4 ∀i ∈ [1 2]

where f11(x) . . . f18(x), x, x, wi, tci y tsi are those defined in
(23) and (24) and xR is defined in (20).
For the optimization of the MOP defined in (26)

nevMOGA is used with the following configuration:

NindP = 100

NindG = 4

Iterations = 800

n_box = 100

ε = [0.0125 0.0125]

n = [2.5 0.2 0.25 0.5]
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FIGURE 17. Set of optimal controllers (red) and nearly optimal controllers nondominated in their neighborhood (green) for the CIC2018 control
benchmark. Figure 17 shows the trade-off of the design objectives. Figure 17b shows the decision variables represented with LD using norm 2.

FIGURE 18. Comparison of the response for the controller setpoints x1 and x2 for the CIC2018 control benchmark.
Detail of the time instants when changes in the setpoints were produced.

TABLE 8. Controllers x1 and x2 for the MOP of the CIC2018 control
benchmark.

for the definition of the remaining parameters, the default
values suggested by [39] are taken from the original algorithm
(ev-MOGA).

Figure 17 shows the optimization results using nevMOGA
for the proposed problem. Two solutions are again chosen

TABLE 9. Values of the aggregated objectives of the controllers x1 and x2.

for analysis. Firstly, an optimal solution is chosen with a com-
pensated trade-off (x1). Secondly, a nearly optimal solution
x2 dominated by x1 in a different neighborhood is selected
(see Tables 8 and 9 and Figure 17) since Kc1 and Ti2 differ.
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FIGURE 19. Comparison of the controller control actions x1 and x2 for the CIC2018 control benchmark.
Detail of the instants in time when changes in setpoints are produced.

FIGURE 20. Steps in spTsec and spTSH introduced on Te,sec,out and TSH
respectively for the CIC2018 control benchmark validation test.

The response of both controllers is seen in
Figures 18 and 19. The controller x1 shows lower IAE in
both outputs (f11 y f12). It also shows better ITAE over
Te,sec,out (f13). The nearly optimal solution (x2) shows better
ITAE for the second output TSH (f14 to f16).
The control action Av of x1 is smoother (f18), while the

action of N is less smooth (f17). Therefore x2 wins in four
(f14 to f17) and loses in four (f11 to f13 and f18) aggregated
objectives. It can be seen that there are two controllers with
similar performances, and despite x2 being dominated by
x1 no significant loss is observed in any of the proposed
aggregate objectives.

FIGURE 21. Steps on the disturbances Te,sec,in and Tc,sec,in for the
CIC2018 control benchmark validation test.

The CIC2018 contest also proposes a second phase in
which four new profiles of validation are provided for the
setpoints spTsec and spTSH and the disturbances Te,sec,in and
Tc,sec,in (see Figure 20 and 21) to compare the correct func-
tioning of the chosen controllers with the initial profile. This
implies a change of scenario for the problem posed in the first
phase. In this way, we assess in simulation the robustness of
the controllers compared, by analyzing a new scenario.

Figures 22 and 23 and Table 10 show the response and the
values of the aggregate objectives obtained on the validation
test. Solution x2 shows better IAE on outputs (f11 y f12) on
this trial. In addition, x2 shows an improvement in ITAE for
both outputs (f13 a f16). The most significant difference is
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FIGURE 22. Comparison of the response for the controller validation test x1 and x2 for the CIC2018 control
benchmark. Detail of the instants in time when changes are produced in the setpoints.

FIGURE 23. Comparison of the control actions for the controller validation test x1 and x2 for the
CIC2018 control benchmark. Detail of the instants in time when changes in the setpoints were produced.

observed in the ITAE of the last step entered for TSH (f16).
The difference is such that the controller x1 fails to reach the
reference due to the saturation of the control action in that
interval (see Figures 22 and 23). x2 reaches the reference

and so obtains a performance that is much better in this
interval. Both control actions are slightly less smooth for
x2 (f17 and f18). Nevertheless, the significant difference in
performance (especially for f16, interval 25 to 40 min in
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FIGURE 24. Set of optimal solutions (red) and nearly optimal solutions nondominated in their neighborhood (green and yellow) for the initial
profile introduced in the CIC2018 control benchmark. The solutions in yellow (nearly optimals) perform well in the validation test.

TABLE 10. Values of the design objectives and the objectives aggregated
for the controllers x1 and x2 in the validation test.

Figure 22) of both controllers makes us choose a nearly
optimal solution (x2) in contrast to what could have been
expected a priori.

To make a more detailed study of the solutions produced in
the proposed MOP, we obtained its response for the defined
validation test (Figure 24). In this study we can see that
there is a set of nearly optimal solutions (solutions shown
in yellow) that manage to reach the introduced profile in a
similar way to x2. No optimal solution reaches this reference,
as occurs with x1. The importance of finding nearly optimal
solutions is therefore shown. Thanks to these solutions we
have been able to analyze a new scenario for the validation
test (for which there was no information initially). This anal-
ysis has enabled us to find nearly optimal (similar to optimal)
controllers for the initially introduced profiles that perform
significantly better than the optimum controllers in the val-
idation test. This analysis could not have been carried out
without redefining the MOP (and later obtaining the optimal
controllers) in a classic MOP.

V. CONCLUSIONS
We have presented the optimal adjustment of controllers
using multiobjective optimization techniques that take into
account, in addition to the set of optimal solutions (Pareto
front), the set of nearly optimal solutions nondominated in
their neighborhood. The inclusion of these solutions in the
decision-making stage increases the diversity of the set of
relevant solutions available to the designer.

When there are many objectives, it is common to aggregate
objectives to simplify the optimization process and decision
phase. This situation is quite common in problems requir-
ing an adjustment of controller parameters, especially in
multivariable systems, where the number of objectives can
grow exponentially with respect to the number of inputs and
outputs.

When this happens, the aggregation process converts many
of the controllers that are optimal in the complete MOP into
nearly optimal controllers in the reduced MOP. Including
all these controllers can hinder the decision-making stage
unnecessarily, given that the controllers are very similar in
the parameter space. Therefore, we propose keeping only
the nearly optimal solutions that are nondominated in their
neighborhood. These controllers have similar performances
and different characteristics, and so may provide relevant
information at the decision-making stage. This fact has been
shown in the examples presented: the Wood & Berry distilla-
tion column and the CIC2018 control benchmark. In the first
example, it is observed that a nearly optimal alternative obtain
a greater robustness than a solution that dominate it. This new
information enables the designer to opt for a nearly optimal
alternative – given that both are very similar in the design
objectives proposed in the MOP. In the second example,
the CIC2018 control benchmark, a change of scenario is pro-
posed to evaluate the controller using a validation test. In this
case, it is seen how the set of optimal controllers obtains unde-
sirable results in this new scenario. Because we have a set of
alternatives nondominated in their neighborhood, we obtain a
set of nearly optimal controllers (in a new neighborhood) that
produces a good result in the new proposed scenario. This
result is similar to the optimal results in the initial scenario
included in the MOP.

Therefore, the importance of the study of nearly opti-
mal alternatives nondominated in their neighborhood in the
design of controllers has become clear.
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