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ABSTRACT Multiply-accumulate calculations using a memristor crossbar array is an important method
to realize neuromorphic computing. However, the memristor array fabrication technology is still imma-
ture, and it is difficult to fabricate large-scale arrays with high-yield, which restricts the development of
memristor-based neuromorphic computing technology. Therefore, cascading small-scale arrays to achieve
the neuromorphic computational ability that can be achieved by large-scale arrays, which is of great
significance for promoting the application of memristor-based neuromorphic computing. To address this
issue, we present a memristor-based cascaded framework with some basic computation units, several neural
network processing units can be cascaded by this means to improve the processing capability of the dataset.
Besides, we introduce a split method to reduce the pressure of the input terminal. Compared with VGGNet
and GoogLeNet, the proposed cascaded framework can achieve 93.54% Fashion-MNIST accuracy and
86.64% CIFAR-10 accuracy under the 4.15M parameters. The extensive experiments with Ti/AlOx/TaOx/Pt
we fabricated are conducted to show that the circuit simulation results can still provide a high recognition
accuracy, and the recognition accuracy loss after circuit simulation can be controlled at around 0.39%.

INDEX TERMS Cascaded neural networks, memristor, crossbar array, convolutional neural networks.

I. INTRODUCTION
Convolutional neural networks (CNNs) have been broadly
used in computer vision tasks such as image classifica-
tion [1]–[4], they are widely popular in industry for their
superior accuracy on datasets. Some concepts about CNNs
were proposed by Fukushima and Miyake in 1980 [5].
In 1998, LeCun et al. proposed the LeNet-5 architecture
based on a gradient-based learning algorithm [6]. While
moving ahead with deep learning algorithms, the complex-
ity and dimension of network layers have grown markedly.
Whereas, state-of-the-art CNNs demand a large number of
parameters and compute at billions of FLOPs, which pre-
vents them from being utilized in embedded applications.
For instance, the AlexNet [2] proposed by Krizhevsky et al.
in 2012, requires 60M parameters and 650K neurons,
the ResNet [7], which is widely used to solve detection
task [8], has a complexity of 7.8 GFLOPs and fails to accom-
plish real-time applications even with a powerful GPU.

The associate editor coordinating the review of this manuscript and
approving it for publication was Ruqiang Yan.

Over the past few years, embedded neuromorphic process-
ing systems have acquired crucial advantages, such as the
ability to solve the image classification problems while con-
suming very little area and power consumption [9]. Besides
these advantages, the functions of human brains can also
be simulated by neuromorphic computing [10]. As develops
the VLSI industry, more and more devices are beginning to
be miniaturized [11]. As previously stated, CNNs lead to
an exploding number of parameters in which the relevant
hardware costs will be colossal [12], these complex calcu-
lations and high memory demands make it impractical for
the embedded systems applications, such as robotics and real-
time or mobile scenarios in general.

A few network architectures [13]–[16] which utilize mem-
ristor crossbar arrays to perform convolution computation
have been proposed, these frameworks cost a great deal
of time and require high memory. Moreover, the fabrica-
tion technology of larger-scale memristive arrays is still not
mature [17]–[19], however useful cascaded frameworks in
real applications with memristor-based architectures have
seldom been reported. Therefore, cascading small-scale
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FIGURE 1. The diagram of the proposed cascaded framework. (a): Standard cascaded network framework ‘‘M-N-P ’’.
(b): The typical ‘‘3-1-1’’ cascaded type.

arrays to achieve the neuromorphic computational ability
that can be achieved by large-scale arrays, which is of great
significance for promoting the application of memristor-
based neuromorphic computing. In this paper, we present a
memristor-based cascaded framework with some basic com-
putation units, several neural network processing units can be
cascaded by this means to improve the processing capability
of the dataset. The basic computation unit builds on our prior
work [20], which has validated this simplified three-layer
CNNs can get desired recognition accuracy.

This paper is structured as follows. In Section II we exam-
ine how basic computation units cascade. Section III demon-
strates the circuits implemented based on memristor crossbar
arrays, a general algorithm mapping method and shows what
a split method is. We exhibit the experimental results in
Section IV, and conclude this paper in Section V.

II. PROPOSED CASCADED FRAMEWORK
Taking advantage of the proposed basic processing unit,
we present the standard ‘‘M-N-P’’ cascaded framework, and
more details are demonstrated.

A. THE PROPOSED CASCADED METHOD
The standard ‘‘M-N-P’’ cascaded architecture is demon-
strated in Fig. 1(a). The framework consists of several basic
computation units (BCU) in series or in parallel.

FIGURE 2. The basic computation unit architecture. It consists of three
layers, behind the input layer is convolution layer which consists of
k kernels, followed by an average-pooling layer and a fully connected
layer.

As shown in Fig. 2, each BCU is a simplified three-
layer CNNs architecture [20]. In the cascaded framework,
the BCU is taken as an image transformator. In detail,
each computation unit includes three parts to complete
the convolution, pooling (to extract the features from the
input images and produce the feature maps) and recon-
struction. The first part includes k kernels with kernel
size of Ks × Ks, the absolute nonlinearity function (Abs)
is used for activating. And the Ps × Ps average-pooling
is used for obtaining spatial invariance while scaling fea-
ture maps. The third part, fully connected layer (FCL)
performs the classification or reconstruction operations,
it takes the extracted feature maps and multiplies a weight
matrix following a dense matrix vector multiplication
pattern.
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We use the H (·) to describe the process of image trans-
formation in a BCU. Assuming that the I∗ denotes an input
image, a BCU will output a reconstructed output G. This
process can be described as

G = H (I∗) = σ (W · G∗ + b)

= σ (W · (G∗∗ ∗W ∗)+ b)

= σ (W · (δ(W ∗∗ ∗ I∗ + b∗) ∗W ∗)+ b) (1)

where H : RC×W×H
→ RC∗×W ∗×H∗ is the transformation

function in the BCU, C is the number of chanels of input
image, σ indicates the hyperbolic tangent function, δ indi-
cates the Abs function, ∗ represents the convolution operator,
b, b∗ are bias value (usually not required), and W ,W ∗,W ∗∗

represent the weight matrix of each layer, respectively (refer
to Fig. 2).

As shown in Fig. 1(a), the cascaded architecture includes
three parts. The Part #1 hasM BCUs, which extract features
from the input image and produce the reconstructed image
for the subsequent subnetworks. The output of first part
F1 ∈ RC1×W1×H1 is generated from the BCU outputs Gi1 ∈
RC1×W1×H1 (i ∈ [1,M ]). The number of Part #2 BCUs is N ,
and this part takes the outputs of the first part as the inputs to
generate theF2 ∈ RC2×W2×H2 . And the finalPart #3 includes
PBCUs, the first BCU takes theF2 as the input to produce the
G1
3 ∈ RC3×W3×H3 , and the next BCU utilizes G1

3 to produce
the G2

3, and so on until GP3 ∈ RC̃3×W̃3×H̃3 is generated. This
cascaded framework is called the ‘‘M -N -P’’ type.

Fig. 1(b) shows a demo example of the typical ‘‘3-1-1’’
cascaded architecture, this cascaded framework includes five
BCUs which three BCUs in parallel and two in series to
generate the classification output.

B. THE RECONSTRUCTION OPERATION
The reconstruction operation is designed to combine feature
maps generated of BCUs and produce the new feature maps
to the next part. Given the output G ∈ RC×W×H generated
from a part, a reconstruction transformation f : RC×W×H

→

RC×W×H is applied to aggregate outputs over all BCUs of
this part, where C denotes the number of chanels of input
image, W and H are the spatial dimensions. The output of
k th part is described as

Fk = (α1k · G
1
k )⊕ (α2k · G

2
k )⊕ . . .⊕ (αnk · G

n
k ) (2)

Fk+1 = (α1k+1 · G
1
k+1)⊕ . . .⊕ (αmk+1 · G

m
k+1)

= (α1k+1 · H
1
k+1(Fk ))⊕ . . .⊕ (αmk+1 · H

m
k+1(Fk )) (3)

where Gik is the output of the i
th BCU of the k th part, and ⊕

represents the reconstruction operator which combined with
the several original outputs using an element-wise addition to
produce a new output. Equation (2) demonstrates the process
of generating the output of k th part by reconstruction opera-
tion, and αik is the weight coefficient of each BCU output in
k th part. The value of αik can be obtained through the training
process of neural networks, and it can also be regarded as a
set of superparameters.

FIGURE 3. Diagram displaying a memristor crossbar that is capable of
completing a convolution computation.

The output Fk is treated as input to feed into the k+1 part.
Equation (3) describes the calculation process of the next part
output from the k th part, here the H (·) is the transformation
of BCU. The BCU in the same part has the same input,
and it is worth noting that the last part does not contain
reconstruction operations.

III. MEMRISTOR BASED IMPLEMENTATION
In this section, we first describe the basic computation unit
implemented on memristor crossbar arrays. Next, a mapping
method of general algorithm with BCUs is described. And
then, the BCU split method is presented for relieving the pres-
sure of input terminals. At last, the details about memristor
crossbar programmed are introduced.

A. BCU ON MEMRISTOR CROSSBAR ARRAY
As Section II described, the basic computation unit is treated
as an image transformator in cascaded framework. The output
G of each BCU is generated by multiply-accumulate compu-
tation on memristor crossbarp arrays.

The BCU is a simplified three-layer CNNs architec-
ture [20]. The trained weight matrix contains both posi-
tive and negative weights, so a synapse converted mapping
method is needed to be applied. Assuming thatW represents
a N ×M weights matrix of original neural networks weight
matrix, the first step is that convertsW to the N ×2M matrix,
this is for the convenience of obtaining the final computa-
tion results through differential output. The W+ denotes the
positive values andW− represents the negative values. If one
synapse weight in original matrix is a positive value, then
the value is defined in W+, and the value of W− is zero.
In contrast, the negative element value is defined in W− and
theW+ is zero. Similarly, if the arrangement of the memristor
in the array corresponds to the convertedmatrix, theRoff takes
the place of the zero element.

Fig. 3 demonstrates a simple demo of performing convo-
lution computations by memristor crossbar arrays. The gray
information of the field to be convoluted in the input image
is converted into a set of voltage values (V1,V2 . . .), and
the weight of the convolution kernel is mapped to the resis-
tance of the device on memristor crossbar arrays. Therefore,
the differential output ofW+ andW− is the final convolution
output.
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FIGURE 4. Memristor-based basic computaion unit architecture.

FIGURE 6. A demo example of mapping a VGGnet.

Amemristor-based computation unit architecture is shown
in Fig. 4. A K 2

s × P matrix M(1)(Mij) corresponds to all
outputs of convolutional kernels (here P = k × 2, two

memristors represent one synapse), so the convolution layer
consists of some kernels crossbar. The Abs activation module
follows the kernels crossbar, it consists of two op-amps and
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FIGURE 5. Comparison of the tanh activation function and the amplifier
alternative.

two diodes. The activation module generates signals (like
VO1 or VO2 in Fig. 4) and sents these signals to the Average-
Pooling modules. The pooling module consists some P2s × 1
crossbar which matrix weight is 1/P2s , the multiply-addition
calculation is applied to complete the pooling operations.
The fully connected layer receives the signals from pooling
module, a L × N matrixM(2)(M ′ij) corresponds to N neurons
and L inputs. The Tanh activation circuit at the end of fully
connected layer in Fig. 4 is used to both scale the output
voltage and implement the Tanh activation function.

Out11(x) =


1, x > 2
mx, |x| 6 2 ≈
−1, x < −2

ex − e−x

ex + e−x
(4)

There is an alternative calculation to complete the Tanh acti-
vation function by referring the Eq. (4). A linear amplifier
activation function (with bounded upper and lower voltage
rails) matches the Tanh relatively closely, and the simulation
results show that this is an effective alternative (in Fig. 5).
To obtain the optimal linear, m = 1/2 fits the Tanh function
in Eq. (4). It should be noted that we use theOut11 to cascade
the next network, the Out12 is treated as the output when we
use the single BCU for classification.

To enhance the driving capability of crossbar arrays, driver
circuits are needed so that low current communication signals
can drive the large resistive crossbar structures, they are
placed at each row input on the crossbar. These driver circuits
have a finite impedance and errors will occur if the crossbar
becomes too large [21]. Driver circuits are shown in Fig. 4,
and MOSFET based CMOS inverter circuits is used.

B. GENERAL ALGORITHM MAPPING METHOD
According to what we have described above, the BCUmainly
has two crossbar arrays, which are generally used for map-
ping the convolutional layer and the fully connected layer.
When mapping to a general algorithm, such as VGGnet,
the second array is mapped to a convolutional layer. The
feature maps generated by the first array will be used as input
to the second array [22]. Similarly, the first crossbar array can
also be mapped to a fully connected layer.

Fig. 6 demonstrate an example of mapping a VGGnet [3].
It consists of seven BCUs, which are cascaded by
‘‘Conv+Conv+Pool’’ and ‘‘FCL+FCL(Softmax)’’, a ReLU
activation circuit was designed to implement the nonlinearity

FIGURE 7. A method of multi-channel mapping to convolution kernels.

of the function. The ‘‘Conv+Conv+Pool’’ BCU performs
convolution operations with two arrays, and the output
of the second array is sent to the Max-Pooling module
which usually implemented using Single-Pole-Double-
Throw switches (SPDT) [20]. In the same way, the fully
connected layer of VGGnet is implemented by cascading the
‘‘BCU #6’’ and ‘‘BCU #7’’.

Fig. 7 shows the method of mapping each channel in the
convolution kernel to the array (taking RGB channel as an
example). Analogously, a convolution kernel is mapped into
two columns of the array. It is worth noting that each channel
is arranged in sequence corresponding to the weight in the
convolution kernel. Assuming that the input size of each RGB
channel is W×W, then each convolution kernel is mapped
to an array size of (W·W·3)×2. The ‘‘ReLU’’ and ‘‘Max-
Pooling’’ [20] in the figure can be implemented by circuit,
so ADC and Buffer can be omitted.

C. BCU SPLIT METHOD
As we discussed in the previous section, the BCU can gen-
erate entire output feature maps in one processing cycle.
It means that BCU is a highly parallel systems, it will improve
the time efficiency of the classification. However, this cal-
culation method will put pressure on the input terminal.
Assumed the W × H input image, each of the images is
converted to aW ·H ×1 voltage output vector by DAC as the
input dataflow. Each Ks × Ks field of the images will be sent
to the K convX

i module for the convolution computation.
K convX
i indicates that when using the ith convolution kernel

to complete the X th convolution computation, K convX
i is the

kernel crossbar discussed above. A Ks × Ks convolution
computation of a W × H image requires a total of (W −
Ks + 1) × (H − Ks + 1) operations. The modules of each
convolution kernel are independent, so the K convX

i does not
need to be reconfigured.

In order to reduce the pressure on the input terminals,
the BCU split method is need to be considered. According to
Eq. (1), the input image I∗ will be sent to the BCU to complete
the convolutional calculation. As we can see, the input I∗ can
be described as I∗ = I∗1 + I

∗

2 + . . . + I
∗
N , so the Eq. (1) can
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FIGURE 8. The diagram of BCU split method of one part.

be rewritten as

G = σ (W · (δ(W ∗∗ ∗ I∗ + b∗) ∗W ∗)+ b)

= σ (W · (δ(W ∗∗ ∗ (I∗1 + . . .+ I
∗
N )+ b

∗) ∗W ∗)+ b)

= σ (W · (δ(W ∗∗ ∗ I∗1 + b
∗) ∗W ∗)+ b)

+ σ (W · (δ(W ∗∗ ∗ I∗2 + b
∗) ∗W ∗)+ b)+ . . .

+ σ (W · (δ(W ∗∗ ∗ I∗N + b
∗) ∗W ∗)+ b)

= H (I∗1 )⊕ H (I∗2 )⊕ . . .⊕ H (I∗N ) (5)

where H : RC×W×H
→ RC∗×W ∗×H∗ is the transformation

in the BCU, and ⊕ represents the reconstruction operator
which combined with the output of different split chip using
an element-wise addition, and N is the number of subimages.
Fig. 8 demonstrates how aBCU in one part distributes input

to multiple chips. Take the chip #i for example, this chip will
perform the convolution calculation K convXi1

i11 ∼ K convXi2
i12 in

the portion of I∗. As wementioned above, the fully connected
layer is a process that calculates W · G∗ (here G∗ can be
regarded asR1×mN ), and the chip #iwill map the output to the
mi−1+1 ∼ mi inG∗. SeveralRC×W×H outputs are generated
by these chips and accumulated by ⊕ operation.

D. PROGRAMMED ON MEMRISTOR CROSSBAR
The basic computation unit is presented in Fig. 4, memristor
crossbars are utilized to implement the network layer. As the
number of cascaded networks increases, many memristor
crossbars would be required.

The objective of the programming process is to set each
memristor in the crossbar to a specific memristance. In the
0T1R crossbar (refer to Fig. 3 and Fig. 4) programmed pro-
cess, writing or reading an individual memristor resistance is
challenging due to sneak paths. To solve the issue, placing
a transistor at each cross-point will ensure that only the
memristance of the target memristor is impacting the column
current during the programmed process as in a 1T1R crossbar.

The 1T1R programmed circuit is shown in Fig. 9. In this
circuit, only the ctrl line (ctrli) corresponding to the target
memristor is enabled. This circuit utilizes two Digital-to-
Analog converter (DAC) to control a bounded voltage range
for successful programming. Assumed the memristance we

FIGURE 9. Circuit used to program the 1T1R memristor crossbar to target
memristance.

want to set isw, the DAC is able to convert each floating point
weight to a value within a set of 2B predefined conductivity
states, where B corresponds to the bit width of the DAC used.
The α is the approximate value 2k , and the δ is the program-
ming precision, that means the VT will be less than VC1 and
greater than VC2 when the programmed finished.

The logic circuit determines whether the memristance
should be decreased or increased based the output voltage VT
of the two comparators. If the AND gate has a high output,
a negative write pulse will be applied to the target memristor,
and if the NAND gate has a high output, a positive write pulse
will be applied. This programmed process will be repeated
until the XOR gate gets a high output, representing a suc-
cessfully programmed device.

IV. EXPERIMENTS
A. EXPERIMENTAL SETTINGS
All experiments are conducted using an Intel Xeon
E7 (2.6 GHz), 16GBDDR4 and a NVIDIA Titan XP graphics
card. This work is implemented with the Theano python
open-source library to train the neural network models for
100 epochs with a batch size of 128 and a learning rate
of 0.05, andHSPICE is also used for some circuit simulations.
To reflect the practical application of algorithm performance
better, we do not use any data augmentation technologies.

We compare the performance of the cascaded network
with some other state-of-the-art architectural units designed
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for classification on the MNIST [6], Fashion-MNIST [23],
SVHN [24] and CIFAR-10 [25] datasets.

1) SIMULATION PROCESS
The weights of neural network are converted to conductivity
values of memristor device by Eq. (6). The Cmax and Cmin
indicate the maximum and minimum conductances, respec-
tively. The W is the original weights set, and the Wmax
represents the maximum absolute value of the weights set,
and theCi is the conductance of the memristor crossbar array.

Ci =
Cmax − Cmin

Wmax
· |Wi| + Cmin (6)

The 1T1R memristor crossbar array which stores the net-
work weights is used for simulation. The weights obtained
from training with the theano are programmed into a crossbar
where each wire segment has a resistance of 2�, and 5% pro-
grammed erros were generated in memristor programming
simulation process. The circuit structure in HSPICE is shown
in Fig. 4. The process of simulation implemented is illustrated
as below.

1) Convert test image samples to voltage (0-1 V).
2) Execute software simulation (used Python) and circuit

simulation (used HSPICE) based on step 1.
3) Obtain difference of the potential output (Difference =

HSPICE potential - Python output) from Python and
HSPICE.

4) Get the labels of test samples from dataset, and deter-
mine whether the results of circuit simulation are cor-
rect (the label that corresponds the maximum voltage
is the output).

The Python (uses theano library) is applied to complete
the software simulation, the model weights are converted
to memristance, and the Python output is compared with
the output of the HSPICE simulation. We select the number
which has the maximum output voltage in the fully connected
layer as the HSPICE output, the number is compared with the
label of the dataset.

2) MEMRISTOR MODEL
We then evaluated the cascaded neural network based on the
Ti/AlOx/TaOx/Pt electronic synapse, which was proposed in
our previous work [26]. The scanning electron microscopy
(SEM) image and the cross-sectional transmission electron
microscopy (TEM) is shown in Fig. 10(a).

During the fabrication process, the bottom electrode
(Pt, 25nm) and the resistive switching layer (AlOx/TaOx,
5nm/3nm) were deposited by electron beam evaporation,
respectively. And the top electrode (Ti, 30nm) was grown by
magnetron sputtering. In all, three lithography processes were
performed to form the patterns of the three different layers.

The Ti/AlOx/TaOx/Pt memristor proposed shows high uni-
formity, and over 200 states were achieved by applying tri-
angular pulses (0→0.7 V, 28 KV/s for SET and 0→-1.2 V,
600 KV/s for RESET). The device which has the multilevel

FIGURE 10. (a): SEM image and the Cross sectional TEM image of the
Ti/AlOx/TaOx/Pt device. (b): 200 different states for our cascaded
network simulation, achieved by applying triangular pulses.

characteristic can be repeatedly programmed to different tar-
get resistance states from 1K� to 12K�, indicating the great
potential for neuromorphic computing applications.

Fig. 10(b) demonstrates that 200 states achieved by apply-
ing triangular pulses are utilized for circuits simulations,
the trained matrix weights are converted to conductivity val-
ues that fall within the bounded range of states. Equation (6)
introduces the method of weight mapping. In the actual sim-
ulation, the closest value is selected from the 200 states.

B. EXPERIMENTS RESULTS
In this section, we compare the cascaded model with other
state-of-the-art architectures to verify the classification per-
formance. Circuit simulation experiments are used to verify
the correctness of the circuit design and the impact of the
device on the recognition accuracy.

1) COMPARISON WITH OTHER STATE-OF-THE-ART
ARCHITECTURES
Based on basic computation unit, we test the cascaded net-
work with different architecture onMNIST, Fashion-MNIST,
SVHN and CIFAR-10 datasets, the configuration details
and Fashion-MNIST accuracy performance is shown
in Table 1. The BCU which has 14 kernels with 9×9 kernel
size and 2×2 pooling size, and Abs activation func-
tion applied can achieve 89.68% Fashion-MNIST accu-
racy, while Cascaded×14 achieves improvements of 3.18%,
3.44%, 3.57% and 3.86% under 4.15M parameters. The
output sizes of the Part#1 and Part#2 are both 20×20.
7-Cascaded×14(4-1-1) provides 93.12% Fashion-MNIST
accuracy which uses 9×9 kernel. 8-Cascaded×14(4-2-2)
slightly outperforms ‘‘4-2-1’’ (∼0.13%) with 10,000 more
parameters. It can be seen that cascaded models can achieve
93.54% accuracy under the 4.15M parameters.

We further compare the cascaded architecture with
the building structures of four state-of-the-art mod-
els, VGGNet [3], GoogLeNet [4], ResNet [7] and
CapsuleNet [27]. The BCU architecture in Table 2 includes
14 kernels, 2×2 average-pool with Abs activation function.
A ‘‘4-3-2’’ cascaded type is implemented, ‘‘3×3, 5×5, 7×7,
9×9 conv.’’ is in Part #1, ‘‘3×3, 5×5, 7×7 conv.’’ is in
Part #2, and ‘‘9×9, 9×9 conv.’’ in Part #3. VGGNet-16 pro-
vides 99.22% MNIST accuracy, 93.35% Fashion-MNIST
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TABLE 1. Cascaded architecture for Fashion-MNIST under the 4.15 M parameters. The number before the ‘‘Cascaded’’ is the number of the BCUs. ‘‘×14’’
indicates the cascaded network uses 14 convolution kernels.

TABLE 2. Accuracy rates (%) on the MNIST, Fashion-MNIST, SVHN, and CIFAR-10 datasets.

accuracy, 96.86% SVHN accuracy and 88.52% CIFAR-10
accuracy, GoogLeNet achieves 99.45% MNIST accuracy,
93.52% Fashion-MNIST accuracy, 93.74% SVHN accu-
racy and 85.58% CIFAR-10 accuracy with 6.8M param-
eters, CapsuleNet provides 99.35% and 93.55% accuracy
on MNIST and Fashion-MNIST datasets respectively, and
94.76% SVHN accuracy and 88.73% CIFAR-10 accu-
racy, while ResNet-50 produces remarkably better Fashion-
MNIST accuracy of 94.24%, SVHN accuracy of 97.31%
and CIFAR-10 accuracy of 92.82%. However, they are all
computationally intensive (approximately 26M parameters of
VGGNet). In comparison, 9-Cascaded×14(4-3-2) achieves
99.55%MNIST accuracy, 93.54%Fashion-MNIST accuracy,
94.14% SVHN accuracy and 86.64% CIFAR-10 accuracy
under 4.15M parameters. From the table it can be seen that
the cascaded network significantly surpasses VGGNet-16 by
0.33%onMNIST accuracy and 0.19%Fashion-MNIST accu-
racy with 6.26× fewer parameters, and slightly outperforms
GoogLeNet 0.02% Fashion-MNIST accuracy, 0.40% SVHN
accuracy and 1.06% CIFAR-10 accuracy with 1.64× fewer
parameters.

2) CIRCUITS SIMULATION PEFORMANCE
Plots in Fig. 11 show the potential output of BCU obtained by
the HSPICE simulation and the software simulation output
(used Python) in 10,000 test samples of CIFAR-10 dataset.

Fig. 11(a) demonstrates the first 2000 potential outputs of
all kernels in one test sample, which takes from 8064 convo-
lution operations applied by 14 kernels. Similarly, Fig. 11(c)
shows the potential output of 10,000 samples, each potential
is the maximum voltage of 10 outputs in fully connected
layer. It can be seen that the outputs of each samples are
between 0.20 V to 1.20 V. Fig. 11(b) and Fig. 11(d) depict
the difference of the corresponding potential outputs in the
crossbars, obtained from HSPICE and the Python software

FIGURE 11. (a) and (c): Potential output of kernels and fully connected
layer. (b) and (d): Difference of the potential output of kernels and fully
connected layer.

based simulations. From Fig. 11(d) we can observe that the
corresponding output result from HSPICE and Python sim-
ulations are close (absolute values of the difference of the
corresponding values are less than 1× 10−1).
Fig. 12(a) and Fig. 12(b) depict the boxplot of simulation

difference for the output of kernels and fully connected layers.
As shown in Fig. 12(a), the differences are concentrated in the
range of−2×10−4 to 3×10−4. In Fig. 12(b), the differences
are concentrated in the range of−5× 10−2 to 5× 10−2. This
is one order of magnitude different for the kernels and fully
connected layer output. Simulation experiments demonstrate
that the output of the circuit is close to the software simula-
tion, indicating that the circuit implementation is feasible.
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FIGURE 12. Boxplots of simulation difference for the output of (a) kernel
and (b) fully connected layers.

FIGURE 13. Comparison of different cascaded architecture with one BCU
on CIFAR-10 dataset based on HSPICE simulation.

Fig. 13 illustrates the relationship between the amount
of model parameters and CIFAR-10 recognition accuracy.
The amount of convolution kernels in the BCU is between
5 to 32, 9×9 kernel size and 2×2 average pooling are applied.
As shown in figure, the BCU can achieve 56.35% accu-
racy under 0.5M parameters (when the amount of convo-
lution kernels is 32). We tested the five cascaded type for
their performance. It can be observed that as the number of

parameters increases, the recognition accuracy of the network
gradually increases. The ‘‘4-3-2’’ cascaded type provides
86.25% accuracy with 4.15M parameters. It is worth noting
that the accuracy of the BCU is better than‘‘1-1-1’’ cascaded
type under 0.5M parameters, the feature information may not
be effectively transmitted due to the lack of the cooperation
of the parallel structure. The specific reason remains to be
studied in the future work.

V. CONCLUSION
In this paper, we propose a memristor-based cascaded frame-
work, which can use several basic computation units in
cascaded mode to improve the processing capability of
the dataset. We demonstrate the architecture of the BCU
and corresponding circuit structure. Based on the proposed
BCU architecture, we present a ‘‘M-N-P’’ cascaded specially
designed for improving recognition accuracy of the datasets,
and we introduce a split method about BCU to reduce
pressure of input terminal. Compared with VGGNet and
GoogLeNet, the proposed cascaded framework can achieve
desired accuracy with fewer parameters. Extensive circuits
experiments are conducted show that the circuit simulation
results can still provide a high recognition accuracy. For
future work, we consider to further evaluate the cascaded
framework on other tasks such as object detection.
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