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ABSTRACT The development of newmethods for biometrics using the 3-D surface of the iris could be useful
in various applications, such as reliable identity verification of people, when only segments of the iris are
available, the study of how the iris code changes with pupil dilation, and studying acute angle glaucoma and
its relation to the 3-D iris structure. The goal of this paper was to build a 3-D model of the iris surface from
several 2-D iris images, adding depth information to the iris model. We developed a 3-D iris scanner, which
reconstructs a 3-D mesh model of the iris surface from several 2-D visible light images. First, a smartphone
camera captures visible light iris images from different angles in a controlled illumination environment.
Then, a structure-from-motion algorithm reconstructs a point-cloud 3-D model. Finally, the best-fitting 3-D
mesh model is obtained using the screened Poisson surface reconstruction technique. Our results include the
reconstruction of the 3-D iris models of ten subjects. These models contain an average of 11,000 3-D points.
The spatial resolution of our device was measured as 11µm by scanning a 3-D pattern of known dimensions.
The 3-D model of the iris is compared with the results from an optical coherence tomography (OCT)
performed on one iris. Our results show that our new 3-D iris scanning method produces a model with
potential applications in biometrics and ophthalmology.

INDEX TERMS 3D iris reconstruction, 3D iris scanner, biometrics, iris recognition, structure from motion.

I. INTRODUCTION
The need for accurate identity verification systems has
driven the research on iris recognition techniques. These
techniques exploit the texture of the human iris because it
exhibits a distinctive pattern with great variability among
individuals [1], [2]. Iris recognition is currently the most
reliable biometric technology on the market because of its
non-invasive, accurate, and robust methodology [3], [4].
Furthermore, iris recognition has succeeded in both small-
and large-scale applications. Some large-scale uses include
United Arab Emirates border-crossing [5] and India’s Unique
ID program [6]. Iris recognition was also used to create a
voter registration list in Somaliland [7].

One of the main reasons for the success of iris recognition
technology is its high accuracy. Daugman demonstrated that
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a false match rate of 1 in 4 million could be achieved when
using a fractional Hamming Distance (HD) of 0.33 [1]–[8].
The variability in iris texture as analyzed by Daugman’s
method is as great for left and right eyes of the same
person, and between identical twins, as it is for irises of
unrelated persons [1]–[9]. By contrast, the variability in fin-
gerprint analysis would produce inadmissible false matches
in large databases [2], which is why India, for example,
uses iris recognition as well as fingerprints for its Unique
ID program [6].

Although iris recognition is a well-developed technique
with successful applications, there are still areas for improve-
ments. First, iris recognition could encounter the same issue
as fingerprint analysis if the database were large enough. For
instance, in a database of one billion individuals, a falsematch
rate of 1 in 4 million indicates that 250 people have similar
iris codes. In addition, it is normal to have partial occlusions
of the iris due to eyelashes, eyelids, and specular reflections.
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FIGURE 1. Process of 3D Iris Reconstruction. (a) Image acquisition from different views. (b) Camera pose estimation (blue) and sparse 3D reconstruction
(red). (c) Dense 3D point-cloud reconstruction. (d) Mesh surface reconstruction.

When there is less iris available for matching, the accuracy
that can be achieved is lower. Moreover, iris recognition
techniques assume that the iris is flat, when, in fact, it is a
three-dimensional organic structure. The human iris dilates
and contracts using two muscle systems, a sphincter and
several radial dilator muscles, in order to control the amount
of light that hits the retina [10]. These muscle systems cause
the surface of the iris to have a 3D relief that can be visual-
ized in Optic Coherence Tomography (OCT) [11]. However,
when this complex 3D structure is mapped onto a 2D plane,
all depth information is lost. Recapturing depth information
could, in principle, enhance the amount of information we
can extract from the iris. Our 3D scanner allows studying,
in detail, the impact of pupil dilation on Daugman’s rubber
sheet model of iris surface deformation. The results of this
research will allow us to measure the displacement of the
iris structure as a function of the pupil dilation in 3D, and to
relate the iris displacements to the rubber sheet model used
for identification. This, in turn, could lead to the formulation
of more accurate models for iris normalization, even with
extreme dilation differences [12].

Previous work in this area includes the following.
Bastias et al. [13] reconstructed a 3D model of the iris
from several NIR images in order to capture the depth infor-
mation of the iris surface. A raspberry-pi V2 camera was
used to capture NIR iris images along a circular arch [13].
Then, a photogrammetry algorithm was used to reconstruct
a 3D model, thus creating a new method for human iris
analysis [13]. Issues with that method include the noisy
nature of the camera, the resolution, and the plane correc-
tion needed to integrate all the images [13]. In recent work,
Benalcazar et al. [14] used lateral visible-light (VL) illumi-
nation to capture highly textured images of the iris at a
resolution of 16Mpx. Lateral illumination allowedVL images
to capture structural details of the iris [14]. In fact, a com-
bination of lateral and frontal illumination showed slightly

superior iris-recognition performance than that of frontal NIR
illumination [14]. Our work builds upon these previous stud-
ies to create a robust and reliable method of 3D iris scanning
that is not only useful for biometrics, but also is promising as
a less expensive screening tool for Acute Angle Glaucoma, a
disease currently diagnosed with an OCT [13]–[15].

The proposed 3D iris scanning methodology consists of
four main stages, as is illustrated in Fig. 1. First, VL images
of the iris are captured from different perspectives, as shown
in Fig.1a. Then, we use Structure from Motion (SfM) [16] to
jointly estimate the camera pose of every image and a sparse
3D model of the iris. Our method applies several constraints
to adapt the SfM algorithm specifically for the iris. Fig.1b
shows camera positions in blue, and the initial point-cloud
model of the iris in red. Then, a dense 3D reconstruction is
performed by extracting more keypoints from each image,
as shown in Fig.1c. Finally, the point-cloud model is con-
verted into a mesh surface by the Screen Poisson Surface
Reconstruction technique [17]. This method produces a mesh
representation of the iris surface that integrates the depth
information of a large number of points on the iris. Fig.1d
shows the details that are captured from the iris in the final
mesh representation. With the additional depth information,
extra degrees of freedom can allow iris recognition to be
applied in even larger databases than is currently possible,
thus extending the scope of iris recognition.

The following are the main contributions of this study.
First, we improve the scanning device so that iris images have
better resolution, less noise, and additional color informa-
tion. Second, we improve the preprocessing stage by adding
lens-distortion correction [18], [19] and local Laplacian con-
trast enhancement [20]. Third, we adapt the SfM pipeline
for this specific application to make the system more robust
and less computationally expensive. Fourth, we reconstructed
3D iris models for 10 subjects. Fifth, we evaluate the perfor-
mance of our 3D iris scanner in terms of spatial resolution by
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scanning objects of known dimension depths. Sixth, we com-
pared our 3D reconstruction with the OCT of one iris. The
OCT is a paid medical exam, and therefore, it was performed
for just one volunteer to provide a qualitative comparison
with our method, to show the promise of our approach as an
alternative to OCT.

II. REVIEW ON 3D RECONSTRUCTION
Methods to produce a detailed reconstruction of objects or
scenes from images and video have improved significantly
over time [21]. Application of these technologies varies from
object scanning to robotic vision and city mapping. New
algorithms, as well as increasing CPU and GPU power, allow
processing thousands of images in a linear-time incremental
manner [16]. For example, a collection of internet images has
been used to reconstruct buildings and even city blocks [22].
Other research has focused on real time implementations
for environment mapping and robotic navigation [23], [24].
In this section, we present a brief survey of 3D reconstruction
methodologies that have inspired our pipeline.

Methods for 3D representation of the environment from
digital images can be grouped into two areas [21]. Both
obtain 3D points from keypoints in images from various per-
spectives. Thus these methods need several highly textured
images to produce an optimal reconstruction [21], [25]. The
first group is Visual Simultaneous Localization and Mapping
(SLAM), which processes image frames, from video or real
time, one by one [23], [26]. This method aims to reduce the
uncertainty of the measurements with each new observation,
and incorporates new 3D points into the model from each
image [23], [24], [26]. The second group, Multi-View Stereo
(MVS), processes the unsorted images in a batch [16], [27].
MVS treats 3D reconstruction as an optimization problem:
given a group of images, find the camera poses and 3D
model that minimize the total re-projection error [21]. The
re-projection error is the distance between a keypoint and the
pixel where the associated 3D point is projected back onto the
image plane [21].

Visual SLAM was conceived as a method for autonomous
robotic navigation without the need for sophisticated sen-
sors such as LIDAR [23], [24], [26]. This method utilizes a
Kalman filter to jointly estimate the camera trajectory and
the position of landmarks in the environment [23], [26].
Visual Slam is an active area of research where state-of-
the-art implementations can run in real time. For instance,
the ORB-SLAM system utilizes ORB features, which are
fast and robust, to generate a map of the environment for
robotic navigation [24]. ORB-SLAMhas a robust mechanism
that stores only important frames, manages automatic model
initialization, and detects traversing on the same path for loop
closing [24]. Fang et al. [28] also implemented Visual SLAM
with ORB features, but with an FPGA architecture to reduce
power consumption. The PL-SLAM system extracts point
and line features to work even with low textured images [29].
The Visual SLAM paradigm can also be used for augmented
reality systems in real time [30].

MVS estimates all the camera poses and an initial sparse
3D model using a process known as Structure from Motion
(SfM) [21], [22]. SfM uses epipolar geometry to find the
relative spatial motion, in terms of the Essential Matrix,
between two cameras observing the same scene [16]. The
Essential Matrix represents the transformation (rotation and
translation) of coordinate systems from one camera to the
next [25]. If one camera is fixed, the absolute position and
orientation of the other cameras can be found [25], [31].
After finding all camera poses, the coordinates of the 3D
points in the model are triangulated [14], [25]. SfM has a
final refinement step which is called Bundle Adjustment [32].
This is the step where the camera poses and 3D model points
are jointly optimized to minimize the re-projection error. The
re-projection error can be lowered even to sub-pixel values in
this step [21].

MVS builds upon the output of the SfM process to obtain a
more detailed model [27]. This model is called a dense recon-
struction, and can be represented in different formats: point-
cloud [16], [27], depth-map [33], voxel [34], and deformable
polygonal mesh [35]. Furukawa et al. proposed a versatile
point-cloud representation, in which each 3D point is rep-
resented by a small rectangular oriented plane [27]. This
MVS implementation is based on a repeated process of
match, expand, and filter [27]. This process incorporates
new patches, expands them filling uncharacterized areas, and
then trims the patches that result in a faulty geometry [27].
At the end, this implementation is capable of finding detail
even in low texture regions from non-keypoint pixels [27].
The best known implementation of MVS and SfM is that
of Agarwal et al.: ‘‘Building Rome in a day’’ [22]. They
utilized 150,000 assorted images of Rome from the internet,
and produced a point-cloud model of the city, which includes
the most famous buildings [22]. Melow et al. improved
the MVS algorithm by identifying and removing shading
and reflectance from the model [36]. Lim et al. adapted
the MVS paradigm to scan the digestive system of human
beings [37]. Their endoscope system proves that MVS can
work in biomedical applications [37].

III. METHODS
A. IRIS IMAGING DEVICE
The first step towards reconstructing a 3D model of the iris
is capturing sharp well-illuminated images of the iris from
different viewpoints. These images need to have high texture
and high resolution in order to obtain as many keypoints
as possible. Additionally, as we observed in our previous
research [13], those images need to have a consistent pupil
dilation level; thus, a controlled illumination environment is
also needed. Finally, all the components of the device have
to be mounted on an ergonomic structure that minimizes
motion related artifacts. With all of these considerations in
mind, the proposed image acquisition device consists of the
following components: a cellphone camera, a rail on which
the cellphone moves freely in front of the iris, an LED illu-
mination setup, an illumination control circuit, and a frame
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FIGURE 2. Top view of the device schematics and a picture of the frontal
illumination PCB. The left half of the device allows the users to focus
their gaze on printed letters, while the right side allows the camera to
capture close range images of the right eye in a controlled illumination
environment. The cellphone camera moves in a linear trajectory while
taking pictures of the right eye from different viewpoints (angles).

FIGURE 3. Picture of the image acquisition device.

on which all these components are mounted. Fig. 2 shows the
device schematics. The device was inspired by the designs
of Bastias et al. [13] and Mariakakis et al. [38], and presents
slight improvements on the one presented in [14].

The frame consists of two parts: a main part and a mobile
part. The main part is a chamber based on Google Cardboard
VR glasses [39]. This chamber produces a steady structure
to capture images of the eye while blocking external light
sources. The structure was laser-cut in acrylic for stability and
painted opaque black to reduce specular highlights [14]. The
illumination setup and circuitry are allocated to this structure.
The mobile part holds the camera and a close-range lens.
This part was 3D printed and also painted opaque black. The
3D-printed piece includes a handle and a rail that allows the
two parts to move freely along the axis shown in Fig. 2.
The subject remains fixed with respect to the main part;
thus, when the mobile part moves along the axis, the cam-
era can take several pictures of the right eye from different
perspectives. Fig. 3 shows a picture of both parts of the
device.

Image acquisition is done with a Samsung S6 cell-
phone with a macro lens. This macro lens is a biconvex
lens, 25mm diameter and focal distance of 45mm. It cap-
tures 16Mpx VL images at 4 cm from the iris [14]. The
eye is illuminated with white LEDs from the front and
from the side. The lateral LED enhances the contrast in

the images since it produces shadows from the relief on
the surface of the iris [14]. The frontal LEDs maintain
uniform illumination across the iris and the sclera [14].
The frontal illumination PCBwas based on the design in [13].
This PCB allows the illumination to be fixed while the cam-
era moves behind it. The device was designed so that the
specular reflections from the frontal LEDs fall on the pupil
region, avoiding interference with the iris texture. Another
feature included to reduce eye motion is a printed text of the
first seven letters of the alphabet, as is shown schematically
in Fig. 2. This helps to fix the gaze of the subject’s left eye,
by the operator asking the subject to focus their attention on
a specific letter. Also, to avoid variations in pupil dilation,
the left eye is illuminated with a duplicate of the frontal
illumination PCB. This helps in maintaining constant pupil
dilation between frames because both eyes receive the same
amount of light. Light intensity of both circuits, as well as that
of the lateral LED, is controlled independently using pulse
width modulation. The illumination controller is the white
box on top of the device shown in Fig. 3.

B. IMAGE PROCESSING
1) LENS DISTORTION CORRECTION
As is usual in the first step of an image processing pipeline,
it was necessary to correct the lens distortion between the
cellphone camera and the macro lens to improve the image
processing results, reduce the complexity of the camera
model, and the processing time [21]. To estimate both lens
distortion coefficients and the camera model, we used the
Matlab implementation [40] of the camera calibration pro-
cess [18], [19]. This process uses a set of between 10 and
20 images of a checkerboard pattern in different locations of
the image [40]. The pattern is placed at the same distance
from the camera as that of the iris. With the location of the
corners in the checkerboard images, this algorithm computes
the intrinsic parameters of the camera model such as: focal
length, principal point, skew, radial distortion, and tangential
distortion. With this information, lens distortion correction is
performed on the iris images.

The camera model is the mathematical transformation that
represents the way in which 3D points of the real world are
projected onto the pixels of the image. Equation 1 describes
the pin-hole camera projection model [21], [24]:

p̃ =

 fx s cx
0 fy cy
0 0 1

×
 r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz

−1 × P,
(1)

p̃ = K × T−1 × P, (2)

where P is a 3D world point P̃, is the coordinates of the pixel
in which P is projected in homogeneous coordinates, fx and
fy are the horizontal and vertical focal lengths in pixels, s is
the skew, (cx , cy) are the coordinates of the principal point
which is the intersection of the optical axis with the image
plane, rij are rotation coefficients of the camera pose, and
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FIGURE 4. Pupil dilation in an image set. (a) Pupil radius of 10 burst
images from 8 camera positions. (b) Histogram of positions available per
pupil radius. A radius of 144.5 pixels was present at 7 different camera
positions; those images were therefore selected to reconstruct the 3D
model.

the vector (tx , ty, tz) is the translation of the camera position
from the origin of the 3D world coordinates. K is the intrinsic
matrix, which is the result of the camera calibration process.
Finally, T is the extrinsic matrix, which is computed in later
steps.

2) DILATION-BASED IMAGE SELECTION
SfM and MVS methods assume that the scanned object does
not deform between frames. However, the human iris changes
because of dilation, which is a form of distortion [10].
The greater the variation in iris dilation in the images used
in the 3D reconstruction process, the greater the noise level
in the results. Illuminating both eyes with the same amount
of light improves the stability in the dilation; however, small
dilation changes naturally still occur. To further reduce dila-
tion related problems, we propose an image selection method
that identifies a set of images with the same dilation to gener-
ate a 3D model. First, we take a burst of 10 or more images of
the eye at each camera position. Then, we identify the pupil
in each image and measure its radius. Finally, we compute
a histogram of the number of positions available per pupil
radius. The dilation level which is present in the greatest
number of positions is then chosen, and all the images that
form that histogram bin are used in the reconstruction of the
3Dmodel. Fig.4 illustrates the amount of dilation present in a
typical image set, and the image selection method. At the end
of this step, a group of images having small dilation variation,
and coming from the largest number of camera positions
available, is selected.

3) IRIS SEGMENTATION
We segmented the iris in the selected images by masking out
the pupil, the sclera, eyelids and eyelashes [8], [41]. Although
the 3Dmodel can be reconstructed without iris segmentation,
this process removes irrelevant 3D points from eyelids and
eyelashes in the final 3D model.

FIGURE 5. Contrast Enhancement of iris images by means of Local
Laplacian [20]. (a) Original Image. (b) Enhanced Image.

FIGURE 6. Slope-based match filter. The two images are placed side by
side horizontally and line segments join the matched keypoints. Since the
camera moves on the X axis, line segments are expected to have a slope
of 0 (blue lines). However, mismatched keypoints have similar
descriptors, but produce slopes different from 0 (red lines).

4) CONTRAST ENHANCEMENT
The final preprocessing step is to enhance the dynamic range
of brightness in the iris region. This step improves the number
of keypoints that can be extracted from the iris. A Local
Laplacian filter was used for contrast enhancement [20].
This filter uses information of only local patches and, thus,
eliminating extreme bright and/or extreme dark zones is not
required. Fig. 5 shows the results of this stage.

C. KEYPOINT EXTRACTION AND MATCHING
1) KEYPOINTS AND DESCRIPTORS
The starting step in SfM to produce the 3D model is identify-
ing distinctive features across all the images. The coordinates
of those features help to infer the pose of the camera for each
image, as well as establishing an initial sparse 3Dmodel. The
development of robust and fast feature detectors and descrip-
tors, such as SIFT, SURF, and ORB, was a crucial factor
in developing the modern SfM and MVS algorithms [21].
We use SURF key-points, as well as its 64-element descriptor,
because it is efficient and invariant to lighting, scale, and
rotation [25], [42], [43].

2) KEYPOINT MATCHING AND SLOPE-BASED FILTER
Keypoints of two images can be matched by finding the
Euclidian distance of their descriptors. However, if the texture
is similar in different regions of the object, some points
can be matched incorrectly. Those mismatches diminish the
precision of the essential matrix and the object reconstruction.
In order to identify those outliers, we make use of the fact that
the camera moves in a linear trajectory. That linear motion
creates a predominant effect of iris translation on the x axis
from image to image. Fig. 6 shows a graphic representation
of our slope-based filter. First, for each keypoint in image 1,
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we rank all the keypoints in image 2 according to the dis-
tance between their descriptors. Then, for the keypoint pair
with the smallest distance, we compute the slope of the line
that joins them when the two images are placed side by
side horizontally. If the slope is between ±5◦, the match is
accepted; otherwise, the match is rejected, and the pair of
points with the second best distance is tested. This process
is repeated until each keypoint from image 1 is mapped with
one keypoint of image 2. In this way, incorrect matches are
removed.

At the end of this step, keypoints and descriptors are
extracted from the images, and they are matched among
consecutive images.

D. SPARSE 3D RECONSTRUCTION
1) CAMERA POSE ESTIMATION
The camera pose consists of the position and orientation
of the camera in space, which can be determined from the
essential matrix between two images. The essential matrix
is a 3 × 3 matrix which encodes the Epipolar geometry that
results from projecting one point in space P onto two different
cameras or views to produce the corresponding points p̃1
and p̃2 [21], [25]. The two corresponding points from this
projection are related with the essential matrix [44] given by:

x̃2 × E × x̃1 = 0, (3)

where x̃1 and x̃2 are the normalized coordinates of the
corresponding points p̃1 and p̃2, and E is the Essential
Matrix [25], [44]. The essential matrix can be resolved with
a minimum number of 8 corresponding points [44], [45].
To reduce the error caused by incorrect matches, a RANSAC
process is used in the computation of the essential
matrix [25], [45]. This process identifies and removes the
outliers that might have passed through the previous filtering
stage. The essential matrix encodes the relative camera pose
for two different angles (views). If one of them is known,
we can compute all the rij coefficients, as well as (tx , ty, tz),
in the pin-hole camera projection model in (1). In our algo-
rithm, the pose of the first camera is fixed in advance, and the
pose of the subsequent views is determinedwith the described
method.

2) POINT-CLOUD 3D RECONSTRUCTION
Once the pose of the camera is found for each image, all the
matches can be projected onto the 3D space to form a Sparse
3D reconstruction. The projection process consists of finding
the 3D line that joins the center of the camera with a keypoint,
and extending it. Such a 3D line is called a bundle [21]. The
process is repeated for each camera position. The point in
space where the bundles of corresponding keypoints meet
is considered to be a 3D point in the point-cloud model.
Since a keypoint can usually be tracked in more than two
views, the bundles might not intersect at the same exact point.
Therefore, the 3D point is the one that produces the least error
in the intersection. The process is repeated for each keypoint
to obtain all the 3D points in the point-cloud model.

FIGURE 7. Pattern of known spatial dimensions to test 3D scanning
accuracy. Only the red surfaces of the diagram were used in the analysis.
Three patterns were created with final step height h of 75µm, 150µm, and
375µm.

Data of the matching points and views are managed using
the track format to make the process more efficient [21].
A track j is conformed by a 3D point Pj, the camera models
of all the images I on which Pj is visible, and the keypoints
p̃ij which generated the 3D point [21].

3) BUNDLE ADJUSTMENT
A refinement process in the 3D reconstruction is called Bun-
dle Adjustment. This process consists of jointly optimizing
the camera poses and the point-cloud model to minimize the
re-projection error [21], [32]. The re-projection consists of
projecting the point-cloud model back to each image using
the calibrated camera model (1) [21], [25]. In this sense,
the error is the distance between a projected point and the
keypoint that originated it. The goal is to find the camera
poses and 3D points that minimize the total error given
by:

error (T ,P) =
∑

j

∑
i∈V (j)

(
αijKT

−1
i Pj − p̃ij

)2
, (4)

where j is the track, i is the camera view, K is the intrinsic
matrix, Ti is the extrinsic matrix, Pj is a 3D point in Cartesian
coordinates, αij is a constant that represents the normalization
from homogeneous coordinates to Euclidean coordinates, and
p̃ij is a keypoint.
At the end of this step, the accurate position of the camera is

found for each image, as well as the initial point-cloud model
of the iris tissue. On average, the reconstructed models have
2000 3D points at this step.

E. DENSE 3D RECONSTRUCTION
With the purpose of increasing the number of keypoints
and 3D points, we acquired new keypoints using the min-
imum eigenvalue algorithm by Shi and Tomasi [46]. This
technique extracted five times more keypoints than SURF
from our images. Then, the 3D points were computed using
the calibrated camera models of each view from the sparse
reconstruction. After that, the bundle adjustment was exe-
cuted a second time to refine the model. Finally, the normal
to each 3D point was initialized to be perpendicular to the
iris plane, and they were refined using Meshlab, an open-
source software for 3D model processing [47]. At this stage,
the number of 3D points in the point-cloud model is over
10,000 on average.
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FIGURE 8. Irises captured with frontal VL for the 10 subjects included in the 3D iris model reconstruction.

The final step in our 3D reconstruction pipeline was the
estimation of a mesh model for the iris. To accomplish this,
we used the Meshlab implementation of the Screen Poisson
Surface Reconstruction algorithm [17], [47]. This algorithm
estimates the best-fitting mesh for the point cloud, and is
robust to clutter [17]. Thismesh helps to fill patcheswhere the
iris texture is uniform and an insufficient number of keypoints
is available.

F. SCANNING RESOLUTION MEASUREMENT
After developing the 3D iris scanning methodology, it is nec-
essary to determine the smallest spatial detail the proposed
method is able to resolve. For this purpose, we scanned 3D
patterns of known dimensions and analyzed the Signal to
Noise Ratio (SNR). The shape of the pattern is a flat surface
with a step in the middle, as is shown in red in Fig. 7. The
pattern needs to have a rich texture so that our proposed
methodology can be applied. That is why the flat surfaces
contain a high texture picture printed on sticker paper over a
rigid copper/acrylic sheet (PCB material). The height of step
h is controlled by varying the number of paper layers. Each
paper layer has a thickness of 75µm. In total, three patterns
were created using one, two, and five layers. The patterns
were scanned with the same device and same illumination
settings as used for the iris.

We compute the signal to noise ratio, SNR [46], using:

SNR =
A
σ
, (5)

where A is the amplitude of the signal and σ is the standard
deviation of the noise. We take the measured value of h in the
3D model as the amplitude A.

We compared the performance of our SfM pipeline against
that of two general-purpose SfM implementations available
online. The first SfM software is VisualSFM [16] for the
sparse reconstruction and CMVS [27] for the dense recon-
struction. The second software is Regard 3D, available online
on: http://www.regard3d.org/. For the test, we compared the

FIGURE 9. Example of the scanned 3D spatial pattern for h = 150µm.
(a) Point cloud model and extracted cross section. (b) Corresponding 2D
cross section. (c) Segmented point cloud.

reconstruction error in the 3D patterns of Fig. 7. Since the
ground truth is the height of the step h, the reconstruction
error can be computed as:

error =
1

N +M

(∑N

i=1

∣∣Zupi − h∣∣+∑M

i=1
|Zlowi|

)
,

(6)

where Zupi is a 3D point in the upper level, Zlowi is a point
in the lower level, and N and M are the total number of points
in the upper level and the lower level, respectively.

G. SUBJECTS FOR 3D IRIS RECONSTRUCTION
Using the proposed method, we scanned 10 subjects to build
the 3D iris models. The subjects’ irises are shown in Fig. 8 for
frontal VL, and the typical iris appearances are shown for
both dark and light colored eyes. Within this group, there is
one green iris, three dark brown irises, and six light brown
irises. We imaged their right eyes with the proposed device
using a combination of lateral and frontal VL to enhance iris
texture. The image acquisition time is approximately 30 s for
6 images of the iris. In the future, this time could be reduced
by using an automatic scanning procedure such as controlling
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FIGURE 10. Reconstructed 3D iris models for the 10 subjects. The 3D reconstructed mesh is presented next to one of the iris images from which the
model was generated. Images were captured using lateral + frontal VL.

camera motion with a linear actuator. Additionally, an OCT
scan was performed on the right eye of subject 1. In the
results section, we show the reconstructed 3D model for all

10 subjects, as well as a cross-section comparison between
the 3D model and the OCT scan for subject 1. To compen-
sate for the pupil dilation differences between the OCT scan
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FIGURE 11. Cross-section comparison between the OCT scan and the 3D mesh model of subject 1. Red lines indicate the cutting plane.
Dashed lines in (d) represent the cornea in (b). Lineal dilation was applied in (d) so that the 3D model has the same pupil dilation level as
the OCT scan.

TABLE 1. Signal to noise ratio in 3D spatial patterns of known
dimensions.

and the 3D model, a linear deformation was applied to the
3D model slice until both methods have the same dilation
level [10].

IV. RESULTS
A. RESULTS FOR THE PROPOSED METHOD SPATIAL
RESOLUTION
We scanned the three 3D patterns described in section III.F
and measured the amplitude of step A, as well as the stan-
dard deviation of the noise σ . Fig. 9 shows an example of
a scanned 3D pattern. The lower and upper levels of the
pattern were segmented using two thresholds on the z axis.
The cross-section shown in Fig. 9b is for illustrative purposes
only, since the analysis was made using the 3D segmented
data that is shown in Fig. 9c. Since we are interested in
measuring the height of the step as the difference between
the lower and upper levels, green points in Fig. 9c were not
used in the analysis.

Table 1 shows the results of this test for the three spatial
patterns 75 µm, 150 µm, and 375 µm. The height of each
step was measured with an error smaller or equal to 5µm

TABLE 2. SFM methods comparison: average reconstruction error in
patterns of known dimensions.

in all of the three samples. As expected, the SNR increases
proportionally to the height of the step. The level of the noise
present in our method is consistent for the three models with
a value of 11µm± 1µm. This implies that the smallest detail
we can detect is 11µm.

Table 2 shows that our SfM algorithm produced recon-
struction errors smaller than 10µm. These results are consis-
tent with those of Table 1. Additionally, our method produced
smaller errors than those of the other two SfM algorithms
tested.

B. SUBJECTS’ IRIS RECONSTRUCTION RESULTS
The 3D iris surfaces of 10 subjects were reconstructed using
the proposed methodology. Fig. 10 shows, for each subject in
one row, the frontal iris image followed by one image taken
from the 3D model at a specific angle. It can be observed that
the final 3D model captures the depth information, as well
as detail information from the iris. In general, the regions of
the iris with greater texture produced more intricate shapes in
the final 3D iris reconstruction. Fig. 11c shows a close up of
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TABLE 3. Reconstructed 3D-model summary.

model S01 from a lateral perspective. It illustrates the relief
of the iris, which is captured by our method. Table 3 shows
information about the reconstructed 3D models. The average
peak-to-peak depth value among the models is 1.38mm, con-
sidering only the iris region. The variability of the depth value
is characterized by the standard deviation. Its average value is
270µm including all the models. Finally, the average number
of reconstructed 3D points is 11,105, and the average number
of polygons in the 3Dmesh is 54,605. The results of the cross
section comparison between the 3D model and the OCT are
presented in Fig. 11. The result of the OCT scan in Fig. 11b
shows, as expected, the presence of non-planar relief in the
surface of the iris of subject 1. Fig. 11d shows the slice of the
3D model.

V. CONCLUSIONS
We presented a new method for building a 3D model of the
iris surface from several 2D iris images. Our method uses 2D
VL images of the iris from different perspectives, and a mod-
ified SfM algorithm to reconstruct a 3D mesh representation
of the iris. The use of a combination of lateral and frontal
VL illumination is a key element in the image acquisition
process, as it enhances the visibility of the structures on the
iris for both dark and light colored eyes [14]. Since several
2D images from different views are acquired to build the 3D
model, illuminating both eyes with the same amount of light
helps maintain stable dilation. However, small dilation vari-
ation between images still occurs. To further reduce dilation
related problems, an image selection process was performed
identifying a set of images with very similar dilation for
generating a 3D model. As a result, the number of 3D points,
the shape of the reconstructed irises, and the robustness of the
method improved relative to our previous research [13].

The spatial resolution of the proposed method was mea-
sured using three 3D patterns of known dimensions (75 µm,
150 µm, and 375 µm). The level of the noise present in
our method is consistent for the three models with a value
of 11µm± 1µm. This implies that the smallest detail we can
detect is 11µm, which means that we can measure details six
times smaller than current 3D common-object scanners [48].
The resolution of our proposed method is similar to that
of conventional OCT scanners, which operate in the neigh-
borhood of 10µm [49]. However, modern OCT scanners

can reach resolutions as fine as 2.2µm [50]. To put those
numbers in context, the thickness of the iris tissue is about
400µm [51], [52].

We reconstructed the 3D iris models for 10 subjects, and it
was observed that the final 3Dmodel captures the depth infor-
mation, as well as detail information, from the iris. We also
compared an OCT for one iris to the respective crosscut per-
formed over the 3D model of the iris. Similar spatial features
were identified with both methods. To increase the precision
in depth measurement, camera resolution can be improved.
This would increase the number of keypoints that are used to
create the 3D model and enhance the resolution.

The proposed methodology has the potential of being
applied in biometrics and in ophthalmology. With the addi-
tional depth information extracted by our method, a possible
line of research is to develop methods that make use of 3D
data in iris recognition. This may be of special interest when
only segments of the iris are available because they would
contain more information than 2D segments.

Additionally, our proposed method could be useful for
detecting contact lenses, and therefore is another possible
area of research in iris recognition [53]–[55]. The 3D model
of a colored contact lens will have a spherical shape, since
the dominant texture is printed in the surface of the contact
lens.

This method could also potentially be applied in the diag-
nosis of acute angle glaucoma [13], [14]. A current tool
to diagnose this disease is Optical Coherence Tomography
(OCT) [15]. OCT forms an image of a transversal cut of the
eye. Ophthalmologists measure various parameters such as:
the width of the iris, the angle between the iris and the cornea,
and the distance between the anterior chamber and the top of
the iris, for the diagnosis [15].

A 3D mesh representation of the iris can also be used
as a tool for studying pupil dilation in greater detail. The
deformation of the iris tissue due to pupil dilation typically
treated as linear although it is known that this is only an
approximation [5], [10]. This motivated research into more
accurate iris normalization models that improve iris recogni-
tion performance under dilation differences [12], [56]–[58].
For instance, Clark et al. generated a non-linear iris normal-
ization model based on the biomechanical proprieties of the
iris [12]. Studying this phenomenon in 3D with real irises
could produce valuable insights, and it might lead to the
formulation of a more accurate iris normalization model.

A limitation of our method is the specular reflection of the
lateral LED. Due to the saturation of this light, a segment of
the iris is lost in the reconstruction. A possible solution to this
problem is to place an additional lateral LED on the other side
of the eye, and capture two sets of images that then can be
combined for the 3D models.
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