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ABSTRACT Malware brings a major security threat on the Internet today. It is not surprising that much
research has concentrated on detecting malware. Unfortunately, the current malware detection approaches
suffer from ineffective detection of new malware samples. These models effectively identify the known
malware samples but not new variants. To address this issue, we propose a novel malware detection approach
based on the family graph. First, we trace the API calls of the monitored application, and then we generate the
dependency graph based on the dependency relationship of the API calls. At last, we construct the family
dependency graph via clustering the graphs of a known malware family. In this way, we can determine
whether a new sample belongs to a known malware family. The evaluation results show that our approach is
effective with small overhead compared to other existing approaches.

INDEX TERMS Malware, dynamic analysis, API call.

I. INTRODUCTION

Malware is a major security problems on the Internet. Since
there are several thousand new malware variants per day. The
most challenging problem is how to effectively identify new
malware variants.

Dynamic analysis method are promising solutions to the
problem of new variants detection as they do not rely on
static signature. These methods execute samples and monitor
their API call semantics. behaviors [1], [2]. However, current
dynamic detection approaches have significant limitation.
That is, these approaches only generate the feature from
one instance, making them low detection accuracy with new
variants. Malware can easily evolve itself to new variant to
erase its feature. For example, new variant can obfuscate
its API call information through API reordering, injecting,
or alternating attacks [3], [4].

Since the API call information extracted from one instance
is easily tampered by evolved variants, we aim to answer
the question:“‘ can we design a malware detection approach
which does not rely on the feature of only one instance but
a clustering of a family?” If so, it can help us to improve
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the efficiency of malware detection and handle newly evolved
variants.

In this paper, we propose CuF, a family dependency
graph based malware detection approach. Unlike previ-
ous approaches that extract the feature from one instance,
we cluster the dependency graph of different variants of a
malware family into the family graph. Compared to previous
approaches, our approach is more resilient against the new
variants.

Contributions:

The main contributions of this paper are as follows:

o« We present a novel, family dependency graph based
approach to profile a malware family’s feature. Our
approach can effectively identify the new variants of a
malware family.

o We have implemented a prototype of CuF;

« We have evaluated CuF on a known datasets. The results
demonstrate that our approach outperforms previous
approaches in terms of better effectiveness and effi-
ciency.

The rest of the paper is organized as follows. Section II
presents the goals of this paper. Section III describes
the our approach. Section IV provides the implementa-
tion of our approach. Section V presents our experimental
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results. Section VI gives the related works. Section VII
concludes.

Il. GOALS
CuF aims to detect new malware using family dependency
graph. Our design has the following main goals:

« Effectiveness CuF should detect malware effectively
(low false positives), while limiting the benign software
(low false negatives).

« Efficiency CuF should have a low performance over-
head. It should be feasible to deploy our approach to
detect malware in practice.

« Robustness CuF should be robust to various attack
strategies. We assume that the attacker knows about the
CuF techniques and will try to avoid detection.

lIl. OUR APPROACH

This section provides our approach. First we introduce the
concept of API call. Then we describe the API call depen-
dency graph. Next, we propose our novel concept, that is,
family dependency graph. At last, we propose a family depen-
dency graph based approach to detect malware.

A. API CALL

API is a set of application programming interfaces available
in the operating systems to interact with it.! The information
of API call traced from an application can be used to represent
it’s behavior. Existing dynamic analysis methods usually use
API call sequences to represent the program behavior [5]-[7].

B. API CALL DEPENDENCY GRAPH

In addition to the API call sequences, the dependency rela-
tionships between API calls also are useful to profile the
targeted application. Therefore, much work use API call
dependency graph instead of API call sequences to represent
the semantic of application. For instance, Mihai et al. [8]
define two types of API call dependency relationships in their
work:

1) Def-Use Dependency: Mihai et al. [8] create a depen-
dency edge between two API calls when the subsequent
API call has an argument with both same type and value
to one argument of the previous API call;

2) Substring Dependency: For each string-valued aru-
ment, Mihai et al. [8] compare its value with the succes-
sor’s. If two values share a substring, then Mihai et al.
create a dependency edge from the first API call to the
successor.

For a program, there exists many dependency relation-
ships between its API calls. Dependency graph can be used
to represent these dependency relationships. In this graph,
an edge from node x to y indicates that there is a dependency
relationship from API call x to y. We borrow the definition of
API call dependency graph in the Mihai et al’s work [8]:

1 https://en.wikipedia.org/wiki/Windows_API
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Definition 1: API Call Dependency Graph = (N, E),
where:
« N is the nodes set, each representing an API call;
o E is the edges set, E € V x V, each representing a
dependency relationship between API calls.

C. FAMILY DEPENDENCY GRAPH

We have illustrated the concept of API call dependency graph.
However, the graph only profile only one malware instance
but not other instance in the same malware family, which
severely limits the adoption of our approach. To detect var-
ious instances from a malware family, we need to cluster
multiple dependency graphs of these instances in a malware
family into a common dependency graph.

Let G = {gi,...,gn} be a set of n graphs constructed
from n variants in a malware family. To cluster these graphs,
we use existing graphs clustering methods [9]. We borrow
two definitions of Minimum Common Supergraph (MinSu-
per) (definition 2) and Maximum Common Subgraph (Max-
Sub) (definition 3) from bunke et al. [9].

Definition 2 (Minimum Common Supergraph, MinSuper):
We use g; = (NV;, E;) and g; = (N}, Ej) denote two graphs. If
there exist supergraph from g to g; and from g to g;, we call
g is a common supergraph of g; and g;. In a further, if there
exists no other common supergraph of g; and g; has fewer
nodes than g, we call g a minimum common supergraph of g;
and g;.

Definition 3 (Maximum Common Subgraph, MaxSub):
We use g; = (N;, E;) and g; = (N}, Ej) denote two graphs. If
there exist subgraph from g to g; and from g to g;, we call g is
a common subgraph of g; and g;. In a further, if there exists no
other common subgraph of g; and g; has more nodes than g,
we call g a maximum common subgraph of g; and g;.

MinSuper (gi, gj) = MaxSub (gi, gj)
U (gi — MaxSub (gi, gj))

U (gj — MaxSub (gi, gj)) (1)

The MaxSub algorithm is defined in Bunke and
Shearer [10], and the MinSuper between two dependency
graphs is generated by Eq.(1) [11]. Both MinSuper and
MaxSub are original defined between two graphs, but they
can also be extended to more graphs. In that case, the Eq.(1)
is repeatedly computed until cover all the graphs in the
set. In this way, we can use the combination of MinSuper
and MaxSub to represent of family dependency graph for a
malware family.

D. FAMILY DEPENDENCY GRAPH BASED

MALWARE DETECTION

Having generated the family dependency graph from a mal-
ware family, we can use it to detect the new malware variants
from this family. First, we generate an API call dependency
graph, called g, for an instance suspected of being mali-
cious. The gpew is compared with the family dependency
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FIGURE 1. The architecture of CuF.

graph (both MaxSub and MinSuper) for each malware fam-
ily. We can determine whether a new various belongs to an
existing malware family according to Eq.(2). That is, the g,ey
should include the MaxSub. Meanwhile, MinSuper should
include gy

D = MaxSub C gpew A gnew S MinSuper 2)

IV. IMPLEMENTATION ARCHITECTURE
As shown in Figure 1, CuF consists of offline detection stage
and online training stage.

CuF’s offline stage is based on GMT [12], an open source
graph matching toolkit, with 1, 865 lines of code. We cannot
directly use this graph matching tool because it does not sup-
port family dependency graph construction. To address this
issue, we enhance the GMT to support minimum common
supergraph (MinSuper) and maximum common subgraph
(MaxSub) construction.

CuF’s online stage is developed on the top of Cuckoo,’
an open-source malware sandbox framework, containing 545
lines of code in C. We customize Cuckoo by replacing its API
call hooking module with our module. The custom Cuckoo
VirtualBox® virtual machine is running to trace the API
calls, construct the dependency graph. After that, we compare
this the dependency graph to the family graph database,
and identify this new sample according to the Eq.(2) (see
section III-D).

A. SELECTIVE API CALLS
CuF’s online module extends Cuckoo sandbox to hook selec-
tive Windows APIs. Now CuF records 205 Windows API

2https://cuckoosandbox.org/
3 https://www.virtualbox.org/
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calls in total. The selective APIs are chosen by the following
steps.

First, our goal is to construct the API call dependency
graph to describe the malware behaviors, so we concentrate
on the API calls which can accomplish the malicious intends
to reduce the unnecessary monitor. To this end, we make an
in-depth study of Windows API calls, and find that totally 204
API calls are needed to monitor.

Second, Windows network operations are all through a
universal API call, that is NtDeviceIoControlFile.
We can identify network-related operations of
NtDeviceIoControlFile by checking its arguments.
Recall that we have monitored 204 API calls in the first step,
and therefore we records 205 Windows API calls in total.

B. NETWORK SERVER

Another problem is that some malware samples need to
interact with network. Otherwise, they will terminate their
execution. To address this issue, we use two instances of
Virtualbox in our online detection phrase. The first one runs
Windows, and acts as a victim machine requiring necessary
network operation. The second one provide network services
to the victim machine (as shown in Figure 1). In this way, CuF
can monitor the behavior of malware samples with network
interaction.

V. EVALUATION
In this section, we evaluate CuF. In Particular, we are very
interesting with the following questions.

1) Ql: Can CuF be effective to detect new malware vari-
ant? (effectiveness)
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2) Q2: How many false positives does CuF incur?
(effectiveness)
3) Q3: How much overhead does CuF introduce?

(efficiency)

A. DATASET

As showed in Table 1, we use two data sets to evaluate our
approach: Malware set and Benign set.

TABLE 1. Datasets.

Type #Sample
Malware set 300
Benign set 3546

Malware set consists of the 6 popular malware families
(shown in Table 2), which are obtained from Anubis [13].
These malware families were also used for the evaluation in
the works of Kolbitsch [14] and Park [15]. Many of the sam-
ples use the obfuscation technique to generate new variants
to evade existing API call based detection approaches.

TABLE 2. Malware set.

Malware Family  Type #Samples
Allaple Exploit-based 50
Bagle Mass-mailing 50
Mytob Mass-mailing 50
Agent Trojan 50
Netsky Mass-mailing 50
Mydoom Mass-mailing 50
Total 300

The benign sets consist of 3546 popular applications on
the Windows OS, such as Explorer, Calc, Notepad, WinRAR,
QQ, Adobe, IE Browser, Firefox and so on. These samples
were scanned by the Kaspersky anti-virus and confirmed
security.

B. ANSWER TO Q1: DETECTION ACCURACY
We evaluate the detection accuracy of CuF with other
two representative API call based detection approaches:
Kolbitsch [14] and Park [15]. This evaluation is conducted
on the malware dataset described in Table 2. To validate
the detection accuracy of CuF, we perform our evaluation
using 10-fold cross-validation [16]. For each of our six mal-
ware families, samples are randomly divided into 10 subsets.
9 subsets are used as known malware family dataset to the
offline training, and the 1 subset is used as unknown variants
to the online detection (see Figurel). Next, we compare the
the API call dependency graph from the online detection and
family graph database in the offline training. Once the Eq.(2)
is matched, we can determine the new variants belongs to a
known malware family.

The results are shown in Table 3. We can see that the detec-
tion accuracy of CuF is highest with an average value 0.92.
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TABLE 3. Comparative evaluation of detection accuracy.

Detection Accuracy

Malware Family — T Park [15]  CuF

Allaple 0.90 090 0.98
Bagle 0.60 0.80 0.92
Mytob 0.72 092 091
Agent 0.10 038 091
Netsky 0.54 0.77  0.88
Mydoom 0.90 090 0.96
Average 0.65 0.87 092

TABLE 4. False positive rates.

Malware Family  False Positive Rates
Allaple 0

Bagle
Mytob
Agent
Netsky
Mydoom
Average

(=) Rl el e i e e

These results indicate that with the same data set our approach
achieves higher detection accuracy than the previous works.

Answer to Q1: CuF can detect new malware variants, and
outperforms API call based detection approaches in terms of
better effectiveness.

C. ANSWER TO Q2: FALSE POSITIVES

To evaluate false positive rates of CuF, we generate the API
call dependency graph for each application in the benign
set. And then we evaluate this new graph with each family
dependency graph from the malware dataset. If the Eq.(2) is
matched, we consider it as a false positive sample. Table 4
shows that the false positives of the begin sample for each
malware family are 0. This indicates that our approach can
distinguish the begin sample from the malware family well.
Answer to Q2: CuF produces 0 false positives.

D. ANSWER TO Q3: PERFORMANCE OVERHEAD

CuF aims to introduces an acceptable performance over-
head. To evaluate the performance impact of our approach,
we use several popular commencer application, including
7-zip, IE Browser, and VS Compiler. We perform the eval-
uation on a computer with Intel Core i7-8550 processor
(quad-core, 1.8GHz) and 16GB memory.

First, we conduct evaluation three times for the 7-zip:
1) using a command line option for 7-zip as a simple bench-
mark; 2) compressing a folder that contains 1 GB of data;
3) archiving three copies of the same folder. Next, we measure
the number of pages per second that IE Browser loading a
benchmark web site. At last, we measure the time required to
compile CuF with VS Compiler.
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TABLE 5. Performance overhead.

Test CuF Kolbitsch [14]
Disable Enable  Relative Overhead  Relative Overhead
7-zip (benchmark) 84sec 85sec 1.2% 2.4%
7-zip (compress) 218sec 224sec 2.8% 4.7%
7-zip (archive) 183sec 195sec 6.6% 8.4%
IE Browser 0.31pages/s  0.32pages/s 3.2% 4.4%
VS Compiler 84sec 96sec 14.3% 39.8%

For each test, we evaluate the overhead of utility with
CuF disable and enable respectively, and then we calculate
the relative overhead. Also, we compare our performance
overhead with Kolbitsch [14]. As shown in Table 5, CuF
has a lower overhead compared to the existing work. The
worst performance comes from the compilation benchmark
(14.3%). However, even in this worst case, our approach still
introduce outperforms Kolbitsch (39.8%) [14].

Recall that CuF reduces the number of API call sets
which need to monitor, concentrating on the API calls which
can implement the malicious behaviors (see Section IV-A).
Therefore, the performance overhead of our approach is less
than the existing approach.

Answer to Q3: CuF introduces an acceptable performance
overhead, which outperforms existing approach in terms of
better efficiency.

VI. RELATED WORK

The API call based analysis methods utilize the API
call semantics to analyze the malware behavior. These
methods can be divided into three classes: control-flow
based analysis, data-flow based analysis and graph-based
analysis. The details of these classes are provided as
follows.

A. CONTROL-FLOW BASED ANALYSIS
Control-flow based analysis mainly uses the API call
sequences to represent the semantics of malware [S]-[7]. For
example, Sekar et al. [17] leverage the FSA* to extract the
relations of API calls. Gao et al. [18] combine the white box
and black box information to represent the program seman-
tics.

All of existing control-flow based analysis methods utilizes
the API call information but the arguments of them is missing,
making the evasion attacks possible [19], [20].

B. DATA-FLOW BASED ANALYSIS

Data-flow based analysis uses API call information as well
as their arguments to analyze the malware [21]-[23]. For
example, Tandon and Chan [22] use the value set allowed
for each argument of API calls to improve their system.
Bhatkar et al. [23] study the relationship of API call argu-
ments from the data-flow information.

4FSA: Finite State Automaton
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C. GRAPH-BASED ANALYSIS
Graph-based analysis is another direction of API call based
malware analysis scheme. Hu et al. [24] use graphs indexing
to implement large-scale malware function call querying in
databases. Kolbitsch et al. [14] use dynamic slices analy-
sis to extract data-flow between API calls, and then they
leverage model checking of slices to identify unknown mal-
ware. Fredrikson et al. [25] present an automated technique
for extracting optimally discriminative specifications which
uniquely identify a class of program, such as a malware fam-
ily. Caselden et al. [26] combine data-flow and control-flow
graph to generate a API call graph. Gascon et al. [27] extend
graph-based malware analysis to the Android environment.
Existing graph-based analysis methods have a common
limitation. They only generate graph from a single malware
instance, not clustering the graphs from the same malware
family. In comparison, our method rely on not a single
instance but the clustering of whole malware family, which is
a novel approach more robust than existing methods with the
new malware variants, resulting in high accuracy of malware
detection.

VIi. CONCLUSION

In this paper, we proposed CuF, a novel malware clustering
approach based on the family graph. Our experiments demon-
strate that our approach is both effective and efficient. It can
accurately recognize new family variants from known-family
with a small overhead. In the future, we plan to study how to
apply our idea to cluster malware on other platform such as
Android.
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