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ABSTRACT In this paper, a novel kernel mixed error criterion (KMEC) algorithm is proposed for nonlinear
system identification, which uses a combination of two different error schemes to implement a newly
constructed cost function, which is realized by using a logarithmic squared error and a generalized maximum
correntropy criterion (GMCC) to devise the KMEC algorithm. The proposed KMEC is derived in the
context of the kernel adaptive filter and it provides good performance for identifying the nonlinear channels
in different mixed noise environments in terms of the mean square error (MSE) at its steady-state and
convergence performance.

INDEX TERMS Kernel adaptive filtering, mixed error criterion algorithm, generalized maximum
correntropy, non-Gaussian noise environments, nonlinear adaptive filtering.

I. INTRODUCTION
Kernel adaptive filtering (KAF) is a useful adaptive filter-
ing (AF) method within the framework of nonlinear AF,
which is to implement the AF algorithms based on the
kernel learning method [1]. The KAF is an online learning
method in reproducing kernel Hilbert space, which has excel-
lent effects for nonlinear signal processing. Recently, many
KAF algorithms have been reported for nonlinear signal
processing [1]–[4], including the kernel least mean square
(KLMS) [2], kernel least mean fourth (KLMF) and the kernel
recursive least squares (KRLS) [5]. Additionally, the variants
of these algorithms have also been reported to improve the
performance of the basic KAF algorithms [6]–[12]. Although
KLMS and KRLS algorithms perform well for handling the
nonlinear systems, they are not suitable for non-Gaussian
environments because of the second-order statistics in the
updating [13], [14].

The associate editor coordinating the review of this manuscript and
approving it for publication was Guan Gui.

In order to find an AF algorithm that can perform
better with respect to the convergence and MSE in
non-Gaussian noise environments which are always exist-
ing in the practical wireless communication environ-
ments, some AF algorithms have been proposed using
sign error [15], high-order error [16]–[18], maximum cor-
rentropy criterion (MCC) [19]–[25] and mixed error crite-
rion algorithms [17], [18], [26]–[28]. However, most of these
algorithms are developed for Gaussian noise environment
applications. For dealing with non-Gaussian noise environ-
ment, the least mean p-power (LMP) [29] algorithm uti-
lizes only a single high-order error norm to implement
the cost function against non-Gaussian noise, and hence,
the LMP algorithm has better convergence performance
than least mean square (LMS) algorithm that considers
only the second-order statistic of the error signal. Another
kind of nonlinear AF algorithms are realized by using the
kernel theory to implement least mean algorithm and its
mixed-norm [28], [30]–[32], including the kernel least mean
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mixed-norm (KLMMN) algorithm [28], [30]–[32]. In com-
parison with the KLMS, the KLMF and KLMMN algo-
rithms can accelerate the convergence speed and reduce
the estimation error at the steady-state. Then, the kernel
method has been considered in MCC, recursive general-
ized mixed norm (RGMN) algorithms [32] to realize the
kernel MCC (KMCC) [33] and kernel RGMN (KRGMN)
for non-linear system identification under non-Gaussian
noise environments [32]. From the KLMS to KMCC and
KRGMN, the kernel has been promoted to the non-Gaussian
applications.

In this paper, the main goal is to propose a novel KAF
algorithm to deal with nonlinear channel equalization (NCE).
The logarithmic squared error function and the generalized
maximum correntropy criterion (GMCC) [23] scheme are
used to construct a new cost function, and then, the gradient
descent method is used to minimize it to realize a more robust
kernel algorithm which is denoted as kernel mixed error
criterion (KMEC). The proposed algorithm is derived within
the framework of theKAF, and its performance is investigated
over a nonlinear channel to analyze the NCE. The simulation
results show that the KMEC outperforms the KLMS, KLMF,
KMCC, KLMMN and KRGMN algorithms in terms of the
convergence and the estimation error at the steady-state.

The rest of this paper is shown as follows: In Section II,
the basic idea on kernel methods has been introduced briefly.
In Section III, the mixed error algorithm based on the log-
arithmic squared error function and generalized maximum
correntropy is presented and the proposed KMEC algorithm
is derived in detail. In Section IV, the performance of the
devised KMEC algorithm is verified through the simula-
tion experiments. Finally, in section V, the conclusion is
presented.

II. KERNEL METHODS
The basic idea of the KAF is to construct a framework using
the kernel method which transforms the original input signal
vector space X into a high-dimensional feature space F to
implement the nonlinear signal processing. The nonlinear
mapping in the kernel method is written as:

ϕ : X→ F. (1)

The kernel function κ(x, x′) is to implement inner product
in the desired feature space for not knowing the exact non-
linear mapping. Then, the kernel method has been combined
with the linear AF algorithms, where the kernel methods are
realized based on Mercer’s theorem.

κ(x, x′) = ϕ(x)Tϕ(x′). (2)

To implement the kernel method, one of a general Gaussian
kernel function is used in the KAF algorithms, which is
given by

κ(x, x′) = exp(
‖x− x′‖2

σ 2 ), (3)

where σ is the kernel width in the kernel function.

III. THE PROPOSED KMEC ALGORITHM
Since the LMS cannot combat the impulse noise, the per-
formance of the KLMS will be degraded for identifying the
system in impulse noise environments. Thus, we first propose
a novel MCE algorithm that minimizes a new cost function
combined by logarithmic squared error and the correntropy
function. Then, the kernel learning principle is incorporated
into the MCE algorithm to realize the KMCE algorithm.
Herein, the MCE and the KMCE will be discussed in detail.

A. THE MIXED ERROR CRITERION(MEC) ALGORITHM
In the framework of the system identification, an input signal
is defined as x (i) = [x (i) , x (i− 1) , . . . , x(i− L + 1)]T

with a length of L, and the desired signal d (i) is given by

d (i) = hT (i) x (i)+ v (i) , (4)

where h (i) = [h0 (i) , h1 (i) , . . . , hL−1 (i)]T is the unknown
system vector needed to be identified, v (i) is the measure-
ment noise. Then, the error signal e (i) is expressed as

e (i) = d (i)− ĥT (i) x (i) , (5)

where ĥ (i) is an estimation of h (i). On the basis of the
LMS and MCC in the context of the AF, a mixed error
criterion (MEC) algorithm is created using the logarithmic
squared error and a generalized maximum correntropy crite-
rion (GMCC) schemes to improve the LMS andMCC, whose
cost function is given by

JMEC (i) = JA (i)− JB (i) , (6)

where JA (i) = ω
2 log

[
1+ |e(i)|

2

2

]
and JB (i) = 1−ω

α
·

α
2β0(1/α) exp

(
−

∣∣∣ e(i)β ∣∣∣α). 0 (x) = ∫ +∞0 tx−1e−tdt represents
the gamma function, and α is a shaping parameter, β is the
scale (bandwidth) parameter, and 0 < ω < 1 is a mixed
factor. Then, the gradient of the cost function JMEC (i) is

∂JMEC (i)

∂ĥ (i)

=−

(
ω

2+ |e (i)|2
e (i) x (i) sgn (e (i))

+
(1− ω) α

2βα+10 (1/α)
exp

(
−

∣∣∣∣e (i)β
∣∣∣∣α) e(i)α−1x (i) sgn (e (i)))

=−

(
ω

2+ |e (i)|2
+

(1− ω) α
2βα+10 (1/α)

e(i)α−2

× exp
(
−

∣∣∣∣e (i)β
∣∣∣∣α)) e (i) x (i) sgn (e (i))

=−

(
ω

2+ |e (i)|2
+

(1− ω) α
2βα+10 (1/α)

× exp
(
−

∣∣∣∣e (i)β
∣∣∣∣α) e(i)α−2) e (i) x (i) , (7)

where sgn (e (i)) denotes the sign function [32]. According to
the steepest descent theory [1], the updating equation ofMEC
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algorithm is

ĥ (i+ 1) = ĥ (i)− µ
∂JMEC (i)

∂ĥ (i)

= ĥ (i)+ µ
(

ω

2+ |e (i)|2
+

(1− ω)
2βα+10 (1/α)

× exp
(
−

∣∣∣∣e (i)β
∣∣∣∣α) e(i)α−2) e (i) x (i) , (8)

where µ is the adaption factor.

B. KERNEL MEC (KMEC) ALGORITHM
Similar to the other KAF algorithms, the KMEC algorithm
is proposed and derived based on the kernel method and
MEC algorithm. An exponentially-weighted cost function
is introduced to implement the KMEC algorithm, which is
expressed as

J (�)

= min
�

i∑
j=1

γ i−j{
ω

2
log[1+

∣∣d(j)−�Tϕ (j)
∣∣2

2
]

−
(1− ω)α
2αβ0(1/α)

exp(−

∣∣∣∣∣d(j)−�Tϕ(j)
β

∣∣∣∣∣
α

)} +
1
2
γ iλ‖�‖2,

(9)

where γ is the forgetting factor to gradually strengthen the
weights, ω is the mixed factor, λ is the regularization factor.
The second term is a norm penalty operation, which is to
guarantee the existence of the inverse of the autocorrelation
matrix especially during the initial update stages. Based on
the gradient descent method, we can get

∂J (�)
∂�

= −ϕ(j)
i∑

j=1

γ i−j{
(1− ω)α

∣∣d(j)−�Tϕ(j)
∣∣α−2

2βα+10(1/α)

× exp(−

∣∣∣∣∣d(j)−�Tϕ(j)
β

∣∣∣∣∣
α

)+
ω

2+
∣∣d(j)−�Tϕ(j)

∣∣2 }
× (d(j)− ϕ(j)T�)+ γ iλ�,

= −ϕ(j)
i∑

j=1

γ i−j{
(1− ω)α

∣∣d(j)−�Tϕ(j)
∣∣α−2

2βα+10(1/α)

× exp(−

∣∣∣∣∣d(j)−�Tϕ(j)
β

∣∣∣∣∣
α

)+
ω

2+
∣∣d(j)−�Tϕ(j)

∣∣2 }
× d(j)+ ϕ(j)

i∑
j=1

γ i−j{
ω

2+
∣∣d(j)−�Tϕ(j)

∣∣2
+

(1− ω)α
∣∣d(j)−�Tϕ(j)

∣∣α−2
2βα+10(1/α)

× exp(−

∣∣∣∣∣d(j)−�Tϕ(j)
β

∣∣∣∣∣
α

)}ϕ(j)T�+ γ iλ�

= −ϕ(j)
i∑

j=1

γ i−j{
(1− ω)α

∣∣d(j)−�Tϕ(j)
∣∣α−2

2βα+10(1/α)

× exp(−

∣∣∣∣∣d(j)−�Tϕ(j)
β

∣∣∣∣∣
α

)+
ω

2+
∣∣d(j)−�Tϕ(j)

∣∣2 }
× d(j)+

ϕ(j) i∑
j=1

γ i−j{
ω

2+
∣∣d(j)−�Tϕ(j)

∣∣2
+

(1− ω)α
∣∣d(j)−�Tϕ(j)

∣∣α−2
2βα+10(1/α)

× exp(−

∣∣∣∣∣d(j)−�Tϕ(j)
β

∣∣∣∣∣
α

)}ϕ(j)T + γ iλ

)
�.

(10)

Then, introduce

d (i) =
[
d (1) , d (2) , . . . , d (i)

]T
, (11)

8 (i) =
[
ϕ (1) , ϕ (2) , . . . ,ϕ (i)

]
, (12)

9 (i)

= diag[γ i−1{
(1− ω)α

∣∣d(1)−�Tϕ(1)
∣∣α−2

2βα+10(1/α)

× exp(−

∣∣∣∣d(1)−�Tϕ(1)
β

∣∣∣∣α)+ ω

2+
∣∣d(1)−�Tϕ(1)

∣∣2 },
γ i−2{

(1− ω)α
∣∣d(2)−�Tϕ(2)

∣∣α−2
2βα+10(1/α)

× exp(−

∣∣∣∣∣d(2)−�Tϕ(2)
β

∣∣∣∣∣
α

)+
ω

2+
∣∣d(2)−�Tϕ(2)

∣∣2 },
. . . , {

ω

2+
∣∣d(j)−�Tϕ(j)

∣∣2 + exp(−

∣∣∣∣∣d(j)−�Tϕ(j)
β

∣∣∣∣∣
α

)

×
(1− ω)α

∣∣d(j)−�Tϕ(j)
∣∣α−2

2βα+10(1/α)
}], (13)

and let the gradient ∂J (�)
∂�

be zero, and consider �

� = (ϕ(j)
i∑

j=1

γ i−j{
(1− ω)α

∣∣d(j)−�Tϕ(j)
∣∣α−2

2βα+10(1/α)

× exp(−

∣∣∣∣∣d(j)−�Tϕ(j)
β

∣∣∣∣∣
α

)+
ω

2+
∣∣d(j)−�Tϕ(j)

∣∣2 }
×,ϕ(j)T+γ iλ)−1 · ϕ(j)

i∑
j=1

γ i−j{
ω

2+
∣∣d(j)−�Tϕ(j)

∣∣2
+

(1− ω)α
∣∣d(j)−�Tϕ(j)

∣∣α−2
2βα+10(1/α)

× exp(−

∣∣∣∣∣d(j)−�Tϕ(j)
β

∣∣∣∣∣
α

)}d(j), (14)

we will get

�(i) =
(
8(i)9 (i)8(i)T + γ iλI

)−1
8(i)9 (i)d (i) .

(15)
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Using the Matrix inverse lemma

(A+ BCD)−1=A−1 − A−1B(C−1+DA−1B)−1DA−1,

(16)

and considering

γ iλI→ A, 8 (i)→ B, 9 (i)→ C, 8(i)T → D, (17)

equation (15) is changed to be(
8(i)9 (i)8(i)T + γ iλI

)−1
8(i)9 (i)

= 8(i)
(
8(i)T 8(i)+ γ iλ9(i)−1

)−1
. (18)

�(i) can also be expressed as

�(i) = 8(i)
(
8(i)T 8(i)+ γ iλ9(i)−1

)−1
d (i) , (19)

Then, the weight vector �(i) can be explicitly replaced by
using a linear combination of the input data

�(i)=8(i) a (i) , (20)

where a (i) is given by

a (i) =
(
8(i)T 8(i)+ γ iλ9(i)−1

)−1
d (i) . (21)

We define Q (i) as

Q (i) =
(
8(i)T 8(i)+ γ iλ9(i)−1

)−1
, (22)

where 8(i) =
{
8(i− 1) , ϕ (i)

}
, and then, Q (i) can be

expressed as

Q (i)

=



8(i− 1)T 8(i− 1)
+γ iλ9(i− 1)−1

8(i− 1)T ϕ (i)

ϕ (i)T 8(i− 1)

{
ω

2+
∣∣d(i)−�Tϕ(i)

∣∣2
+

∣∣d(i)−�Tϕ(i)
∣∣α−2

2βα+10(1/α)

× exp(−

∣∣∣∣d(i)−�Tϕ(i)
β

∣∣∣∣α)
×(1− ω)α}−1

×γ iλ+ ϕ (i)T ϕ (i)



−1

.

(23)

We can define δ (i) as

δ (i) = {
(1− ω)α

∣∣d(i)−�Tϕ(i)
∣∣α−2

2βα+10(1/α)

× exp(−

∣∣∣∣d(i)−�Tϕ(i)
β

∣∣∣∣α)
+

ω

2+
∣∣d(i)−�Tϕ(i)

∣∣2 }−1, (24)

Then, Q (i) can be expressed as

Q (i)=


8(i− 1)T 8(i− 1)
+γ iλ9(i− 1)−1

8(i− 1)T ϕ (i)

ϕ (i)T 8(i− 1)
ϕ (i)T ϕ (i)
+γ iλδ (i)


−1

.

(25)

From the derivation, we can easily get

Q(i)−1 =
[
Q(i− 1)−1 b (i)

b(i)T ϕ (i)T ϕ (i)+ γ iλδ (i)

]
, (26)

where b (i) = 8(i− 1)T ϕ (i), and the block matrix inver-
sion operation is shown as[
A B
C D

]−1
=

[ (
A− BD−1C

)−1
−A−1B

(
D− CA−1B

)−1
−D−1C

(
A− BD−1C

)−1 (
D− CA−1B

)−1
]
.

(27)

Till now, the equation (25) can be obtained by inverting the
block matrix

Q (i) = ε (i)−1
[
Q (i− 1) ε (i)+ f (i) f (i)T −f (i)

−f (i)T 1

]
,

(28)

where f (i) = Q (i− 1)b (i), and ε (i) = γ iλδ (i) +
ϕ (i)T ϕ (i)− f (i)T b (i). Thus, a (i) is obtained

a (i) = Q (i)d (i)

=

[
Q (i− 1)+ f (i) f (i)T ε (i)−1 −f (i) ε (i)−1

−f (i)T ε (i)−1 ε (i)−1

]
×

[
d (i− 1)
d (i)

]
,

=

[
a (i− 1)− f (i) ε (i)−1 e (i)

ε (i)−1 e (i)

]
, (29)

where e (i) = d (i) − b (i)T a (i− 1). The KMEC algorithm
is developed and summarized in table 1 with a description in
pseudo code.

IV. SIMULATION RESULT
In this section, simulation experiments will be setup to ver-
ify the performance of the KMEC algorithm over a NCE
under different noise environments. In this paper, a nonlin-
ear channel model consisting of a linear filter and a mem-
oryless nonlinear model, and Gaussian kernel function in
equation (3) is used in the simulation to model the NCE
channel whose structure is shown in Fig. 1 and the con-
ditions of this model are constructed as follows: a binary
signal {s (1) , s (2) , . . . , s (L)} is fed into the nonlinear chan-
nel. The input signal is pass through a linear system with a
transform function of H (z) = 1 − 0.5z−1 to get a mem-
oryless nonlinear filter x(i). At the receiving end of the
channel, the signal is contaminated by additive noise n(i),
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TABLE 1. The KMEC algorithm.

FIGURE 1. An example of nonlinear channel.

TABLE 2. Parameters for algorithms.

and the observed value is {r (1) , r (2) , . . . , r (L)}. Con-
sidering it as a simple regression problem, the sample is
{([r (i) , r (i+ 1) , . . . , r (i+ l)] , s (i− D))}, where l is the
time embedded length andD is the equilibrium lag time. In all
the experiments, l = 3 andD = 2 are selected. The nonlinear
channel model is defined based on its input and output, where
the input is x (i) = s (i)+0.5s (i− 1), and the output is r (i) =
x (i)−0.9x(i)2+n (i), where n (i) is the noise mixed by n1 (i)
and n2 (i) [34]. The proposed KMEC algorithm is investi-
gated using Monte Carlo simulation, whose performance is
compared with the KLMS, KLMF, KLMMN, KRGMN and
KMCC. In the simulation experiments, the parameters for the
mentioned algorithms are listed in table 2, and σ = 1 is used
in all the experiments.

A. PERFORMANCE OF THE KMEC ALGORITHM
UNDER DIFFERENT MIXED NOISES
Three simulation experiments are constructed under dif-
ferent mixed noises to observe the convergence of the

FIGURE 2. Convergence performance of the KMEC under the
Bernoulli-Gaussian noise.

KMEC algorithm. The used mixed noises are presented as
follows to discuss of the robust of the proposed KMEC algo-
rithm for giving a resistant of impulse noises. 1) A Bernoulli
distributed noise n1 (i) with power of 0.45 and a Gaussian
distributed noise n2 (i) with power of 0.08 is used in
experiment 1.
2) A Bernoulli distributed noise n1 (i)with power of 0.45 and
a Laplace distributed noise n2 (i) with power of 0.45 is con-
sidered in experiment 2.
3) A Bernoulli distributed noise n1 (i)with power of 0.45 and
a uniformly distributed noise n2 (i) with power of 1 is used in
experiment 3.

In these simulations, the kernel bandwidth parameter is
set to be 1, and the total mixed noise power is set to
be 0.1. 1000 iterations are considered to train the proposed
KMEC algorithm, and 100 independent tests are run to get a
point. The convergence of the KMEC in these three mixed
noises are presented in Figs. 2, 3, and 4 compared with
KLMS, KLMF, KLMMN, KMCC, KRGMN algorithms. It is
found that the KMEC provides the fastest convergence speed
for different noises. Additionally, the MSE performance of
the proposed KMEC is also superior to other mentioned
KAF algorithms, which is because that the KMEC algo-
rithm employs the logarithmic squared error and GMCC
to combat against the non-Gaussian measurement noise.
Then, the effects of single non-Gaussian distribution noise
on the performance of the KMCE is discussed and shown
in Fig.5, where a Laplace distribution noise is used with
power of 0.45 and β = 0.55. We can see that the KMEC
algorithm still achieves the fastest convergence and low-
est MSE. Thus, we can get a conclusion that the proposed
KMEC is robust for non-Gaussian noises and provide the
best performance with respect to the MSE and convergence
speed.
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FIGURE 3. Convergence performance of the KMEC under the
bernoulli-laplace noise.

FIGURE 4. Convergence performance of the KMEC under the
bernoulli-uniform noise.

B. PARAMETER ANALYSIS OF THE KMEC ALGORITHM
Herein, the effects of the parameters of the proposed KMEC
algorithm are analyzed and the simulation parameters are
same as those in table 2. When we tune one parameter,
other parameters are fixed. Firstly, the effect of different
regularization factors of the KMEC is investigated in terms
of the convergence, where the regularization factor λ is set
to be (0.15, 0.3, 0.45, 0.6, 0.75, and 0.9). The other param-
eters for the mentioned algorithms are ω = 0.25, γ = 1,
α = 1 and β = 0.45 for getting nearly the same MSE
level. The experiment is implemented in a Gaussian and
uniformly distributed measurement noise with a power of 0.1.
The simulation results are presented in Fig.6. It is observed

FIGURE 5. Convergence performance of the KMEC under the laplace
noise.

FIGURE 6. Convergence performance of the KMEC with various λ.

from Fig.6 that the KMEC has the best performance when
λ = 0.15, which means that the forgetting factor λ has an
important effect on the estimation performance of the KMEC
algorithm.

Next, the characteristics of the KMCC, KRGMN and
KMEC algorithms with different weights are verified, where
the mixed factor ω is set to be (0.15, 0.35, 0.55, 0.75, 0.95).
In this experiment, the Gaussian and uniform distribution
noise is used, and the MSE is obtained from the last 100 iter-
ations which is assumed to be worked in steady-state. The
simulation results are presented in Fig.7. With an increase of
ω, the MSE of the KMEC is increased. However, the KMEC
algorithm is still better than the KMCC and the KRGMN
when ω ranges from 0.1 to 1. Thus, the proposed KMEC
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FIGURE 7. Performance comparison of the KMEC with different weight ω.

FIGURE 8. Performance comparison of the KMEC with different
values of σ .

can exhibit better tracking ability under non-Gaussian noise
environments.

Then, different kernel bandwidth, namely σ = {0.5, 1, 1.5,
2, 2.5, 3} are used to further evaluate the performance of
the KMEC algorithm. All the parameter settings are same
with the latest experiment, and the performance is given
in Fig.8 for various σ . It is found that the performance of the
proposed KMEC algorithm is deteriorated when σ increases
from 0.5 to 3. The KMEC has the lowest MSE for σ =
0.5 because of the GMCC scheme. Also, we can see that the
performance of the KMEC is better than KRGMN within the
range of [0.5, 1].

FIGURE 9. Ensemble learning curves of different algorithms with an
abrupt change at the 500th iteration.

C. TRACKING OF THE PROPOSED KMEC ALGORITHM
In this experiment, the channel is changed after 500 iter-
ations to observe the tracking performance of the KMEC
algorithm and the measurement noise is Laplace and Uniform
distributed noise. The channel is changed to be r (i) =
−x (i)+0.9x2 (i− 1)+n (i) for the second 500 iterations. The
performance in this case is shown in Fig.9. We can see that
the performance of the KMEC algorithm is still better than
other algorithms even though the learning lines are changed
at 500th iteration.

V. CONCLUSIONS
In this paper, a novel kernel mixed error criterion (KMEC)
algorithm has been proposed for nonlinear channel equal-
ization under non-Gaussian noise environments. The KMEC
algorithm is realized based on the kernel method in the com-
bination of the logarithmic squared error and GMCC scheme.
The simulation results verified that the KMEC algorithm
achieves best performance in terms of the convergence speed
and the MSE in comparison with the previously proposed
kernel algorithms.
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