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ABSTRACT This paper deals with a class of inertial quaternion-valued high-order Hopfield neural networks
with state-dependent delays. Without decomposing the considered neural networks into real-valued systems,
based on a continuation theorem of coincidence degree theory and the Wirtinger inequality, the existence
of anti-periodic solutions of the networks is established. By constructing a suitable Lyapunov function,
the global exponential stability of anti-periodic solutions of the networks is obtained. Finally, a numerical
example is given to show the feasibility of our results.

INDEX TERMS Anti-periodic solution, global exponential stability, inertial high-order Hopfield neural
networks, quaternion, state-dependent delay.

I. INTRODUCTION
Since high-order Hopfield neural networks have stronger
approximation characteristics, faster convergence speed,
larger storage capacity and higher fault tolerance than low-
order neural networks, they have become the object of inten-
sive analysis by many scholars in recent years. Since all of
these applications depend to a large extent on their dynamics,
many scholars have studied various dynamic properties of
high-order Hopfield neural networks [3], [1]–[5].

On the one hand, it is worth noting that the introduction of
inertial terms into neural network models can easily lead to
complex dynamic behaviors in networks [6], [7]. In addition,
the inclusion of inertial terms in standard neural network
models also has some practical backgrounds [8], [9]. There-
fore, in some cases, it is more reasonable to describe neural
network models using second-order differential equations.
At present, there is not much literature on the study of inertial
neural network dynamics [10]–[13].

On the other hand, quaternion algebra was introduced
into mathematics by Hamilton in 1843. The skew field of
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quaternions is denoted by

H := {x|x = xR + ixI + jxJ + kxK },

where xR, xI , xJ , xK ∈ R, i, j, and k are the fundamental
quaternion units, which obey the Hamilton’s multiplication
rules: ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 =
k2 = −1. For every x ∈ H, the conjugate of x is defined as

x∗ = xR − ixI − jxJ − kxK

and the norm of x is defined as

‖x‖ =
√
xx∗ =

√
(xR)2 + (xI )2 + (xJ )2 + (xK )2.

Due to the non-commutativity of quaternion multiplica-
tion, the study of quaternions is much more difficult than
for real and complex numbers. However, with the contin-
uous development of quaternion algebra theory, modern
science and technology, the application fields of quater-
nions are becoming more and more extensive, such as atti-
tude control, quantum mechanics and computer graphics.
In particular, since quaternion-valued neural networks can
use multi-state activation functions to process multi-level
information, research on them has become a hot topic.
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Although quaternion-valued neural networks contain real-
valued neural networks and complex-valued neural networks
as their special cases, due to the non-commutativity of
quaternion multiplication, in general, methods for studying
real-valued and complex-valued neural networks cannot be
directly used to study quaternion-valued neural networks.
In order to avoid the non-commutativity, there are two com-
monly feasible methods: one is to decompose a quaternion-
valued neural network into four real-valued systems
according to Hamilton’s multiplication rules and the other
is to decompose a quaternion-valued neural network into
two complex-valued systems based on the complex decom-
position properties of quaternions. For papers on the study
of quaternion-valued neural networks using the method of
decomposing a quaternion-valued neural network into four
real-valued neural networks, see [14]–[16]; for papers on
the study of quaternion-valued neural networks using the
method of decomposing a quaternion-valued neural network
into two complex-valued neural networks, see [17], [18].
However, to date, little research has been done on the dynam-
ics of quaternion-valued neural networks by using non-
decomposition methods [19].

In addition, as we know, periodicity, anti-periodicity, and
almost periodicity are important dynamic properties of time-
varying neural network systems, and since neural network
signal transmission processes can often be described as
anti-periodic processes, many authors have studied the anti-
periodicity of various types of neural networks [20]–[27].

Motivated by the aforementioned discussions, in this paper,
we are concerned with the following inertial quaternion-
valued high-order Hopfield neural network with state-
dependent delays:

ẍp(t) = −αp(t)ẋp(t)− βp(t)xp(t)

+

n∑
q=1

apq(t)fq(xq(t − τpq(t, xq(t))))

+

n∑
q=1

n∑
l=1

bpql(t)gq(xq(t − σpql(t, xq(t))))

× gl(xl(t − νpql(t, xq(t))))+ Ip(t), (1)

where p = 1, 2, . . . , n and n is the number of units in the neu-
ral network, xp(t) ∈ H corresponds to the state vector of the
pth unit at time t; αp(t) ≥ 0, βp(t) ≥ 0 are the coefficients of
the first derivative term and the connected term, respectively;
apq(t), bpql(t) ∈ H are the first- and second-order connection
weights of the neural network at time t , τpq(t, xq(t)) ≥ 0,
σpql(t, xq(t)) ≥ 0 and νpql(t, xq(t)) ≥ 0 correspond to the
transmission delays, Ip(t) ∈ H denotes the external input at
time t , and fq, gq : H → H are the activation functions of
signal transmission.
Remark 1: In all existing studies on inertial neural net-

works, the coefficients of both the first derivative term and
the connected term are considered as constants. Consid-
ering in real electronic circuit systems, the parameters of
the electronic components may vary with the environment.

Therefore, it is more practical to assume that all the parame-
ters in the network considered in this paper are time-varying
ones.

Throughout this paper, we assume that
(H1) For p, q, l = 1, 2, . . . , n,αp, βp ∈ C(R,R+), τpq, σpql,

νpql ∈ BC(R×H,R), fq, gq ∈ C(H,H), apq, bpql, Ip
∈ C(R,H) and there exists a constant ω > 0 such that

αp(t +
ω

2
) = αp(t), βp(t +

ω

2
) = βp(t),

apq(t +
ω

2
)fq(u) = −apq(t)fq(−u),

bpql(t +
ω

2
)gq(u)gl(v) = −bpql(t)gq(−u)gl(−v),

τpq(t +
ω

2
, u) = τpq(t, u) = τpq(t,−u),

σpql(t +
ω

2
, u) = σpql(t, u) = σpql(t,−u),

νpql(t +
ω

2
, u) = νpql(t, u) = νpql(t,−u),

Ip(t +
ω

2
) = −Ip(t), ∀t ∈ R, u, v ∈ H.

(H2) For j = 1, 2, . . . , n, there exist constants L fq > 0 and
Lgq > 0 such that for all u, v ∈ H,

‖fq(u)− fq(v)‖ ≤ L fq‖u− v|,

‖gq(u)− gq(v)‖ ≤ Lgq‖u− v‖.

(H3) There exist positive constants M f
q and Mg

q such that

‖fq(u)‖ ≤ M f
q , ‖gq(u)‖ ≤ M

g
q ,

for all u ∈ H, q = 1, 2, . . . , n.

We will adopt the following notation:

α−p = inf
t∈[0,ω]

αp(t), β−p = inf
t∈[0,ω]

βp(t),

a+pq = sup
t∈[0,ω]

‖apq(t)‖, b+pql = sup
t∈[0,ω]

‖bpql(t)‖,

τ+ = max
1≤p,q≤n

{
sup

t∈[0,ω],u∈H
τpq(t, u)

}
,

σ+ = max
1≤p,q,l≤n

{
sup

t∈[0,ω],u∈H
σpql(t, u)

}
,

ν+ = max
1≤p,q,l≤n

{
sup

t∈[0,ω],u∈H
νpql(t, u)

}
,

ρ = max{τ+, σ+, ν+}, I+p = sup
t∈[0,ω]

‖Ip(t)‖.

The initial value of system (1) is given by{
xp(s) = ϕp(s),
ẋp(s) = ψp(s), s ∈ [−ρ, 0], p = 1, 2, . . . , n,

(2)

where ϕp, ψp ∈ C([−ρ, 0],H).
The main purpose of this paper is to study the existence

and global exponential stability of anti-periodic solutions of
system (1).Without decomposing system (1) into real or com-
plex value systems, by applying a continuation theorem
of coincidence degree theory and the Wirtinger inequality,
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we establish the existence of anti-periodic solutions of sys-
tem (1) and by constructing a suitable Lyapunov function,
we derive a set of sufficient conditions guaranteeing the
exponential stability of anti-periodic solutions of system (1).
The results and methods of this paper are brand new.
Remark 2: Even when (1) degenerates into a real-valued

system or a complex-valued system, the existence and sta-
bility of anti-periodic solutions of system (1) has not been
studied.
The rest of this paper is organized as follows. In Section 2,
we transform system (1) into a system of first-order differ-
ential equations and introduce some lemmas. In Section 3,
we study the existence of anti-periodic solutions of system
(1). In Section 4, we investigate the global exponential sta-
bility of anti-periodic solutions of system (1). In Section 5,
we give a numerical example to illustrate the feasibility of
the obtained results. We give a brief conclusion in Section 6.

II. PRELIMINARIES
Let (x1, x2, . . . , xn)T be a solution of system (1) with initial
value (2). Set variable transformation:

yp(t) = ẋp(t)+ xp(t), p = 1, 2, . . . , n, (3)

then system (1) becomes

ẋp(t) = −xp(t)+ yp(t) , 5p(x, y, t),
ẏp(t) = −(1+ βp(t)− αp(t))xp(t)− (αp(t)− 1)yp(t)

+

n∑
q=1

apq(t)fq(xq(t − τpq(t, xq(t))))

+

n∑
q=1

n∑
l=1

bpql(t)gq(xq(t − σpql(t, xq(t))))

×gl(xl(t − νpql(t, xq(t))))
+Ip(t) , 0p(x, y, t), p = 1, 2, . . . , n

(4)

with the initial value:{
xp(s) = ϕp(s), ẋp(s) = ψp(s),
yp(s) = ϕp(s)+ ψp(s) = φp(s), s ∈ [−ρ, 0],

where p = 1, 2, . . . , n.
Remark 3: If u = (x1, . . . , xn, y1, . . . , yn)T is a solution

of system (4), then x = (x1, . . . , xn)T is a solution of (1).
Conversely, if x = (x1, . . . , xn)T is a solution of (1), then
u = (x1, . . . , xn, y1, . . . , yn)T is a solution of system (4) via
the transformation (3).
Lemma 1: [28] (Wirtinger Inequality) If u is aC1 function

such that u(0) = u(T ), then

‖u− ū‖L2 ≤
T
2π
‖u′‖L2 ,

where ‖u‖L2 :=
(∫ T

0 |u(t)|
2dt
) 1

2

and ū = 1
T

∫ T
0 u(t)dt.

It is easy to draw the following conclusion through a direct
calculation:
Lemma 2: For all a, b ∈ H, a∗b+ b∗a ≤ a∗a+ b∗b.
Lemma 3: [28] Let X and Y be Banach spaces, and let

L : DomL ⊂ X → Y be linear, N : X → Y be continuous.

Assume that L is one-to-one and K := L−1N is compact.
Furthermore, assume that there exists a bounded and open
subset � ⊂ X with 0 ∈ � such that equation Lu = λNu
has no solutions in ∂� ∩ DomL for any λ ∈ (0, 1). Then the
problem Lu = Nu has at least one solution in �.
Definition 1: Let u = (x1, . . . , xn, y1, . . . , yn)T and ũ =

(x̃1, . . . , x̃n, ỹ1, . . . , ỹn)T be two arbitrary solutions of system
(4) with initial values 8 = (ϕ1, . . . , ϕn, φ1, . . . , φn)T and
9 = (ϕ̃1, . . . , ϕ̃n, φ̃1, . . . , φ̃n)T , respectively. If there exist
constants ε > 0 and M > 0 such that

‖u(t)− ũ(t)‖H2n ≤ M‖8−9‖0e−εt , t > 0,

where

‖u(t)− ũ(t)‖H2n

=

[ n∑
p=1

(
‖xp(t)−x̃p(t)‖2+‖yp(t)−ỹp(t))‖2

)] 1
2

,

‖8−9‖0=

[ n∑
p=1

(
sup

s∈[−ρ,0]
‖ϕp(s)− ϕ̃p(s)‖2

+ sup
s∈[−ρ,0]

‖φp(s)− φ̃p(s))‖2
)] 1

2

,

then every solution of system (4) is said to be globally expo-
nentially stable.

III. THE EXISTENCE OF ANTI-PERIODIC SOLUTIONS
In this section, based on Lemma 3, we shall study the exis-
tence of anti-periodic solution of (1).

Let

X =
{
u : u = (x1, x2, . . . , xn, y1, y2, . . . , yn)T

∈ C(R,H2n), u
(
t +

ω

2

)
= −u(t),∀t ∈ R

}
,

‖u‖X =
n∑

p=1

(|xp|0 + |yp|0),

where for p = 1, 2, . . . , n,

|xp|0 = sup
t∈[0,ω]

√
xp(t)x∗p (t),

|yp|0 = sup
t∈[0,ω]

√
yp(t)y∗p(t),

then X is a Banach space with the norm ‖ · ‖X .
Theorem 1: Assume that (H1)-(H3) hold. Furthermore,

suppose that
(A1) 2π−ω > 0 and 2π (2π−ω)−C > 0, whereC = (B1−

B2)ω2
+2πωB2,B1 = max

t∈[0,ω]
|1+βp(t)−αp(t)|,B2 =

max
t∈[0,ω]

|αp(t) − 1|, then system (1) has at least one
ω
2 -anti-periodic solution, which lies in the region:

X0 =
{
x ∈ X : ||x||X ≤

n∑
p=1

√
ω

(
ωAp

2π − ω
+ Ap

)
+ 1

}
,
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where

Ap =
√
ω

(
1+

C
2π (2π − ω)− C

)( n∑
q=1

a+pqM
f
q

+

n∑
q=1

n∑
l=1

b+pql(M
g
q )

2
+ I+p

)
, p = 1, 2, . . . , n.

Proof: Define a linear operator L : DomL ⊂ X → X
by Lu = u̇, where DomL = {u : u ∈ X , u̇ ∈ X} and a
continuous operator N : X → X by

(Nu)(t) =
(
51(x, y, t),52(x, y, t), . . . ,5n(x, y, t),

01(x, y, t), 02(x, y, t), . . . , 0n(x, y, t)
)T
.

It is easy to see that KerL = {0} and ImL =
{
y ∈

X ,
∫ 2T
0 y(t)dt = 0

}
= X . Hence, L : DomL → X is one-

to-one. Denote by L−1 the inverse of L and take K := L−1N ,
then by using Arzela-Ascoli theorem, we can verify that K is
compact.

Let u ∈ X be an arbitrary solution of Lu = λNu for a
certain λ ∈ (0, 1), then we have{

ẋp(t) = λ5p(x, y, t),
ẏp(t) = λ0p(x, y, t), p = 1, 2, . . . , n.

(5)

Multiplying by ẋ∗p (t) on both sides of the first equation
of (5) and then integrating it over the interval [0, ω], for
p = 1, 2, . . . , n, we have∫ ω

0
‖ẋp(t)‖2dt

= λ

∫ ω

0
(−xp(t)+ yp(t))ẋ∗p (t)dt

≤

∫ ω

0
‖xp(t)ẋ∗p (t)‖dt +

∫ ω

0
‖yp(t)ẋ∗p (t)‖dt

≤

(∫ ω

0
‖xp(t)‖2dt

) 1
2
(∫ ω

0
‖ẋp(t)‖2dt

) 1
2

+

(∫ ω

0
‖yp(t)‖2dt

) 1
2
(∫ ω

0
‖ẋp(t)‖2dt

) 1
2

,

that is,(∫ ω

0
‖ẋp(t)‖2dt

) 1
2

≤

(∫ ω

0
‖xp(t)‖2dt

) 1
2

+

(∫ ω

0
‖yp(t)‖2dt

) 1
2

. (6)

Multiplying by ẏ∗p(t) on both sides of the second equation
of (5) and then integrating it over the interval [0, ω], we have∫ ω

0
‖ẏp(t)‖2dt

≤ B1

∫ ω

0
‖xp(t)ẏ∗p(t)‖dt + B2

∫ ω

0
‖yp(t)ẏ∗p(t)‖dt

+

( n∑
q=1

a+pqM
f
q +

n∑
q=1

n∑
l=1

b+pql(M
g
q )

2
+ I+p

)

×

∫ ω

0
‖ẏ∗p(t)‖dt

≤ B1

(∫ ω

0
‖xp(t)‖2dt

) 1
2
(∫ ω

0
‖ẏp(t)‖2dt

) 1
2

+B2

(∫ ω

0
‖yp(t)‖2dt

) 1
2
(∫ ω

0
‖ẏp(t)‖2dt

) 1
2

+
√
ω

( n∑
q=1

a+pqM
f
q +

n∑
q=1

n∑
l=1

b+pql(M
g
q )

2
+ I+p

)

×

(∫ ω

0
‖ẏp(t)‖2dt

) 1
2

, p = 1, 2, . . . , n,

that is, for p = 1, 2, . . . , n,(∫ ω

0
‖ẏp(t)‖2dt

) 1
2

≤ B1

(∫ ω

0
‖xp(t)‖2dt

) 1
2

+ B2

(∫ ω

0
‖yp(t)‖2dt

) 1
2

+
√
ω

( n∑
q=1

a+pqM
f
q +

n∑
q=1

n∑
l=1

b+pql(M
g
q )

2
+ I+p

)
. (7)

Since xp, yp are ω
2 -anti-periodic and xp, yp ∈ C1, p =

1, 2, . . . , n, then by Lemma 1, we have(∫ ω

0
‖xp(t)‖2dt

) 1
2

≤
ω

2π

(∫ ω

0
‖ẋp(t)‖2dt

) 1
2

(8)

and (∫ ω

0
‖yp(t)‖2dt

) 1
2

≤
ω

2π

(∫ ω

0
‖ẏp(t)‖2dt

) 1
2

. (9)

From (6)-(9), for p = 1, 2, . . . , n, we can get(∫ ω

0
‖ẋp(t)‖2dt

) 1
2

≤
ω

2π

(∫ ω

0
‖ẋp(t)‖2dt

) 1
2

+
ω

2π

(∫ ω

0
‖ẏp(t)‖2dt

) 1
2

and(∫ ω

0
‖ẏp(t)‖2dt

) 1
2

≤
ωB1
2π

(∫ ω

0
‖ẋp(t)‖2dt

) 1
2

+
ωB2
2π

(∫ ω

0
‖ẏp(t)‖2dt

) 1
2

+
√
ω

( n∑
q=1

a+pqM
f
q +

n∑
q=1

n∑
l=1

b+pql(M
g
q )

2
+ I+p

)
.

Hence, for p = 1, 2, . . . , n, we find(∫ ω

0
‖ẋp(t)‖2dt

) 1
2

≤
ω

2π − ω

(∫ ω

0
‖ẏp(t)‖2dt

) 1
2

and(∫ ω

0
‖ẏp(t)‖2dt

) 1
2
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≤
√
ω

(
1+

C
2π (2π − ω)− C

)( n∑
q=1

a+pqM
f
q

+

n∑
q=1

n∑
l=1

b+pql(M
g
q )

2
+ I+p

)
, Ap,

that is,(∫ ω

0
‖ẋp(t)‖2dt

) 1
2

≤
ωAp

2π − ω
, p = 1, 2, . . . , n (10)

and (∫ ω

0
‖ẏp(t)‖2dt

) 1
2

≤ Ap, p = 1, 2, . . . , n. (11)

For u = (x1, x2, . . . , xn, y1, y2, . . . , yn) ∈ X , we can
assume that xp(t) = xRp (t)+ ix

I
p(t)+ jx

J
p (t)+ kx

K
p (t), yp(t) =

yRp (t) + iyIp(t) + jyJp(t) + kyKp (t), x
l
p(t +

ω
2 ) = x lp(t), y

l
p(t +

ω
2 ) = ylp(t), where x

l
p, y

l
p ∈ C(R,R), l = R, I , J ,K , p =

1, 2, . . . , n.
Since x lp, y

l
p are ω

2 -anti-periodic real-valued functions,
there exist ξ lp, η

l
p ∈ [0, ω] such that

x lp(ξ
l
p) = ylp(η

l
p) = 0, l = R, I , J ,K , p = 1, 2, . . . , n.

Hence, we have

|x lp|∞ : = sup
t∈[0,ω]

|x lp(t)|

= sup
t∈[0,ω]

∣∣∣∣x lp(ξ lp)+ ∫ t

ξ lp

ẋ lp(s)ds

∣∣∣∣
≤
√
ω

(∫ ω

0
|ẋ lp(t)|

2dt
) 1

2

,

|ylp|∞ : = sup
t∈[0,ω]

|ylp(t)| ≤
√
ω

(∫ ω

0
|ẏlp(t)|

2dt
) 1

2

,

that is, for p = 1, 2, . . . , n,

|x lp|
2
∞ ≤ ω

∫ ω

0
|ẋ lp(t)|

2dt, |ylp|
2
∞ ≤ ω

∫ ω

0
|ẏlp(t)|

2dt. (12)

Therefore, it follows from (10)-(12) that

‖u‖X

≤

n∑
p=1

(√
|xRp |2∞ + |xIp|2∞ + |xJp |2∞ + |xKp |2∞

+

√
|yRp |2∞ + |yIp|2∞ + |yJp |2∞ + |yKp |2∞

)
≤

n∑
p=1

√
ω

[(∫ ω

0
‖ẋp(t)‖2dt

) 1
2

+

(∫ ω

0
‖ẏp(t)‖2dt

) 1
2
]

≤

n∑
p=1

√
ω

(
ωAp

2π − ω
+ Ap

)
, D.

Take � = {u ∈ X : ‖u‖X < D+ 1}, then � ⊂ X with 0 ∈ �
such that equation Lu = λNu has no solutions in ∂�∩DomL
for any λ ∈ (0, 1). Thus, by Lemma 3, we obtain that system

(4) has at least one ω
2 -anti-periodic solution in �. In view

of Remark 3, we see that system (1) has at least one ω
2 -anti-

periodic solution in X0. The proof is complete.

IV. THE GLOBAL EXPONENTIAL STABILITY OF
ANTI-PERIODIC SOLUTION
In this section, we construct Lyapunov functionals and use
some inequality techniques to study the global exponential
stability of anti-periodic solutions of (1).
Theorem 2: Let (H1)-(H3) and (A1) hold. Furthermore,

assume that
(A2) τpq(t, u) ≡ τpq(t), σpql(t, u) ≡ σpql(t), νpql(t, u) ≡

νpql(t), τpq, σpql, νpql ∈ C1(R,R+), and

µ = max
1≤p,q,l≤n

{
sup
t∈R

τ̇pq(t), sup
t∈R

σ̇pql(t), sup
t∈R

ν̇pql(t)
}

< 1.

(A3) There exists a positive constant ε > 0 satisfying

3 = max
1≤p≤n

{
2ε + 4− α−p − β

−
p ,

α+p − 1− β−p +
n∑

q=1

(a+qp)
2(L fq )

2 e
2ετ+

1− µ

+

n∑
q=1

n∑
l=1

(b+lqp)
2(Mg

q )
2(Lgq )

2 e
2εν+

1− µ

+

n∑
q=1

n∑
l=1

(b+qpl)
2(Mg

q )
2(Lgq )

2 e
2εσ+

1− µ

}
< 0.

Then system (1) has a unique ω
2 -anti-periodic solution and it

is globally exponentially stable.
Proof: By Theorem 1, we know that system (4) has an

ω
2 -periodic solution ũ(t) and suppose that its initial value is
9(t). Let u(t) be an arbitrary solution of system (4) with the
initial value 8(t). Set vp(t) = xp(t) − x̃p(t), wp(t) = yp(t) −
ỹp(t), by (4), we have

v̇p(t) = −vp(t)+ wp(t),
ẇp(t) = −(1+ βp(t)− αp(t))vp(t)− (αp(t)− 1)wp(t)

+

n∑
q=1

apq(t)f̃q(vq(t − τpq(t)))+
n∑

q=1

n∑
l=1

bpql(t)

×
[
gq(xq(t − σpql(t)))g̃l(vl(t − νpql(t)))

+gl(x̃l(t − νpql(t)))g̃q(vq(t − σpql(t)))
]
,

(13)

where p = 1, 2, . . . , n,

f̃q(vq(t − τpq(t)))= fq(xq(t − τpq(t)))− fq(x̃q(t − τpq(t))),

g̃l(vl(t − νpql(t)))= gl(xl(t − νpql(t)))− gl(x̃l(t − νpql(t))),

g̃q(vq(t − σpql(t)))= gq(xq(t−σpql(t)))−gq(x̃q(t−σpql(t))).

Define a Lyapunov functional as follows:

V (t) =
n∑

p=1

e2εtv∗p(t)vp(t)+
n∑

p=1

e2εtw∗p(t)wp(t)

60014 VOLUME 7, 2019



N. Huo et al.: Existence and Exponential Stability of Anti-Periodic Solutions

+

n∑
p=1

n∑
q=1

(a+pq)
2(L fq )

2 e
2ετ+

1− µ

×

∫ t

t−τpq(t)
e2εsv∗q(s)vq(s)ds

+

n∑
p=1

n∑
q=1

n∑
l=1

(b+pql)
2(Mg

q )
2(Lgq )

2 e
2εν+

1− µ

×

∫ t

t−νpql (t)
e2εsv∗l (s)vl(s)ds

+

n∑
p=1

n∑
q=1

n∑
l=1

(b+pql)
2(Mg

q )
2(Lgq )

2 e
2εσ+

1− µ

×

∫ t

t−σpql (t)
e2εsv∗q(s)vq(s)ds.

By (13) and Lemma 2, we can obtain

D+
( n∑
p=1

e2εtv∗p(t)vp(t)
)

=

n∑
p=1

2εe2εtv∗p(t)vp(t)+
n∑

p=1

e2εt (−v∗p(t)+ w
∗
p(t))vp(t)

+

n∑
p=1

e2εtv∗p(t)(−vp(t)+ wp(t))

= (2ε − 2)
n∑

p=1

e2εtv∗p(t)vp(t)

+

n∑
p=1

e2εt (v∗p(t)wp(t)+ w
∗
p(t)vp(t))

≤ (2ε − 1)
n∑

p=1

e2εtv∗p(t)vp(t)+
n∑

p=1

e2εtw∗p(t)wp(t) (14)

and

D+
( n∑
p=1

e2εtw∗p(t)wp(t)
)

=

n∑
p=1

e2εt
{
(2ε + 2− 2αp(t))w∗p(t)wp(t)

− (1+ βp(t)− αp(t))
(
v∗p(t)wp(t)+ w

∗
p(t)vp(t)

)
+

n∑
q=1

[(
apq(t)f̃q(vq(t − τpq(t)))

)∗wp(t)
+w∗p(t)

(
apq(t)f̃q(vq(t − τpq(t)))

)]
+

n∑
q=1

n∑
l=1

[(
bpql(t)gq(xq(t − σpql(t)))

× g̃l(vl(t − νpql(t)))
)∗wp(t)

+w∗p(t)
(
bpql(t)gq(xq(t − σpql(t)))g̃l(vl(t − νpql(t)))

)]
+

n∑
q=1

n∑
l=1

[(
bpql(t)gl(x̃l(t − νpql(t)))

× g̃q(vq(t − σpql(t)))
)∗wp(t)

+w∗p(t)
(
bpql(t)gl(x̃l(t − νpql(t)))

× g̃q(vq(t − σpql(t)))
)]}

≤

n∑
p=1

e2εt
{
(2ε + 2− 2αp(t))w∗p(t)wp(t)

− (1+ βp(t)− αp(t))
(
v∗p(t)vp(t)+ w

∗
p(t)wp(t)

)
+

n∑
q=1

(
apq(t)f̃q(vq(t − τpq(t)))

)∗
×
(
apq(t)f̃q(vq(t − τpq(t)))

)
+ w∗p(t)wp(t)

+

n∑
q=1

n∑
l=1

(
bpql(t)gq(xq(t − σpql(t)))

× g̃l(vl(t − νpql(t)))
)∗

×
(
bpql(t)gq(xq(t − σpql(t)))g̃l(vl(t − νpql(t)))

)
+w∗p(t)wp(t)+

n∑
q=1

n∑
l=1

(
bpql(t)gl(x̃l(t − νpql(t)))

× g̃q(vq(t − σpql(t)))
)∗

×
(
bpql(t)gl(x̃l(t − νpql(t)))g̃q(vq(t − σpql(t)))

)
+w∗p(t)wp(t)

}
≤

n∑
p=1

e2εt
{
(2ε + 4− αp(t)− βp(t))w∗p(t)wp(t)

− (1+ βp(t)− αp(t))v∗p(t)vp(t)

+

n∑
q=1

(a+pq)
2(L fq )

2v∗q(t − τpq(t))vq(t − τpq(t))

+

n∑
q=1

n∑
l=1

(b+pql)
2(Mg

q )
2(Lgq )

2

× v∗l (t − νpql(t))vl(t − νpql(t))

+

n∑
q=1

n∑
l=1

(b+pql)
2(Mg

q )
2(Lgq )

2

× v∗q(t − σpql(t))vq(t − σpql(t))
}
. (15)

Further, based on (14) and (15), we have

D+V (t)

≤

n∑
p=1

e2εt
{
(2ε + 4− αp(t)− βp(t))w∗p(t)wp(t)

− (1+ βp(t)− αp(t))v∗p(t)vp(t)

+

n∑
q=1

(a+pq)
2(L fq )

2v∗q(t − τpq(t))vq(t − τpq(t))

+

n∑
q=1

n∑
l=1

(b+pql)
2(Mg

q )
2(Lgq )

2
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× v∗l (t − νpql(t))vl(t − νpql(t))

+

n∑
q=1

n∑
l=1

(b+pql)
2(Mg

q )
2(Lgq )

2

× v∗q(t − σpql(t))vq(t − σpql(t))

+

n∑
q=1

(a+pq)
2(L fq )

2 e
2ετ+

1− µ
v∗q(t)vq(t)

−

n∑
q=1

(a+pq)
2(L fq )

2 e
2ετ+

1− µ
(1− τ̇pq(t))e−2ετpq(t)

× v∗q(t − τpq(t))vq(t − τpq(t))

+

n∑
q=1

n∑
l=1

(b+pql)
2(Mg

q )
2(Lgq )

2 e
2εν+

1− µ
v∗l (t)vl(t)

−

n∑
q=1

n∑
l=1

(b+pql)
2(Mg

q )
2(Lgq )

2 e
2εν+

1− µ
(1− ν̇pql(t))

× e−2ενpql (t)v∗l (t − νpql(t))vl(t − νpql(t))

+

n∑
q=1

n∑
l=1

(b+pql)
2(Mg

q )
2(Lgq )

2 e
2εσ+

1− µ
v∗q(t)vq(t)

−

n∑
q=1

n∑
l=1

(b+pql)
2(Mg

q )
2(Lgq )

2

×
e2εσ

+

1− µ
(1− σ̇pql(t))e−2εσpql (t)

× v∗q(t − σpql(t))vq(t − σpql(t))
}

≤

n∑
p=1

e2εt
{
(2ε + 4− α−p − β

−
p )w

∗
p(t)wp(t)

− (1+ β−p − α
+
p )v
∗
p(t)vp(t)

+

n∑
q=1

(a+pq)
2(L fq )

2 e
2ετ+

1− µ
v∗q(t)vq(t)

+

n∑
q=1

n∑
l=1

(b+pql)
2(Mg

q )
2(Lgq )

2 e
2εν+

1− µ
v∗l (t)vl(t)

+

n∑
q=1

n∑
l=1

(b+pql)
2(Mg

q )
2(Lgq )

2 e
2εσ+

1− µ
v∗q(t)vq(t)

}

=

n∑
p=1

e2εt
{
(2ε + 4− α−p − β

−
p )w

∗
p(t)wp(t)

− (1+ β−p − α
+
p )v
∗
p(t)vp(t)

+

n∑
q=1

(a+qp)
2(L fq )

2 e
2ετ+

1− µ
v∗p(t)vp(t)

+

n∑
q=1

n∑
l=1

(b+lqp)
2(Mg

q )
2(Lgq )

2 e
2εν+

1− µ
v∗p(t)vp(t)

+

n∑
q=1

n∑
l=1

(b+qpl)
2(Mg

q )
2(Lgq )

2 e
2εσ+

1− µ
v∗p(t)vp(t)

}

=

n∑
p=1

e2εt
{
(2ε + 4− α−p − β

−
p )w

∗
p(t)wp(t)

+

(
α+p − 1− β−p +

n∑
q=1

(a+qp)
2(L fq )

2 e
2ετ+

1− µ

+

n∑
q=1

n∑
l=1

(b+lqp)
2(Mg

q )
2(Lgq )

2 e
2εν+

1− µ

+

n∑
q=1

n∑
l=1

(b+qpl)
2(Mg

q )
2(Lgq )

2 e
2εσ+

1− µ

)
v∗p(t)vp(t)

}

≤ 3e2εt
n∑

p=1

(w∗p(t)wp(t)+ v
∗
p(t)vp(t)) ≤ 0,

which implies thatV (t) ≤ V (0) for t ≥ 0. From the definition
of V (t), we have

V (t) ≥ e2εt
n∑

p=1

(v∗p(t)vp(t)+ w
∗
p(t)wp(t))

= (eεt‖u(t)− ũ(t)‖H2n )2

and

V (0) ≤
n∑

p=1

(
sup

s∈[−ρ,0]
‖vp(s)‖2 + sup

s∈[−ρ,0]
‖wp(s)‖2

)

+

n∑
p=1

n∑
q=1

(a+qp)
2(L fq )

2 e
2ετ+

1− µ
τ+ sup

s∈[−ρ,0]
‖vp(s)‖2

+

n∑
p=1

n∑
q=1

n∑
l=1

(b+lqp)
2(Mg

q )
2(Lgq )

2

×
e2εν

+

1− µ
ν+ sup

s∈[−ρ,0]
‖vp(s)‖2

+

n∑
p=1

n∑
q=1

n∑
l=1

(b+qpl)
2(Mg

q )
2(Lgq )

2

×
e2εσ

+

1− µ
σ+ sup

s∈[−ρ,0]
‖vp(s)‖2

≤

n∑
p=1

{(
1+

n∑
q=1

(a+qp)
2(L fq )

2 e
2ετ+

1− µ
τ+

+

n∑
q=1

n∑
l=1

(b+lqp)
2(Mg

q )
2(Lgq )

2 e
2εν+

1− µ
ν+

+

n∑
q=1

n∑
l=1

(b+qpl)
2(Mg

q )
2(Lgq )

2 e
2εσ+

1− µ
σ+
)

× sup
s∈[−ρ,0]

‖ϕp(s)− ϕ̃p(s)‖2

+ sup
s∈[−ρ,0]

‖φp(s)− φ̃p(s)‖2
}

≤ 2‖8−9‖20,
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where

2 = max
1≤p≤n

{
1+

n∑
q=1

(a+qp)
2(L fq )

2 e
2ετ+

1− µ
τ+

+

n∑
q=1

n∑
l=1

(b+lqp)
2(Mg

q )
2(Lgq )

2 e
2εν+

1− µ
ν+

+

n∑
q=1

n∑
l=1

(b+qpl)
2(Mg

q )
2(Lgq )

2 e
2εσ+

1− µ
σ+
}
> 1.

Hence, we can obtain

(eεt‖u(t)− ũ(t)‖H2n )2 ≤ 2‖8−9‖20,

that is,

‖u(t)− ũ(t)‖H2n ≤ M‖8−9‖0e−εt , t > 0,

where M =
√
2.

Therefore, the ω
2 -anti-periodic solution of system (4) is

globally exponentially stable. In view of Remark 3, the ω
2 -

anti-periodic solution of system (1) is also globally exponen-
tially stable. The proof is complete.

V. NUMERICAL EXAMPLE
In this section, we give an example to show the feasibility and
effectiveness of the results obtained in this paper.
Example 1: In system (1), let n = 2 and take the coeffi-

cients as follows: for p, q, l = 1, 2,

αp(t) = cos 12t + 2, βp(t) = cos 12t + 5,

τpq(t, u) =
1
10
| sin t|, σpql(t, u) =

1
20
| sin t|,

νpql(t, u) =
1
20
| cos t|,

a11(t) = a21(t)

= 0.3e−0.01 − i0.4e−0.01 sin 12t

+ j0.5e−0.01 cos 12t + k0.63e−0.01 cos 12t,

a12(t) = a22(t)

= 0.225e−0.01 − i0.05e−0.01 cos 12t

+ j0.31e−0.01 sin 12t + k0.225e−0.01 cos 12t,

bpq1(t) = 0.5e−0.005 sin 6t + ie−0.005 cos 6t

+ j1.32e−0.005 sin 6t − ke−0.005 cos 6t,

bpq2(t) = 1.2e−0.005 cos 6t − i0.5e−0.005 sin 6t

− je−0.005 cos 6t − ke−0.005 sin 6t,

Ip(t) = 0.6 sin 6t + i cos 6t + j sin 6t + k2 cos 6t,

and for any x ∈ H, x = xR + ixI + jxJ + kxK , take the
activation functions as

f1(x) = f2(x)

=
1
2
sin xR + i

1
2
sin xI + j

1
2
sin xJ + k

1
2
sin xK ,

g1(x) = g2(x)

=
1
3
| sin xR| + i

1
4
| sin xI | + j

1
5
| sin xJ | + k

1
6
| sin xK |.

FIGURE 1. The states of dxR
p (t)/dt and xR

p (t), p = 1, 2.

FIGURE 2. The states of dx I
p(t)/dt and x I

p(t), p = 1, 2.

FIGURE 3. The states of dxJ
p(t)/dt and xJ

p(t), p = 1, 2.

It is easy to get that

L f1 = L f2 =
1
2
, Lg1 = Lg2 =

1
3
, M f

1 = M f
2 = 1,

Mg
1 = Mg

2 =
1
2
, ω =

π

3
, B1 = 4, B2 = 2, C = 2π2,

α+p = 3, α−p = 1, β+p = 6, β−p = 4,

τ+ =
1
10
, σ+ = ν+ =

1
20
, µ =

1
10
,

then

2π (2π − ω)− C ≈ 13.16 > 0.
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FIGURE 4. The states of dxK
p (t)/dt and xK

p (t), p = 1, 2.

FIGURE 5. Curves of dxR/dt , dx I /dt , dxJ /dt and dxK /dt
in 3-dimensional space for stable case.

FIGURE 6. Curves of xR , x I , xJ and xK in 3-dimensional space for stable
case.

Taking λ = 0.1, we have

3 = max
1≤p≤2

{
2ε + 4− α−p − β

−
p , α

+
p − 1− β−p

+

2∑
q=1

(a+qp)
2(L fq )

2 e
2ετ+

1− µ

+

2∑
q=1

2∑
l=1

(b+lqp)
2(Mg

q )
2(Lgq )

2 e
2εν+

1− µ

+

2∑
q=1

2∑
l=1

(b+qpl)
2(Mg

q )
2(Lgq )

2 e
2εσ+

1− µ

}
≈ −0.53 < 0.

Thus conditions (H1)-(H3) and (A1)-(A3) hold. Therefore,
according to Theorem 2, system (1) has at least one π

6 -anti-
periodic solution, which is globally exponentially stable (see
Figures 1-6).

VI. CONCLUSION
In this paper, the existence and global exponential stability
of anti-periodic solutions of inertial quaternion-valued high-
order Hopfield neural networks with delays is investigated
via direct methods. Our results of this paper are new even
when the considered neural networks degenerate into real-
valued or complex-valued ones. In addition, our method of
this paper is new and can be applied to study other types of the
quaternion-valued neural networks with or without inertial
terms.
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