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ABSTRACT Insulator fault in the transmission lines is the main factor of power transmission accident. The
images captured from the aerial inspection can be utilized to detect the fault of insulators for further main-
tenance. For automatic transmission lines inspection system, the insulator fault detection is an interesting
and challenging task due to the complex background and diversified insulators. In this paper, we propose a
novel insulator fault detection method based on multi-level perception for aerial images. The multi-level
perception is implemented by an ensemble architecture which combines three single-level perceptions.
These single-level perceptions include the low level, middle level, and high level that are named by the
attention to the insulator fault. They detect the insulator fault in the entire image, multi-insulator image, and
single-insulator image, respectively. To address the filtering problem in the combination of three single-level
perceptions, an ensemble method is proposed for generating the final results. For training the detection
models employed in the multi-level perception, a powerful deep meta-architecture so-called single shot
multibox detector (SSD) is utilized. The well-trained SSD models can automatically extract high quality
features from aerial images instead of manually extracting features. By using the multi-level perception,
the advantages of global and local information can achieve a favorable balance. Moreover, limited inspection
images are fully utilized by the proposedmethod. Fault detection recall and precision of the proposedmethod
are 93.69% and 91.23% testing in the practical inspection data, and insulator fault under various conditions
can be correctly detected in the aerial images. The experimental results show that the proposed method can
enhance the accuracy and robustness significantly.

INDEX TERMS Transmission lines inspection, insulator fault detection, ensemble learning, multi-level
perception, deep learning.

I. INTRODUCTION
In transmission lines, the insulator is a widely used equip-
ment with the dual function of electrical insulation and
mechanical support. Due to long-term exposure to the natural
environment, the insulator will occur various faults such as
missing-cap, flashover and icing. The fault of insulators can
seriously threaten the reliable operation of transmission lines
and imperil the security of power system. The early fault

The associate editor coordinating the review of this manuscript and
approving it for publication was Javier Medina.

detection of the insulator can reduce power cuts and prevent
the huge economic losses and bad customer care in power
transmission system. However, the transmission line covers a
wide range of areas and the geographical conditions along
the path are complex and diverse that causes difficulty on
insulator inspection. Therefore, the fault detection of the
insulator is one of the most important and difficult task during
the inspection of the transmission line [1].

In recent years, instead of traditional manual patrol, UAV
inspection develops into a common way of transmission lines
inspection for intelligent requirements [2], [3]. The aerial
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FIGURE 1. The aerial inspection system of power transmission lines.

inspection system consists of two parts: images acquisition
by UAV and data analysis in the ground monitoring center,
as shown in Fig. 1. The onboard camera captures the images
of insulators according to the inspection planning. And the
collected data for analysis should be sent to the ground mon-
itoring center by 4G communication network or storage card.
During the UAV inspection, a massive photographic record
will be generated and can be used to detect the insulator fault
that requires much manual labor. There is an urgent need
for automatic detection of insulator fault in aerial images.
However, the aerial images captured from UAVs contain the
cluttered background and various types of insulators. There
are two factors in the background: the scenes such as forest
and building, and the electrical components including towers,
fittings, wires etc. The scenes and electrical components are
various for different inspection regions that leads to regional
differences and data confidentiality. Therefore, each inspec-
tion region is relatively independent and few training data are
available. In the available data, the images of insulator fault is
much less than the normal data that makes against the model
training. The external disturbing factors, such as the changing
visual angle, different lighting, and partial occlusion, make
it more difficult to detect the insulators and its fault. Hence,
the fault detection of insulators in aerial images is a challeng-
ing task [2].

In the existing literatures, theworks of insulator fault detec-
tion are relatively more difficult than insulator detection due
to the small size of the faulty area. Oberweger et al. [4] intro-
duced a circular descriptor and a noise-tolerant voting scheme
for insulator detection, then the elliptical descriptor based on
Local Outlier Factor (LOF) is utilized to analyze the fault
of each insulator cap. Zhao et al. [5] applied OAD-BSPK
algorithm [6] to detect the insulator and divided the insulator
into multiple caps based on histogram valley detection. The
4096-dimensional features of each cap will be computed by
deep convolutional neuron network for status classification.
Wang et al. [7] introduced a multi-features method for insula-
tor recognition that utilized shape, color and texture features.
The region of insulator was rotated to horizontal configura-
tion and then separated into 23 parts. GLCM was calculated
in each part for abnormal analysis. These approaches divided
an insulator into several caps [4], [5] or parts [7], but they
did not consider the differently sized and partially visible
insulator. Zhai et al. [8] proposed a saliency and adaptive

morphological algorithm which can fill the gaps between
normal insulator caps. Therefore, the vacancy caused by
missing-cap will be highlight, then the missing-cap can be
located according to the distance between the caps. Such a
method can only applied to glass insulator. In [9], the author
improved the morphology based algorithm while considering
both glass and ceramic insulators. However, these morphol-
ogy based method [8], [9] will fail when there are multiple
insulators in one image.

The insulator fault detection methods mentioned above
detect the insulator first, and then analyze the condition in
the extracted insulator region. They focus on the insulator
region, and perform well on the extraction of fault features
that can be defined as the local information. However, this
ability is strongly affected by the results of insulator detec-
tion. Once the insulators are missed or incorrectly detected,
it will greatly reduce the performance of insulator fault detec-
tion. Liu et al. [10] applied a detection network of deep
learning for insulator fault detection. The Faster R-CNN
was utilized to detect the fault directly on the entire image.
Nordeng et al. [11] introduced a deep-learning-based method
for detecting dead end body of insulator It also removed the
procedure of insulator detection. These deep-learning-based
methods [10], [11] unrestricted by the results of insulator
detection. The models trained from entire images can learn
rich global information that reduced the possibility of false
detection. However, they show poor performance when deal-
ing with the aerial image at a distant view.

All of the existing methods for insulator fault detection
either focus on local information or global information only.
The methods focusing on local information detect the fault in
the image region of insulator. The methods concerning about
global information detect the fault in the entire aerial image.
When exploiting only the local information, the method will
reach high recall but is powerfully affected by the perfor-
mance of insulator detection. When pouring attention into the
global information, the method will achieve high precision
while losing performance to the detection of small objects.
Until now, no studies that concentrate on taking advantage of
both local and global information. Therefore, our goal is to
proposed a well-balance method for insulator fault detection.

This paper focus on the missing-cap which is the most
frequent fault of insulators. We attempt to achieve accu-
racy and fast fault detection in the aerial images for power
transmission lines inspection system. Under the situation of
complicated background and insufficient training data, we try
to solve the issue of unbalance between the local and global
information in the previously researches. A multi-level per-
ceptionmethod based on ensemble learning is presented. This
ensemble architecture consists of three single-level percep-
tions: low level perception, middle level perception and high
level perception. They are named according to the attention
of local information, and they detect the insulator fault in
the entire image, multi-insulator image and single-insulator
image respectively. To address the filtering problem in the
combination of three single-level perceptions, an ensemble
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FIGURE 2. Schematic diagram of the proposed method for insulator fault detection.

method is proposed for generating the final results. By means
ofmulti-level perception, the global and local information can
be balanced processed together that improves the accuracy.
It also makes full use of the limited inspection data. Mean-
while, the deep-learning based detection network using in
the proposed method that guarantees the preferable detection
accuracy and speed. Due to the big capacity of deep learning
network, the proposed method also solves the fault detection
problem of diversified insulators including different colors,
shapes and sizes.

The following parts of this paper are organized as fol-
lows. We describe the proposed framework of insulator fault
detection in Section II. Section III provides the experimental
results and analysis. In section IV, we draw conclusions from
the results and also discuss about our future work plans.

II. METHODOLOGY
A. FRAMEWORK OF INSULATOR FAULT DETECTION
The schematic diagram of the proposed insulator fault detec-
tion method in aerial images for transmission lines inspection
is illustrated in Fig. 2. The proposed ensemble architec-
ture of multi-level perception consists of three single-level

perceptions: low level, middle level and high level. They
are named according to their attention of the insulator fault
which is defined as local information in this paper. The low
level perception looks at the entire image that can provide the
strong global information. The middle level perception focus
on the multi-insulator image, thereby most of the background
can be filtered out. The high level perception looks at the
image region of single-insulator, the attention of the model
is concentrated on the local information. Theses single-level
perceptions are increasingly concerned about the local infor-
mation. To achieve single-level perception, the deep con-
volutional neural network for object detection is utilized.
Four deep learning models should be trained individually: an
insulator detection model and three insulator fault detection
models. Thereby, four training sets need to be prepared:
insulator training set, low level training set, middle level
training set and high level training set. For accomplishing
multi-level perception, three single-level perceptions should
be combined based on ensemble learning. Once the results
of the single-level perceptions are obtained, an ensemble
approach is utilized to produce the final results of insulator
fault. By using the multi-level perception, the global and local

VOLUME 7, 2019 61799



H. Jiang et al.: Insulator Fault Detection in Aerial Images Based on Ensemble Learning

information can be synthetically utilized for high quality fault
detection.

B. MULTI-LEVEL PERCEPTION BASED ON ENSEMBLE
LEARNING
In the application of transmission lines inspection, the elec-
tricity companies are only in charge of their local area. On the
one hand, the background of aerial images, the photographic
condition of the aerial inspection and the insulator character-
istics are various according to different inspection regions. On
the other hand, owing to the organizational independence and
data confidentiality of each regional power grid, it is difficult
to guarantee that the available training data is sufficient.
Moreover, the fault data is much less than normal data in the
available training data.

In order to detect the insulator fault in complex condi-
tions and solve the issue of unbalance between the local
and global information, the proposed approach presents a
multi-level perception method using ensemble learning. Fur-
ther, the multi-level perception is achieved by combining
several single-level perceptions. Different single-level per-
ceptions look at different receptive fields of the aerial image,
as shown in Fig. 2. This paper introduces three single-level
perceptions. They are defined as low level, middle level and
high level perception according to the attention of insulator
fault in aerial images. The ensemble of single-level percep-
tions merges the global and local information in a specific
way, and makes full use of the limited inspection data. The
local information here refers to the image features of insulator
fault, and the image features other than this are defined as
global information such as background.

1) IMPLEMENTATION OF LOW LEVEL PERCEPTION
The perception in low level is an end-to-end procedure,
the input image is fed into the deep learning model and the
insulator fault is directly located in the original image. It
can be seen in Fig. 3, the region of insulator fault is quite
small relative to the whole image. The image features of the
insulator fault as the local information are difficult to learn
in the detection model, while the global information such as
the unique environments of transmission corridor is abundant.
Therefore, the low level perception adapts in discriminating
the background according to the whole image. It provides
widespread general features of the electricity domain which
ensure the completeness of the global information. Mean-
while, the low level perception pays less attention to the
insulator fault in the image.

To achieve low level perception, a low level fault detection
model should be trained. The low level training set contains
unprocessed aerial images and the annotation is the insulator
fault. The annotation refers to the coordinates and category
of the bounding box which has the object.

2) IMPLEMENTATION OF MIDDLE LEVEL PERCEPTION
For middle level perception, a two-stage procedure is intro-
duced as shown in Fig. 4. In stage 1, the insulators will be

FIGURE 3. The procedure of low level perception.

FIGURE 4. The procedure of middle level perception.

detected in the aerial image by using a deep learning detec-
tion model. After the detection of insulators, an operation
of image processing named ROIs Union Extraction (RUE)
is presented. We conduct the rectangular area of a sin-
gle insulator as the Region of Interest (ROI) and extract
the ROIs by covering the background region with zero
matrix in 3 color channels. After RUE, only the rectan-
gular regions of insulators will exist in the aerial image.
Then in the stage 2, the multi-insulator image is fed into
the fault detection model for locating the missing-cap of
the insulator. In the middle level perception, most of the
background is filtered out while the pixel size is maintained.
Compared to low level perception, the middle level percep-
tion increases the attention to the insulator fault. And it
simultaneously provides part of the global semantic infor-
mation such as the shapes, sizes, amount and positional
relation of insulators in the original aerial image. It plays
a role of auxiliary for voting the final results of multi-level
perception.

For realizing middle level perception, an insulator detec-
tion model and a middle level fault detection model should
be trained. Two training sets are prepared for model training:
insulator training set and middle level training set. The insu-
lator training set contains aerial images without processing
and the annotation is insulator. The middle level training
set comprises images that are processed by RUE and the
annotation is insulator fault.

3) IMPLEMENTATION OF HIGH LEVEL PERCEPTION
The high level perception also applies the two-stage pro-
cedure as shown in Fig. 5. The stage 1 of the high level
perception is similar to middle level. After detecting the
insulator in the aerial image, an operation of image processing
is utilized to generate the input for next stage. Different from
middle level perception which utilizes RUE, we adopt ROIs
Extraction (RE) instead. The definition of ROI is the same as
in middle level detection, we extract the ROIs by cropping
the insulator region from the original aerial images. After
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FIGURE 5. The procedure of high level perception.

RE, a set of images will produced according to the existing
insulators in the original aerial image. The generated image
is the rectangular area of the insulator with rare background.
In general, there is only one insulator in one generated image.
In the stage 2 of insulator fault detection, the single-insulator
images are sequential fed into the fault detection model for
detecting the insulator fault. The high level perception com-
pletely pour its attention into the insulator fault that discards
the influence of background and the global semantic infor-
mation. It provides complete and highly centralized features
of the insulator fault.

To reach high level perception, two models should be
trained: an insulator detection model and a high level fault
detection model. Each model corresponds to a training set:
insulator training set or high level training set. The insulator
training set is the same as middle level perception. The high
level training set includes images processed by RE and the
annotation is insulator fault.

4) ENSEMBLE METHOD
To achieve multi-level perception, an ensemble learning
approach is utilized to mix the results of single-level
perceptions and generate the final results. An ensemble
method called bounding box voting is introduced in [12].
It applied a standard non-max suppression (NMS) first,
and the final bounding box was further refined by hav-
ing each box to vote. But for two reasons, the bound-
ing box voting cannot be directly applied in this paper.
Firstly, few results will be preserved after applying NMS
that makes against voting. Secondly and most importantly,
this ensemble method retains the original confidence that
makes difficulty for the determination of independent box.
Therefore, we make some changes to the bounding box vot-
ing. Each single-level perception outputs a set of bound-
ing box locations Bp = {Bi,p} with confidence scores
sp = {si,p}. The p ∈ {L,M ,H} refers to the index of
single-level perception. For i-th result of low level perception,
the final bounding box coordinates B′i,L are further refined
by:

B′i,L =
wLBi,L + wMBmax,M + wHBmax,H∑

wp
(1)

where the wp refers to the weight of each single-level percep-
tion which is a constant. The Bmax,p denotes the box in p level
that has the maximal IoUwith Bi,L . If the IoU between Bmax,p
and Bi,L is less than 0.5, setting the corresponding wp to zero.

FIGURE 6. Samples of collected aerial images including varied insulators
with complex backgrounds.

Similarly, the confidence score s′i,L can be computed by:

s′i,L =
wLsi,L + wM smax,M + wH smax,H∑

wp
(2)

If there is no matched box with IoU over than 0.5, setting
the smax,p to zerowhile keeping thewp. The results processing
of other two levels are similar to the low level perception.
Notice that we remove the NMS in the proposed ensemble
method and each box only participates in the calculation
once.

C. IMAGE PREPROCESSING
The aerial images are captured by UAVs in the inspection
task from different regions. The collected images contain
variety insulators with various complex backgrounds. The
backgrounds not only have unique environments in the elec-
tricity domain, but also have diverse components of trans-
mission lines that besides insulators. Each image from these
collected images contains at least one insulator and one
insulator fault. The samples of collected images are shown
in Fig. 6, the types of insulators include the porcelain and
glass insulator with devised colors and shapes. It can be seen
that the backgrounds and the photographic conditions are
varied.

In the proposed method, there are four kinds of training
sets: insulator training set, low level training set, middle level
training set and high level training set. And two kinds of
labeled classes: insulator and insulator fault. Fig. 7 shows two
samples of image preprocessing for the generation of training
sets. It can be seen in Fig. 7 (a), the annotation of insulator
training set is the category and location of insulator in the
original image. For low level training set Fig. 7 (b), the anno-
tation is the insulator fault in the original image. The training
data for the middle level perception is defined as middle
level training set. The images of middle level training set are
produced from collected images by extracting the ROIs using
zero covering. As shown in Fig. 7 (c), the background is dyed
black and the rectangular area of insulators are highlighted.
Notice that the pixel size of middle level training image is the
same with the original image. For middle level training set,
the annotation is the insulator fault in the image generated
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FIGURE 7. Image preprocessing for model training. The green box denotes the insulator and the red box refers to the insulator fault. (a) Insulator
training set. (b) Low level training set. (c) Middle level training set generated by ROIs Union Extraction (RUE). (d) High level training set generated
by ROIs Extraction (RE).

by RUE. The training data for the high level perception
is defined as high level training set that is also generated
from collected images. Each image of high level training set
contains an insulator with the insulator fault which is cropped
from the original image. The samples can be seen in Fig. 7
(d), the background near insulator is tight and the image size
is various according to the insulator shape. In special cases,
as shown in the first sample, an insulator fault will be reserved
in two generated images. The ROIs extraction generated six
images in the second sample, but only the one with insulator
fault will be added to the training set.

D. CONVOLUTIONAL NEURAL NETWORK FOR OBJECT
DETECTION
Convolutional Neural network achieves great success inmany
image applications including object detection [13]. In this
paper, we choose Single Shot multibox Detector [14] as the
meta-architecture of object detection that based on the convo-
lutional neural network. The SSD composed by base network
and auxiliary network as shown in Fig. 8. In training process,
the input data are fed into the network to compute the loss and
then updated the parameters using back-propagation. When
detecting, only the forward operation is performed to infer
the detection result.

1) BASE NETWORK
The base network is utilized to extract high quality fea-
tures of the images. There are a host of standard convolu-
tional neural networks can be served as base network that
achieve promising results in the ImageNet benchmark [15]
such as AlexNet [16], VGG [17], GoogleNet [18] and
MobileNet [19]. With the view to the efficiency of the trans-
mission lines inspection and the possibility of embedded
application in UAV, this paper chooses the MobileNet as the
base network. The MobileNet is a lightweight convolutional
neural network which only has 4.2 million parameters com-

paredwithVGG16 (138million parameters). In the ImageNet
benchmark, the MobileNet achieves 70.6% mAP that nearly
as accurate as VGG16(71.5%).

2) AUXILIARY NETWORK
After base network, the SSD appends an auxiliary network
in order to produce detections of the object. The auxil-
iary network includes a set of convolutional layers that
decrease in size progressively for predicting multi-scale
objects. As shown in Fig. 8, the feature maps generated
by the auxiliary network descend in height and width by
utilizing the 2 stride of convolutional operation. Cells of each
feature map corresponding to a window in the input image.
Small feature map in deep layer has lager receptive field
than big feature map in shallow layer. Therefore, the aux-
iliary network makes the network has the ability to detect
the object of multiple scales and improves the accuracy of
detection.

A fixed set of default bounding boxes are generated by
feature maps. The size of the default bounding boxes depends
on the input size (W ,H ), scale sk and aspect ratio ar where
the (W ,H ) is width and height of the input image, sk meaning
the k-th layer has the scale of sk and ar ∈ {1, 2, 3, 1/2, 1/3}.
Then the size of default boxes (Wd ,Hd ) can be computed
as:

Wd = Wsk
√
ar , Hd = Hsk

√
ar (3)

Each default box predicts the shape offsets (cx, cy,w, h)
of location and the class confidences for p object cate-
gories (c1, c2, . . . , cp, cbackground ). The object categories in
this paper is insulator missing-cap fault and background.
Fig. 9 shows an example of default box generation for one
cell in a feature map.

In the training process, two loss functions are utilized to
compute the loss between predicted label and ground-truth
label, they are Softmax loss function Lconf which computes
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FIGURE 8. The network architecture of SSD. Def. boxes: Default boxes.

FIGURE 9. Generation of the default boxes for one cell from the feature
map.

the class confidence and SmoothL1 loss function Lloc for
location. The predicting label has positive label and negative
label according to the ground-truth box. Suppose predicted
label xpij = {0, 1} is an indicator for matching the i-th
default box to the j-th ground truth box of category p. When
the Intersection-over-Union (IoU) between default box and
ground truth box is higher than a threshold(0.5), the xpij = 1
which means the positive label.

Once the predicted label is defined, the Softmax loss func-
tion Lconf can be described as:

Lconf (x, c) = −
N∑

i∈Pos

xpij log
(
ĉpi
)
−

∑
i∈Neg

log
(
ĉ0i
)

(4)

where ĉpi =
exp

(
cpi
)∑

p exp
(
cpi
) (5)

where c refers to confidence andN is the number of predicted
boxes, the c0i meaning the background class corresponding
to negative default boxes that do not have object. And the
cpi refers to the object class corresponding to positive default
boxes that have object with category p. The SmoothL1 loss

function for location is:

Lloc (x, l, g) =
N∑

i∈Pos

∑
m∈Box

xkijsmoothL1
(
lmi − ĝ

m
j

)
(6)

ĝcxj =
(
gcxj − d

cx
i

)
/dwi ĝcyj =

(
gcyj − d

cy
i

)
/dhi
(7)

ĝwj = log

(
gwj
dwi

)
ĝhj = log

(
ghj
dhi

)
(8)

where l refers to the predicted box, g meaning the
ground-truth box and d refers to the default box, the 4 shape
offsets m ∈ {cx, cy,w, h} are defined as the center (cx, cy) of
the bounding box and its width (w) and height (h). Note that
the predicted box and the default box are corresponding one
by one. The SmoothL1 is denoted as:

SmoothL1(X ) =

{
0.5(X )2 if |X | < 1
|X | − 0.5 otherwise

(9)

where X = lmi − ĝ
m
j (10)

The total loss L of the object detection network can be com-
pute as:

L (x, c, l, g) =
1
N

(
Lconf (x, c)+ αLloc (x, l, g)

)
(11)

After predicting the bounding boxes that possible contain
the target object, Non-Maximum Suppression [20] is utilized
for preliminary screening. Then, the predicting boxes are
sorted according to class confidence. Finally, detection results
are selected from the predicting boxes on the basis of confi-
dence threshold, this paper sets the threshold to 0.5.

III. EXPERIMENTAL RESULTS
In this section, the proposed method is evaluated on the aerial
image from UAV inspection of power transmission lines. The
characteristics of the experiment are illustrated first including
dataset description, evaluation method and experiment setup.
Then, we analyze the performance of single-level perception
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TABLE 1. Description of datasets.

and multi-level perception. In addition, the effects of ensem-
ble mode and ensemble method for multi-level perception are
discussed.

A. EXPERIMENT DESCRIPTION
1) DATA PREPARATION
All the aerial images are provided by China Power Grid from
the UAVs for power transmission lines inspection. Notice
that the aerial images are obtained in real-word and we
do not perform any data augmentation operations for data
preparation. The data augmentation only exits in the training
process. Due to the individual photographic condition of each
inspection region, the images have various pixel sizes from
1920× 1080 to 9800× 6500. There are at least one insulator
and one insulator fault in a collected image. In other words,
some inspection images have multiple normal insulators and
multiple insulator faults.

In this paper, four sets are used for training: insulator
training set, low level training set, middle level training set
and high level training set. All training sets are generated
from the collected images. For testing, two testing sets are
prepared: insulator testing set and insulator fault testing set.
The images in testing set are randomly selected and distinct
from training data. The description of training and testing
sets are shown in Table. 1. Objects refer to labeled boxes
of the whole training set or testing set. In order to train
the detection models in multi-level perception, insulator, low
level, middle level and high level training set are generated
from 385 collected images. The insulator training set has
601 labeled insulators. Low level and middle level training
sets both have 413 labeled insulator faults. Notice that the
high level training set has two additional training images, it is
because some collected images have more than one faulty
insulator. Thereby, multiple images will be generated by RE
for a collected image. In special cases, as shown in Fig. 7,
an insulator fault will be reserved in two generated images.
Therefore, the high level training set has one more object than
low level dataset and middle level dataset. The testing sets for
insulator and insulator fault are generated from 100 collected
images. They have 160 insulators and 111 insulator faults
respectively.

2) IMPLEMENTATION
The proposed method is implemented in TensorFlow [21]
using Object Detection API [22]. All the detection models

are running on a server computer with an environment of
Ubuntu 18.04.1 LTS, an Intel Core i7-6850K CPU, four
NVIDIA GeForce GTX 1080 Ti GPUs under 9.0 CUDA
with 7.0 cuDNN version, and 32GB of RAM memory. The
parameters of the convolutional neural network for object
detection are set as follows: aspect ratios in default box gen-
erator ar ∈ {1, 2, 3, 1/2, 1/3}, smin = 0.2, and smax = 0.95.
In the NMS phase, each class can retain 100 detections and
the IoU threshold is 0.5. Here, the momentum optimizer is
used to train the model [23]. The momentum is 0.9 and batch
size is 64. We use the warm up learning rate that initialized
with 0.013 and grow to 0.04 at 2000 training steps, then decay
to zero at the end of training process. To prevent overfitting
and save the time-consuming in some hyper-parameter tun-
ing, Batch Normalization (BN) is applied after convolutional
layers, and before non-linearities layers [24]. Max training
step is set to be 20000. Due to limited training data, the data
augmentation technology is utilized to increase the diver-
sity of samples. In training process, three data augmentation
modes are randomly utilized at each training step: gray, crop
and rotate. The confidence threshold is set to 0.2 for keeping
more detection results. For ensemble method, the weight wp
of each single-level perception is set to 1. To evaluate the
detection performance, four metrics are applied including
recall, precision, average precision (AP) and validation value
(VAL). The first three metrics are commonly used for object
detection. The validation value is a comprehensive metric
for inspection task in transmission lines that is computed
by:

VAL = 0.5 ∗ AP+ 0.3 ∗ Rcall + 0.2 ∗ Precision (12)

Different weights represent the different emphasis of the
electrical company on recall, precision and average precision.
Compared to the precision, the electrical company cares more
about the recall. This is because the false positives can be
easily excluded in the limited images while the false nega-
tives need to look through all the inspection data for manual
check.

B. DETECTION RESULTS
1) INSULATOR DETECTION
The insulator will be detected in middle level and high level
perceptions. We use the insulator training set to train the
insulator detection model. The well-trained model can detect
various types of insulators in aerial images from a complex
background. The testing set is composed of 100 aerial images
with 160 labeled insulators. The performance results of insu-
lator detection can be seen in Table. 2. The recall achieves
96.95%, it indicates that most of the insulators are correctly
detected.

Fig. 10 illustrates some testing results of insulator detec-
tion. Case (a) to case (d) show the results of glass insulator
in the sky, field, forest and building scenes respectively. The
glass insulators in these samples have light green color that
is similar to the background color of the forest and field.
The photographic condition also is an influenced factor to the
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TABLE 2. Performance results of insulator detection.

FIGURE 10. Detection samples of insulators in complex background. (a)–(d) Glass insulator. (e)–(h) Porcelain insulator.

detection performance especially in case (d). This image was
taken at dusk. Hence, the weak light and complex background
with tower and buildings that increase the difficulty of detec-
tion. The size of insulator is another factor that influences the
detection performance. In case (c) and case (d), the insulators
in the distance have small size and may be blurred due to
focusing of camera. These samples show that the insulator
detection model can handle the problems mentioned above
and correctly locate the glass insulators. Similarly, case (e) to
(h) demonstrate the detection results of porcelain insulator.
Porcelain insulators have longer length and darker color in
these samples. In case (g), the insulator has four strings and
the length almost covers the width of the image. Inspection
data with more than three insulator strings is relatively rare
compared to one or two strings. The insulator in case (h) has
similar color to the buildings and soil of the background. And
the light and shadow also make challenges to the insulator
detection. It can be seen that the insulator detection model
can successfully detect the glass and porcelain insulators in
the cluttered and complicated background under different
scenes.

2) PERFORMANCE RESULTS OF SINGLE-LEVEL PERCEPTION
The obtained performances of three single-level perceptions
are given in Table. 3. For low level perception which is an end
to end procedure, the recall is 83.78% which is the lowest.
However, it reaches highest precision with 94.90%. This
illustrates that the low level perception pays more attention to

TABLE 3. Performance results of single-level perceptions.

the global information of background, while dilutes the local
information of insulator fault. Thereby, it has the potential
to treat the insulator fault as the background, resulting in a
lower recall. The performance of middle level perception is a
little better than low level perception. The recall is increased
to 85.59% while the precision is kept above 90%. Finally,
the validation value is improved by 0.74%. It demonstrates
that the middle level perception preserves some of the global
information while increasing the attention to the insulator
fault. Thus, the middle level perception sacrifices a certain
precision in exchange for the equivalent increase of the recall.
For high level perception, the recall is increased to 90.99%
and the precision is dropped to 84.87%. It indicates that the
high level perception pays all of its attention to the insulator
fault. It receives the highest recall and validation value, but
this is exchanged with the lowest precision.

From low level to high level, the recall keeps on increas-
ing and the precision keeps on descending. It demonstrates
that the more attention the model pays to local informa-
tion, the stronger the ability to identify the insulator fault.
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FIGURE 11. Detection samples of three single-level perceptions. (a) Low level. (b) Middle level. (c) High level. The insulator is bounded by the
orange box. The green, blue, and red boxes denote the results of low level, middle level, and high level respectively.

Meanwhile, the reduction of global information leads to
confusion between the background and the insulator fault.
Hence, this transfer of attention results in more and more true
positives and false positives of insulator fault.

The time refers to the computation time of single-level
perception in one image. Notice that the inference time does
not include the reading time of the input image. Due to the
same detection network which is utilized in this paper, each
well-trained model has the similar inference time with 30 ms.
The low level perception applies one model on one image.
Thereby, the computation time is 29.5 ms. The middle level
perception employs two models on two images respectively.
The detection time is 60.4 ms. The high level utilizes two
models on an image and multiple ROIs. Therefore, the com-
putation time is 86.1 ms that is more than twice the time of
the single model.

Three detection samples of single-level perceptions are
shown in Fig. 11. According to the implementation of the
single-level perception, the results of low level perception

mark the insulator faults while others mark the insulators
and their fault. In the first sample, the fault occurred on the
insulator in the upper right corner. The low level perception
(a) and high level perception (c) correctly detect the insulator
fault while the middle level perception (b) failed. Notice
that the high level perception also has a false identification.
The second sample has two insulators and a fault in the right.
As can be seen, the low level perception and middle level
perception correctly detect the insulator fault. The high level
perception fails to detect the fault and has a false detection.
The low level perception cannot identify the fault in third
sample while middle level perception and high level percep-
tion achieve successful detection. These detection samples
illustrate that the single-level perceptions can be mutually
verified and supplemented.

To further discuss, the insulator detection is a partial pro-
cedure of middle level perception or high level perception.
The performance of insulator detection will affect the perfor-
mances of these two single-level perceptions. In this situation,
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TABLE 4. Performance results of multi-level perception.

the low level perception is a pleasurable supplement because
it is unaffected by insulator detection.

3) PERFORMANCE RESULTS OF MULTI-LEVEL PERCEPTION
The multi-level perception of insulator fault is implemented
by the ensemble learning method. Performance results of
multi-level perception are illustrated in Table. 4. All accuracy
metrics of multi-level perception are higher than the accuracy
metrics of any single-level perception. The recall and preci-
sion are 93.69% and 91.23% respectively. The average pre-
cision with 92.26% demonstrates the reliability of the algo-
rithm. Finally, the validation value achieves 92.48% which
is at least 3.68% higher than the single-level perception. The
computation time with 145.7 ms is the summation of three
single-level perception. It indicates that the performance of
the proposed method meets the requirements of the electrical
company for accuracy and speed.

The comparison between single-level perceptions and
multi-level perception can be seen in Fig. 12. Results of dif-
ferent perceptions are marked by different colors. The green,
blue and red boxes denote the results of low level, middle
level and high level respectively. For readers’ convenience,
a small tag with the same color is added above each box.
Results of multi-level perception are bounded by the yellow
box. The tag for intuitive display is added below the box.

The detection samples of multi-level perception can be
seen in Fig. 12. The samples (a), (b) and (c) show the scenes
of forest, town and desert respectively. Three single-level per-
ceptions correctly detect the insulator fault and themulti-level
perception well preserved these positive results. In samples
(d), (e) and (f) that are also shown in Fig. 12, the negative
results are filtered out by multi-level perception. Moreover,
the samples (g), (h) and (j) demonstrate the filtration capacity
of multi-level perception. The sample (j) is special due to
the parallel faults of the insulator. The low level perception
generates a false detection between the parallel faults. It is dif-
ficult to identify which box is accurate even for human. How-
ever, the multi-level perception successfully distinguishes the
correct boxes. There are three insulator faults in sample (k),
it can be seen that only high level perception can detect all the
faults. The middle level perception merely detect the central
one of these three faults while low level perception does
not detect anything. Under this hard situation, the mutual
verification between single-level perceptions is problematic.
However, the proposed method preserves the correct boxes
and eliminates the wrong detecting result. The sample (l) has
six false identifications of single-level perceptions. The pro-
posed ensemble method filters out half of them.

TABLE 5. Performance results of multi-level perception in different
ensemble modes.

TABLE 6. Performance results of multi-level perception in different
ensemble methods.

4) EFFECT OF ENSEMBLE LEARNING FOR MULTI-LEVEL
PERCEPTION
In order to discuss the effects of different ensemble modes
for multi-level perception, we conduct experiments with four
ensemble modes and compare the fault detection results on
the same testing set. The ensemble of low level and middle
level perceptions achieves highest precision with 93.20%
and finally reaches 87.70% VAL. After replacing the middle
level perception with high level perception in the ensemble
mode, the precision is declined to 88.14% while the recall
is increased by 7.2%. In addition, the comprehensive metric
VAL is finally increased by 4.19%. The ensemble of high
level and middle level perceptions decreases the precision to
85.95%, but it keeps on promotingwith 91.39%VAL. Finally,
the ensemble mode of three single-level perceptions achieved
highest VAL with 92.48%.

Such promotion illustrates the contributions of different
single-level perceptions. Low level perception provides rich
global information for high precision and the high level
perception supplies strong local information for high recall.
However, these two single-level perceptions are excessively
extreme. Thereby, they need an unbiased single-level percep-
tion to voting the final results for multi-level perception.

To evaluate the advantage of the proposed ensemble
method quantitatively, we compare it with the ensemble
method introduced in [12]. The ensemble method of concate-
nate is the baseline in this experiment. It refers to the merg-
ing of the results of three single-level perceptions without
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FIGURE 12. Comparison between single-level perceptions and multi-level perception. The green, blue, and red boxes denote the results of
low level, middle level, and high level respectively. Results of multi-level perception are bounded by the yellow box.

any processing. As can be seen in Table. 6, the concatenate
shows poor performance in term of precision and average
precision. This is not surprising since it retains all detection
results unconditionally, and the evaluation metrics treat the
results beside matching result as the false positives. There-
fore, there will be a set of false positives when computing
the evaluation metrics of concatenate. When applying the
bounding box voting, the precision and average precision are
greatly improved. But many false positives still preserved in
the results of bounding box voting. There are two reasons
behind this phenomenon. In the first place, after applying
NMS, the number of detection results is small. It leads to
the rare detection results for voting. Secondly, there is no
processing of confidence in the bounding box voting. This
is disadvantageous for the determination of the independent

box. The independent box means only one detector estimated
there may exit the object in the box. The proposed ensemble
method can solve the issues mentioned above. Hence, the pre-
cision is increased by 11.08% while merely a little recall is
reduced.

C. COMPARISON WITH OTHER METHODS
The proposed ensemble architecture is compared with other
four competitive methods: Faster R-CNN [25], SSD [14],
R-FCN [26] and YOLOv3 [27]. The base networks of
Faster R-CNN, SSD and R-FCN are ResNet-101 [28].
References [10] and [11] use deep-learning-based detection
network for monitoring the condition of insulators in the
entire image. Therefore, in the comparative experiment, only
themissing-cap area is labeled and located.We directly detect
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TABLE 7. Comparison with other methods.

insulator faults on aerial images that this procedure is similar
to the low level perception defined in this paper. For model
training, the training sets are generated from the collected
inspection images that are utilized in the proposed method.
Table. 7 summarizes the comparison results. It can be seen
that our proposed method achieves the best fault detection
accuracy and shows a good trade-off between precision and
recall. YOLOv3 reaches precision with 93.75% but shows
poor performance in terms of other metrics. The recall and
average precision of SSD and R-FCN are much better than
YOLOv3 while maintaining high precision. The performance
of Faster R-CNN is the best in the four competitive methods,
but there is still a gap to the proposed method. Throughout
these comparison methods, they all achieves high precision
but performed poorly on the recall. This is not surprising
since it is difficult to distinguish the 50 × 50-pixel objects
in at least 1920 × 1080-pixel raw input image. Owing to
the downsampling of the pooling layers in CNN, most of the
semantic information of insulator fault will be replaced by
the background. This will causes the fault area to be easily
missed detected.

IV. CONCLUSION
In this paper, we explore a novel insulator fault detection
approach based on ensemble learning with multi-level per-
ception for aerial images of UAVs in the power transmis-
sion lines inspection. To address the issue of the trade-off
problem between local and global information, we introduce
the multi-level perception based on ensemble learning. The
proposed method is implemented by the ensemble of three
single-level perceptions. The low level perception looks for
missing-cap fault through the entire image using the rich
global information which is the guarantee of high preci-
sion. The middle level perception detects the fault on the
multi-insulator image using the enhanced local information
and partial global information which is the unbiased auxiliary
for results voting. The high level perception individually
detects the insulator fault on each single-insulator image
using the strong local information which ensures the high
recall. To remedy the filtration problem in the ensemble
procedure, an ensemble method inspired by voting machine
is proposed. For training the detection models in multi-level
perception, the deep learning detection network SSD is uti-
lized to implement the automatic feature learning process on

the aerial image set. The model trained by SSD can extract
high quality features for classification and location with little
consuming time. The proposed ensemble architecture can
significantly contribute to a new horizon of machine learning
for the insulator fault detection using aerial images. The
results show that the missing-cap fault of insulators can be
accurately and quickly detected with the recall of 93.69%,
precision of 91.23%, AP of 92.26% and VAL of 92.48%. The
computation time is 145.7ms on PC for a single image. Exper-
imental results show that the proposed method meets the
engineering requirements of off-line analysis for transmission
lines inspection. Future works are needed to combining more
single-level perceptions and reduce the computation cost.
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