
Received April 2, 2019, accepted May 3, 2019, date of publication May 9, 2019, date of current version May 24, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2915946

Computation Model of Cyber-Physical
Immunosensor System
VASYL MARTSENYUK AND ALEKSANDRA KLOS-WITKOWSKA
Department of Computer Science and Automatics, University of Bielsko-Biała, 43309 Bielsko-Biała, Poland

Corresponding author: Vasyl Martsenyuk (vmartsenyuk@ath.bielsko.pl)

This work was supported by the University of Bielsko-Biala under Program 511/100/4/10/00.

ABSTRACT This paper initiates a study toward developing and applying computation models of
cyber-physical immunosensor systems (CPISS). The focus is on the mathematical description of continuous
population dynamics combined with dynamic logic used for discrete events. First, we introduce a class of
lattice differential equations with time delay simulating antigen-antibody interactions within immunopixels.
The spatial operator is modeling diffusion-like interaction between immunopixels. We then use the syntax
of dynamic logic to describe discrete states of the immunopixel as a result of fluorescencing. An electrical
signal which is simulated as a number of immunopixels’ fluorescencing is important from the viewpoint
of CPISS design. Stability research is focused on the notion of practical stability. For this purpose,
we constructed a specific randomized multivariate algorithm, which provides a probabilistic estimate of the
practical stability of the immunosensor system. In particular, we use the Monte Carlo technique. It analyzes
both initial conditions and time delay and rate parameters. The experimental results obtained provide a
complete analysis of immunosensor model stability with respect to changes of time delay, namely, as the
time delay was increased, the stable endemic solution changed at a critical value to a stable limit cycle.
Furthermore, when increasing the time delay, the behavior changed from convergence to simple limit cycle
to convergence to complicated limit cycles with an increasing number of local maxima and minima per
cycle until, at sufficiently high time delay, the behavior became chaotic. Such behavior can be seen using
both phase portraits, tile plots, and simulated electrical signal. Mathematical models and algorithms, which
are developed in this paper, may be considered as additional skills of CPISS. There is shown their software
implementation as methods in language R.

INDEX TERMS Cyber-physical system, immunosensor, population dynamics, dynamic logic, practical
stability.

I. INTRODUCTION
Cyber-physical system (CPS) implements integration of the
computation layer and physical processes. They occur most
often in the form of embedded systems and networks for
monitoring and controlling physical processes operating in
the feedback loop, where physical processes are a source of
data for calculating the object control signal [1].

Cyber-physical systems are identified with the manifes-
tation of the fourth industrial revolution that takes place in
modern times [2]. Thus, there is also the physical possibility
of using the Internet of Things technology, where it is neces-
sary to use signals from sensors andmeasuring devices. Thus,
in the literature [3] there is a growing number of publications

The associate editor coordinating the review of this manuscript and
approving it for publication was Feiqi Deng.

that draws attention to these concepts and proposes new
innovative solutions.

A. Platzer offered approach based on ‘‘dynamic logic’’ to
describe and analyze cyber-physical systems [4], [5]. The
cornerstone of these works are hybrid programs (HPs), which
capture relevant dynamical aspects of CPSs in a simple pro-
gramming language with a simple semantics. HPs allow the
programmer to refer directly to real valued variables repre-
senting real quantities and specify their dynamics.

A. IMMUNOSENSOR SYSTEMS
With the growing pace of life and the need for more and
more accurate detection methods, interest in biosensors is
rising among science and industry as well. Biosensors are an
alternative to commonly used measurement methods, which
are characterized by: poor selectivity, high cost, poor stability,
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slow response and often can be performed only by highly
trained personnel. They are a new generation of sensors,
which use in their construction a biological material that
provides a very high selectivity, also allow very quick and
simple measurement [6], [7].

Cell biosensors can be applied for the quantitative assess-
ment of infectiousness of organism with help of certain
electrochemichal or optical phenomena. For example, in the
work [8] there is described a cell biosensor which uses
electrochemical impedance spectroscopy. Its aim is to count
human CD4+ cells. The sensing area of this biosensor
includes electrode pixels, each of which is comparable with
CD4+ cell in size. CD4+ cells are captured by electrode
pixels. They are detected by observing imperdance changes
on the pixel. The ‘‘on’’ or ‘‘off’’ states of electrode pixel
indicates about the detection of a single CD4+ cell. Thus,
in order to count the CD4+ cells, we need to summarize the
electrode pixels in the ‘‘on’’ state.

This general approach for quantitative detection of cells
will be used here for modeling immunosensor system which
is based on the phenomenon of fluorescence.

Due to [9], [10], [11] immunosensors are affinity ligand-
based biosensor solid-state devices in which the immuno-
chemical reaction is coupled to a transducer. The fundamental
basis of all immunosensors is the specificity of the molec-
ular recognition of antigens by antibodies to form a stable
complex.

Firstly the term cyber-physical sensor system (CPSS) was
defined in [12]. This definition was introduced in case of
industrial applications of sensors. The first step is a general
definition of cyber-physical sensor systems. This definition
for CPSS implies ‘‘the higher degree of crosslinking, dis-
tributed systems, possibilities of embedded systems in the
field of automation and respects the current standards’’ [12].
The second step means a characterization of skills of sen-
sors. This approach will be used for characterizing CPISS
(see Fig.1) allowing us to perform its computation modeling.

The paper is organized as follows. In Section II, we present
the general flowchart of cyber-physical immunosensor sys-
tem (CPISS). A continuous dynamics of CPISS, which is
based on mathematical description with help of delay dif-
ferential equations is given in Section III. In Section IV,
we give a description of discrete dynamics of CPISS using
syntaxis of dynamic logic. In Section V, a notion of practical
stability for CPISS is introduced and an algorithm for stability
research is offered. Numerical results are presented for sta-
bility of CPISS in Section VI. Conclusions are then provided
in Section VII.

Within this paper we use the following notation:
• R,N be the sets of real and natural numbers respectively;
• the symbol i = m, n for some integer i, m, n, m < n
means i = m,m+ 1, ..., n;

• Euclidean norm ‖x‖ for vector x ∈ Rn;
• the norm of a vector-function |φ(•)|τ = sup

θ∈[−τ,0],i=1,n

|φi(θ )|, where functions φ ∈ C1[−τ, 0];

• let the space C[−τ, 0] = C([−τ, 0],Rn) be the
Banach space of continuous functions mapping the
interval [−τ, 0] into Rn with the topology of uniform
convergence;

• the spaceC1[−τ, 0] of continuously differentiable func-
tions φ : [−τ, 0]→ Rn, with the norm |φ(•)|τ .

II. CHARACTERIZATION OF CYBER-PHYSICAL
IMMUNOSENSOR SYSTEM (CPISS)
Referring to the definitions of cyber-physical sensor system
(CPSS) in [12] this leads to the definition and figures for a
cyber-physical immunosensor system (CPISS).
Let Q ⊂ R, q ∈ N be the subspace of immunological

quantity values (e.g., describing amount of cells in certain
immunological state), K be the dimension of output digital
information,A be the space of CPISS skills. Given instant of
time t ∈ R+ cyber-physical immunosensor system

∑
con-

verts a physicallymeasured immunological quantity q(t) ∈ Q
into digital information d(t) ∈ RK , i.e.

∑
: Q → RK ,

allowing a signal process under the influence of external time-
variable information and by means of an algorithm.
In addition, there is a communication of one’s own abili-

ties, requirements, internal data and internal tasks in terms of
dissemination to the same or higher levels of the hierarchy.
The CPISS (outer rectangle in Figure 1) is based on the

concept of CPS as well as on the immunosensory and contin-
ued development of smart immunosensors. With the added
skills A ∈ A (dashed line in Figure 1), a sensor is extended
to a CPISS. This process signals s(t) ∈ R and converts it into
information I (t) ∈ R+.
Thus CPISS

∑
can be described as

∑
=

(
q(t), d(t), s(t),

I (t),A
)
.

The general immunopixel design, which uses the approach,
which was offered in [9] is depicted in Fig. 2 in case
of fluorescence . There are four types of immunosensor
detection devices: electrochemical (potentiometric, ampero-
metric or conductometric/capacitative), optical, microgravi-
metric, and thermometric [9]. The latter detection mode are
neglected in this discourse due to a lack of considerable appli-
cations. All types can either be run as direct (nonlabeled) or as
indirect (labeled) immunosensors. The direct sensors are able
to detect the physical changes during the immune complex
formation, whereas the latter sensors use signal-generating
labels which allow more sensitive and versatile detection
modes when incorporated into the complex.
Self-awareness is distinguishing feature of CPISS. From

viewpoint of service-oriented approach it means availabil-
ity of set of methods (interfaces) enabling the knowledge
about the status and internal data of the system. These data
should be accessable to other CPSs. According to [12], a self-
description system needs a comprehensive knowledge about
the own dynamic structure and the infrastructure of the total
system. It requires the definition of classes of immunosensing
devices based on their functional target, e. g. sensing levels
of CK-MB to assess heart disease, sensing insulin to assess
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FIGURE 1. Cyber-physical immunosensor system (adapted from [12] for CPISS).

hypoglycemia, and the detection and/or quantitativemeasure-
ment of some pharmaceutical compounds.

In work [12] there was offered the structure of the self-
description of a general CPSS. When applying this scheme
in case of immunosensors, we get the three kinds of

activities, dealing with basic information about immunosen-
sor, measuring immunological measurand and skills concern-
ing with unit conversions, calibration and interactions with
other immunosensors. The activity includes certain methods
allowing us to describe the immunosensor. Here we show
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FIGURE 2. Scheme of the fluorescencing immunopixel design depicting the intimate integration of immunological
recognition at the solid-state surface and the signal transduction (adapted from [9] in case of fluorescence).

implementation of the methods with help of language R.
We note that there are a variety of languages, which are used
in CPS design, e.g. Assembly, C, C++, D, Java, JavaScript,
Python, Ada etc (see review in [13]. The language R is widely
used currently in a lot of branches dealing with machine
learning and data visualization. Its semantics may be applied
also for CPISS modeling. Packages rootSolve and deSolve
enable us solving algebraic and differential equations (with
time delay). Package ggplot2 supporting grammar of graphics
can be easily used for displaying graphs including tiles.

For example, method fluorescencingPixels(time) (see
Listing 1) allows us to get dataframe presenting pixels flu-
orescencing at some instant of time. Here we use method
simulate(t) for getting pixels with all their values concerning
populations of antigens and antibodies.
[Listing 1]
fluorescencingPixels <- function(time){
pixels <- simulate(time)
# we get lattice of fluorescencing pixels
fluorescence_tile
<-ifelse(k_fl*pixels$V*pixels$F
>fluorescence_intensity_threshold,1,0)

list(fluorescence_tile)
}

Method plotLattice() displays fluorescencing pixels in tile
plot (see Listing 2). The results of calling this method are
shown on Tables 4, 5, 6, 7.
[Listing 2]
plotLattice<-function(fluorescence_tile){
# plotting tiles with help of ggplot
colors <- c("white","red")
fluorescence_tile.data <-

data.frame(fluorescence_tile,
index_i,index_j)

fluorescence_tile <-
ggplot(fluorescence_tile.data,
aes(x=index_i,y=index_j))
+ ggtitle(paste("Fluorescencing pixels,
time=",time,sep=""))
fluorescence_tile <-
factor(fluorescence_tile,levels = c("0","1"))
fluorescence_tile <- fluorescence_tile
+geom_tile(aes(fill=factor(fluorescence_tile)))
+scale_fill_manual(values=colors,guide=FALSE)
biosensor_matrix_fluorescence_tile
<- biosensor_matrix_fluorescence_tile
+ theme_set(theme_bw(base_size=28))
print(biosensor_matrix_fluorescence_tile)
dev.off()
}

Another example (Listing 3) presents the method for get-
ting electrical signal as the number of pixels fluorescencing.

[Listing 3]
getElectricalSignal(time){
pixels <- simulate(time)
# we get lattice of fluorescencing pixels
fluorescence_tile<-fluorescencingPixels(time)
# for electrical signal
fluorescence_sum <- rbind(fluorescence_sum,
list(time=time,
fluorescence_tile_sum=sum(fluorescence_tile)))
list(fluorescence_sum)
}

In order to plot electrical signal within time inter-
val we can use method plotElectricalSignal(time1, time2)
(Listing 4). The results of calling this method are shown on
Figures 4, 5, 6.
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[Listing 4]
plotElectricalSignal(time1, time2){
# get electrical signal within
# interval [time1,time2]
fluorescence_sum
<- getElectricalSignal(time1, time2)
# plot graph
electricalSignal
<- ggplot(data=fluorescence_sum,
aes(x=time, y=fluorescence_tile_sum))
+ ylab("fluorescencing pixels")
+ geom_line(color="blue")+geom_point()
list(electricalSignal)
}

III. CONTINUOUS DYNAMICS OF CPISS
For continuous dynamics we use mathematical description
with help of nonlinear delay differential equations. Let Vi,j(t)
be concentration of antigens, Fi,j(t) be concentration of anti-
bodies in immunopixel (i, j), i, j = 1,N .
The model is based on the following biological assump-

tions for arbitrary immunopixel (i, j).

1) We have some constant birthrate β > 0 for antigen
population.

2) Antigens are detected, binded and finally neutralized
by antibodies with some probability rate γ > 0.

3) We have some constant death rate of antibodiesµf > 0.
4) We assume that when the antibody colonies are absent,

the antigen colonies are governed by the well-known
delay logistic equation:

dVi,j(t)
dt

= (β − δvVi,j(t − τ ))Vi,j(t), (1)

where β and δv are positive numbers and τ ≥ 0 denotes
delay in the negative feedback of the antigen colonies.

5) The antibody decreases the average growth rate of anti-
gen linearly with a certain time delay τ ; this assumption
corresponds to the fact that antibodies cannot detect
and bind antigen instantly; antibodies have to spend
τ units of time before they are capable of decreasing
the average growth rate of the antigen colonies; these
aspects are incorporated in the antigen dynamics by
the inclusion of the term −γFi,j(t − τ ) where γ is
a positive constant which can vary depending on the
specific colonies of antibodies and antigens.

6) In the absence of antigen colonies, the average growth
rate of the antibody colonies decreases exponentially
due to the presence of −µf in the antibody dynamics
and so as to incorporate the negative effects of antibody
crowding we have included the term −δf Fi,j(t) in the
antibody dynamics.

7) The positive feedback ηγVi,j(t − τ ) in the average
growth rate of the antibody has a delay since mature
adult antibodies can only contribute to the production
of antibody biomass; one can consider the delay τ in
ηγVi,j(t − τ ) as a delay in antibody maturation.

8) While the last delay need not be the same as the
delay in the hunting term and in the term governing
antigen colonies, we have retained this for simplicity.

We remark that the delays in the antibody term, anti-
body replacement term and antigen negative feedback
term can be made different and a similar analysis can
be followed.

FIGURE 3. Linear lattice interconnected four neighboring pixels model,
n > 0 is disbalance constant.

9) We have some diffusion of antigens from four neigh-
boring pixels (i − 1, j), (i + 1, j), (i, j − 1), (i, j + 1)
(see Fig. 3) with diffusion D > 0. Here we consider
only diffusion of antigens, because the model describes
so-called ‘‘competitive’’ configuration of immunosen-
sor [14]. When considering competitive configura-
tion of immunosensor, the factors immobilized on the
biosensor matrix are antigens, while the antibodies play
the role of analytes or particles to be detected.

10) We consider surface lateral diffusion (movement of
molecules on the surface on the solid phase toward
immobilized molecules) [15]. Moreover, there are
works [16], [17] which assume and consider surface
diffusion as an entirely independent stage.

11) We extend the definition of usual diffusion operator
in case of surface diffusion in the following way. Let
n ∈ (0, 1] be a factor of diffusion disbalance. It means
that only nth portion of antigens of the pixel (i, j) may
be included into diffusion process to any neighboring
pixel as a result of surface diffusion.

12) As a result of binding antigens with pixel antibodies,
pixel is fluorescencing. We assume that fluorescence
intensity is proportional to amount of contacts between
antigens and antibodies, i.e., kflVi,j(t)Fi,j(t). We let that
the pixel (i, j) is in the fluorescencing state if

kflVi,j(t)Fi,j(t) ≥ 2fl, (2)

where 2fl > 0 is some threshold value of binds
enabling fluorescence.

13) Output signal s(t) is proportional to amount of pixels in
fluorescencing state.
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14) Information about quantity of biological measurand is
calculated based on output signal.

For the reasonings given we consider a very simple delayed
antibody-antigen competition model for biopixels two-
dimensional array which is based on well-known Marchuk
model [18], [19], [20] and using spatial operator Ŝ offered
in [21] (Supplementary information, p.10)

dVi,j(t)
dt

= (β − γFi,j(t − τ )− δvVi,j(t − τ ))Vi,j(t) (3)

+Ŝ{Vi,j},
dFi,j(t)
dt

= (−µf + ηγVi,j(t − τ )− δf Fij(t)
)
Fi,j(t) (4)

with given initial functions

Vi,j(t) = V 0
i,j(t) ≥ 0, Fi,j(t) = F0

i,j(t) ≥ 0, t ∈ [−τ, 0],

Vi,j(0),Fi,j(0) > 0. (5)

For a square N × N array of traps, we use the following
discrete diffusion form of the spatial operator [21]

Ŝ{Vi,j}=



D
[
V1,2 + V2,1 − 2nV1,1

]
i, j = 1,

D
[
V2,j + V1,j−1 + V1,j+1 − 3nVi,j

]
i = 1, j ∈ 2,N − 1,

D
[
V1,N−1 + V2,N − 2nV1,N

]
i = 1, j = N ,

D
[
Vi−1,N + Vi+1,N + Vi,N−1 − 3nVi,N

]
i =∈ 2,N − 1, j = N ,

D
[
VN−1,N + VN ,N−1 − 2nVN ,N

]
i = N , j=N ,

D
[
VN−1,j + VN ,j−1 + VN ,j+1 − 3nVN ,j

]
i = N , j ∈ 2,N − 1,

D
[
VN−1,1 + VN ,2 − 2nVN ,1

]
i = N , j = 1,

D
[
Vi−1,1 + Vi+1,1 + Vi,2 − 3nVi,1

]
i ∈ 2,N − 1, j = 1,

D
[
Vi−1,j + Vi+1,j + Vi,j−1 + Vi,j+1 − 4nVi,j

]
i, j ∈ 2,N − 1

(6)

Each colony is affected by the antigen produced in four
neighboring colonies, two in each dimension of the array,
separated by the equal distance 1. We use the boundary
condition Vi,j = 0 for the edges of the array i, j = 0,N + 1.
We define the phase space C of system (3) as follows, C is

the Banach space of continuous functions φ(t) : [−τ, 0] →
R2N 2

with the norm ‖φ‖τ = supt∈[−τ,0] ‖φ(t)‖.
Let

C+ = {φ =
{
(ξi,j, ηi,j)

}
i,j=1,N ∈ C : ξi,j, ηi,j(i, j = 1,N )

are nonnegative and bounded on [−τ, 0]

and ξi,j(0) > 0, ηi,j(0) > 0}

Motivated by the biological background of system
(3), (5), we see that solutions initial condition satisfy{
(V 0

i,j,F
0
i,j)
}
i,j=1,N

∈ C+.

We can easily prove that the functional of the right side
of system (3) is continuous and satisfies the local Lip-
schitz condition with respect to

{
(Vi,j,Fi,j)

}
i,j=1,N in the

space C . Therefore, by the fundamental theory of functional
differential equations with finite delay [22], for any φ ={
(V 0

i,j,F
0
i,j)
}
i,j=1,N

∈ C+ system (3) has a unique solution

E(t, φ) =
{
(Vi,j(t, φ),Fi,j(t, φ))

}
i,j=1,N satisfying the initial

condition (5). In addition, we also can easily prove that, when
φ ∈ C+, the solution E(t, φ) is positive, that is Vi,j(t, φ) >
0,Fi,j(t, φ)) > 0, i, j = 1,N on the interval of the existence.

Numerical solution of lattice system (3), (5) is of spe-
cial interest. Here we only refer to the work [23] review-
ing Runge-Kutta methods, particularly to the methods
specially tuned to integrate problems with ‘‘oscillatory char-
acter’’ solutions. In the numerical simulation we use package
deSolve1 for the numerical solution of initial value prob-
lems for ordinary differential equations with delay.

IV. DYNAMIC LOGIC-BASED MODELING OF CPISS
With purpose of modeling dynamic logic of CPISS here we
use syntax offered by A.Platzer for general cyber-physical
systems [4].

We begin from continuous program. After preparations
for understanding differential equations and domains for
immunosensor system in Section III, we start implementing
a programming language for cyber-physical systems. This
programming language of hybrid programs contains more
features than just differential equations.

The first layer of hybrid programs (HP) are purely contin-
uous programs. These are defined by the following grammar

α ::=
dVi,j(t)
dt

= (β − γFi,j(t − τ )

−δvVi,j(t − τ ))Vi,j(t)+ Ŝ{Vi,j},
dFi,j(t)
dt

= (−µf + ηγVi,j(t − τ )− δf Fij(t)
)
Fi,j(t)

&8t , (7)

where 8t is evolution domain constraint in the form of a
formula of first-order logic of real arithmetic

8t
def
≡ Vmin

≤ Vi,j(t) ≤ Vmax

∧Fmin
≤ Fi,j(t) ≤ Fmax

∧ i, j = 1,N ∧ t > 0. (8)

The functioning of immunopixel (i, j) is determined by two
states with respect to fluorescence. Namely, sfl is fluorescenc-
ing state and snonfl is nonfluorescencing one. Using first-order
logic semantics and satisfaction relation s |H L for a first-
order formula L of real arithmetic and state s, we can define
for some pixel (i, j), i, j ∈ 1,N the states sfl and snonfl as

sfl |H kflVi,j(t)Fi,j(t) ≥ 2fl,

snonfl |H kflVi,j(t)Fi,j(t) < 2fl (9)

1See https://cran.r-project.org/web/packages/deSolve/index.html
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Discrete change happens in computer programs when they
assign a new value to a variable. Such a situation takes
place if fluorescence in the pixel (i, j) occurs. The statement
sfl,i,j := 1 assigns the value 1 to variable sfl,i,j. It leads
to a discrete, discontinuous change, because the value of
sfl,i,j does not vary smoothly but radically when suddenly
assigning 1 to sfl,i,j, which causes a discrete jump in the value
of sfl,i,j.

This gives us a discrete model of change, sfl,i,j := 1,
in addition to the continuous model of change (7). Now, we
can model pixel that is either discrete or continuous. So, we
need to model proper CPS that combine cyber and physics
with one another and that, thus, simultaneously combine dis-
crete and continuous dynamics. We need such hybrid behav-
ior every time a pixel has both continuous dynamics (such
as the continuous dynamics of populations in real world) and
discrete dynamics (such as starting measurement). One way
how cyber and physics can interact is if a computer provides
input to physics. Physics may mention variables like Fi,j(0)
for initial antibody density and a computer program sets their
values depending on whether the computer program wants to
measure or not. That is, cyber could set the values of actuators
that affect physics.

V. ALGORITHM OF STABILITY INVESTIGATION
In the context of biosensors two types of stability can be
distinguished: self stability and operational stability.

Self stability is defined as the enhancement or improve-
ment of activity retention of an enzyme, protein, diag-
nostic or device when stored under specific condition.
Operational stability is the retention of activity when in
use [24]. The stability of the sensible element located in
the biosensor receptor layer and the stability associated with
the activity of the biosensor matrix components during use,
determine the usefulness of the device

Qualitative results which are obtained hereinafter can be
applied for both types of stability. Namely, simulation of
different types of stability problems can be implemented
through different initial conditions for pixels (especially for
boundary pixels).

There are a lot of definitions of stability which are used
for dynamic systems. They are stability, asymptotic stability,
uniform asymptotic stability, exponential stability, robust sta-
bility etc. Themost reasonable for CPSs is usage of the notion
of practical stability [25].

For the problems of practical stability it is characteris-
tic feature that they are investigated on finite time interval,
certain initial conditions and dynamic restrictions are given.
So, we consider model of CPISS at t ∈ [0,T ]. LetG0 ⊂ R2N

+

be set of initial vector-functions at t ∈ [−τ, 0], 8t ⊂ R2N
+

be sets of admissible values of Vi,j(t), Fi,j(t), i, j = 1,N .
We introduce the following definition.

The solution E(t) = {(Vi,j(t), Fi,j(t))}i,j=1,N of the model
(3) is called {G0,8t ,T }-stable if (E(t) ∈ 8t ∧ t ∈ [0,T ])
∧(E(t) ∈ G0 ∧ t ∈ [−τ, 0]).

The model (3), (5) is a system of nonlinear differential
equations. Application of differential equations for mathe-
matical modeling does not mean obtaining analytical repre-
sentation for their solutions (or approximations). Moreover
these clear formulas don’t exist in most cases. A formula
for clear or approximate analytic solution is very often so
complex that nothing can be said of nature of the solution until
the graph is constructed. That is why in practice, graphs of
solutions (at least their general form), are generated without
getting the solutions in the form of formulas first.

Traditional approach of stability investigation is based
on method of Lyapunov functionals. It combines general
approach to construction of Lyapunov functionals of the
predator-prey models with lattice differential equations.

Earlier in the work [6] we have used Lyapunov functional
for the entire system (3) of the following form 2

W (t) =
N∑

i,j=1

{
1

γV ∗i,j
Wi,j,1(t)+

1
ηγF∗i,j

Wi,j,2(t)

}
,

where V ∗i,j and F∗i,j are endemic steady states. W (t) sum-
marizes Lyapunov functionals for all pixels i, j = 1,N .
Lyapunov functionalsWi,j,1(t) were constructed basing on the
first equation from (3), Wi,j,2(t) used the second ones.

As a rule Lyapunov functional approach are used for
local or global asymptotic stability research of continuous
dynamics systems only. It is not applicable for CPSs, which
take into account discrete dynamics also. Moreover, our pur-
pose is {G0,8t ,T }-stability investigation, which is practical
generalization of the notion of stability allowing us to study
more complex dynamic behavior of CPSs as compared with
Lyapunov stability.

In order to overcome these shortcomings of traditional
approach, when applied for stability investigation of CPISS,
we use a nontraditional approach for qualitative analysis of
biological systems, resulting in decision tree induction, which
was offered in [26]. The basic idea of such a method is using
Monte-Carlo method to gather learning tuples that are further
used in data mining algorithm. They only considered initial
conditions for a dynamic system. Here we try to extend this
technique to rate constants and time delay also with purpose
of practical stability investigation.

It is assumed the existence of solutions of themodel (3), (5)
at initial values, time delay and rate parameters determined by
first-order logic:

Parameters

P
def
≡

{
βmin
≤β≤βmax

∧ γmin
≤ γ ≤γmax

∧ δmin
v ≤δv≤δ

max
v ∧

µmin
f ≤µf ≤µ

max
f ∧ ηmin

≤η≤ηmax
∧ δmin

f ≤δf ≤δ
max
f ∧

τmin
≤ τ ≤ τmax

}
,

2Here we denote the value of functional W : C[−τ, 0) → R+, which is
calculated at vector-interval x(t + s), s ∈ [τ, 0], by W (t).
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initial conditions

G0
def
≡

{
Vmin
i,j ≤ Vi,j(t) ≤ V

max
i,j ∧

Fmin
i,j ≤ Fi,j(t) ≤ F

max
i,j ∧ i, j = 1,N ∧ t ∈ [−τ, 0]

}
The basic idea of the method is that we will generate initial
values, time delay and rate constants randomly, that they
belonged to the given range. For each set of parameters we
integrate system (3), (5) and obtain corresponding trajecto-
ries. Decision tree induction algorithm will then be applied
to the results obtained in order to discover some knowledge
structure for practical stability.

The algorithm includes the following five steps.

1) Determining the trajectory classes of the system.
We will use classes corresponding to {G0,8t ,T }-
stability and -unstability. To denote class of trajectory
we introduce class attribute C which accepts one of 2
binary values C ∈ {0, 1}.

2) Generation of matrix of random initial values, time
delay and rate parameters. Here we assume that initial
values, time delay and rate parameters are uniformly
distributed at intervals. Each column corresponds to the
set of values of one parameter - either initial value, time
delay or rate constant. Each line is a set of initial values
and rate constants for one running the model based
on (3), (5).

M =


β1 γ 1 . . . F1

N ,N
β2 γ 2 . . . F2

N ,N
· · · · · · · · · · · ·

βM γM . . . FMN ,N

 ∈ RN×N+7

3) Running the model and classification of input data.
Each set of initial values, time delay and rate param-
eters generated in the second step are used as input for
immunosensor model. Output trajectories are classified
on the basis of the criteria proposed in the first step.
Based on the results of classification the appropriate
class attribute values (0 or 1) are assigned to initial
values, time delay and rate parameters

4) Building a matrix of relationships between initial val-
ues, time delay and between rate parameters. The
method assumes that for the system trajectories shape
correlation between initial values, time delay and rate
constants is more important than their absolute values.
So the matrix containing information in the categorized
coded form on the relationship between initial values,
time delay and rate parameters generated in step 2 is
constructed:

D =


β ⊗ γ β ⊗ δv . . . C

p(β1, γ 1) p(β1, δ1v ) . . . C1
p(β2, γ 2) p(β2, δ2v ) . . . C2
. . . . . . . . . . . .

p(βM , γM ) p(βM , δMv ) . . . CM



Here

p(u, v) =

 0, if v < v
1, if u = v
2, if u > v

Cl ∈ {0, 1} is class attribute value associated with
the form of corresponding trajectories. Thus, at this
step, the numerical values of initial values, time delay
and rate parameters are transformed into categorized
attribute values for training datasets. Since the proba-
bility of randomvalue equals zero, thematrix is a sort of
‘‘binarization’’ of relationship between initial values,
time delay and rate parameters. That is matrix includes
only the values 0 and 2.

5) Application of decision tree induction algorithm
C5.0 to the relationship between initial values and
between rate parameters. Matrix of binary relations
built in step 4 contains a set of training data for decision
tree induction algorithm. Decision tree built includes
verification of relations between initial values, time
delay and rate parameters in their nodes. Classes of
model trajectories C ∈ {0, 1} are as tree leaves.

VI. EXPERIMENTAL RESULTS
We consider model (3) at N = 32, β = 2 min−1, γ =
2 mL
min·µg , µf = 1 min−1, η = 0.8/γ , δv = 0.5 mL

min·µg ,

δf = 0.5 mL
min·µg , D = 0.2 nm

2

min , 1 = 0.3 nm. The values
of parameters come from the work [18], where they were
applied for modeling simplified immune response.

The numerical simulations were implemented at different
values of n ∈ (0, 1]. For example, at n = 0.9 corresponding
simulations for τ > 0(min) are presented (See Tables 1, 2).
Here we can see that when changing the value of τ we
have changes of qualitative behavior of pixels and entire
immunosensor (when analyzing the form of electrical signal).

These changes with respect to τ can be explained from
biological point of view also. Namely, taking into account
the facts that the antibody decreases the average growth rate
of antigen linearly with the time delay τ and that antibodies
cannot detect and bind antigen instantly but spending τ units
of time before they are capable of decreasing the average
growth rate of the antigen colonies.

We considered the parameter value set given above and
computed the long-time behavior of the model (3) for τ =
0.2, 0.28. The phase diagrams of the antibody vs. antigen
populations for the pixels around pixel (15, 15) for these
values of τ are shown in Tables 1, 2.
For example, at τ ∈ [0, 0.22] we can see trajectories

corresponding to stable focus for all pixels (see Table 1).
Biologically it means that for antibody colonies with some
small values of τ (i.e. antibodies spend a little of time before
they are capable to bind antigens and to effect on growth
rate of the antigen colonies) concentrations of antigens and
antibodies tend to the certain constant values.

At values τ near 0.2223min Hopf bifurcation occurs [6]
and further trajectories correspond to stable limit cycles of
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TABLE 1. The phase plane plots of the system (3) for antibody populations Fi,j versus antigen populations Vi,j , i, j = 14,16. Numerical simulation of the
system (3) at n = 0.9, τ = 0.2. Here • indicates identical steady state, • indicates nonidentical steady state. Trajectories are constructed for t ∈ [0,100].
The solution converges to the nonidentical steady state which is stable focus.

ellipsoidal form for all pixels. We note that in order that
the numerical solutions regarding Hopf bifurcation were in
agreement with the theoretical results, we should look for
a complex conjugate pair of purely imaginary solutions of
the corresponding characteristic equation of the linearized
system.

Biologically it means that antibody spends too much time
τ before it is capable of binding the antigens. As a result
antibodies as well as antigens are not able to reach some
constant levels of their concentrations but oscillate. We have
oscillating population dynamics of antigens and antibodies.

In [6] the model (3) was investigated using phase diagrams
at N = 4. For τ = 0.23, the phase diagrams show that
the solution is a limit cycle with two local extrema (one
local maximum and one local minimum) per cycle. Then for
τ = 0.2825 the solution is a limit cycle with four local
extrema per cycle, and, for τ = 0.2868, 0.2869, 0.28695 the
solutions are limit cycles with 8, 16 and 32 local extrema per
cycle, respectively.

Finally, for τ = 0.28725, the behavior shown in Figs. 4.8 is
obtainedwhich looks like chaotic behavior.We have regarded
behavior as ‘‘chaotic’’ if no periodic behavior could be found
in the long-time behavior of the solutions. As a check that the
solution is chaotic for τ = 0.28725, we perturbed the initial
conditions to test the sensitivity of the system. A comparison

FIGURE 4. Electrical signal from transducer characterizing the number of
fluorescencing pixels at τ = 0.05.

of the solutions for the antigen population V1,3 with initial
conditions V1,3(t) = 1 and V1,3(t) = 1.001, t ∈ [âĹ′τ, 0],
and identical all the rest ones shows chaotic behavior. Near
the initial time the two solutions appear to be the same, but
as time increases there is a marked difference between the
solutions supporting the conclusion that the system behavior
is chaotic at τ = 0.28725. We have also checked numerically
that the solutions for the limit cycles are periodic and com-
puted the periods for each of the local maxima and minima in
the cycles.
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TABLE 2. The phase plane plots of the system (3) for antibody populations Fi,j versus antigen populations Vi,j , i, j = 14,16. Numerical simulation of the
system (3) at n = 0.9, τ = 0.28. Here • indicates identical steady state, • indicates nonidentical steady state. Trajectories are constructed for t ∈ [0,100].
The solution converges to a stable limit cycle with local extremas per cycle.

TABLE 3. Tile plots of binds of antigenes with antibodies within pixels for the system (3) at n = 0.9, τ = 0.05.

This route to chaos can be explained with help of biological
reasons as it was done in [27]. They describe it as a result
of ‘‘a desynchronization of the predator and prey adaptation
that comprises a form of the ‘‘Red Queen’’ effect’’ [28]. That
is the value of time of ‘‘immune response’’ is too large in
order to synchronize evolution of antibody over timescale
comparable to the antigen evolution.

In case of N = 32 we have analyzed immunosen-
sor model with help of tile plot displaying fluorescenc-
ing pixels. When analyzing simulation of fluorescence due
to condition (2) we let 2fl = 1.5. Firstly we get tile
plots indicating the number of binds of antigenes with
antibodies within pixels (see Table 3). Then, comparing it
with threshold value 2fl , we have fluorescencing pixels to
investigate.

So, in case τ = 0.05 we have self stability. Namely,
at about t = 11 we get all pixels fluorescencing (see Table 4
and Fig. 4 for amount of fluorescencing pixels).

Further, when increasing time delay we observe Hopf
bifurcation, which was mentioned above, and corresponding
one-periodic limit circle (see Table 5 and Fig.5 for τ = 0.24).

In case τ = 0.28 we see chaotic behavior, starting from
wave-like changes in fluorescencing pixels (Fig. 6) and tran-
siting to chaotic ones (Table 7). Electric signal, which is char-
acterized by the number of fluorescencing pixels, evidences
this undeterministic effect (see Table 6).

Note, that these investigations of fluorescencing pixels
and output signal as their number corresponds entirely our
previous stability research of two-dimensional immunopixels
array.
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TABLE 4. Fluorescence plots of the system (3). Numerical simulation of the system (3) at n = 0.9, τ = 0.05, threshold value for fluorescence 2fl = 1.5.
The case is corresponding to stable focus. Traveling wave of ‘‘nonfluorescencing’’ pixels can be seen.

TABLE 5. Fluorescence plots of the system (3). Numerical simulation of the system (3) at n = 0.9, τ = 0.24, corresponding tending to limit circle. Traveling
wave of fluorescencing pixels can be seen.

TABLE 6. Fluorescence plots of the system (3). Numerical simulation of the system (3) at n = 0.9, τ = 0.28. Traveling wave of fluorescencing pixels can
be seen.

TABLE 7. Fluorescence plots of the system (3). Numerical simulation of the system (3) at n = 0.9, τ = 0.28. Chaotic distribution of fluorescencing pixels
can be seen.

As comparison study we use the work [21], where they
engineered the synchronization of thousands of oscillating
colony ‘biopixels’ over centimetre-length scales. Quorum
sensing as the ability to detect and to respond to cell popu-
lation density by gene regulation was used. The simulation is
also based on predator-preymodel of lattice delay-differential
equations, where they consider colonies of H2O2 as ’prey’
and LuxI as ’predator’. The work was focused primarily on
studying oscillations of concentrations of colonies and their
synchronization for neighboring biopixels. Experimentally
they obtained upper bound of spacing between pixels 1
where synchronization of oscillations were lost. The model

used Holling type I and II functional responses. Following
from the results of modeling (3) we think that chaotic behav-
ior for the model from [21] is also possible but it needs to
be studied. Moreover, here also the algorithm of practical
stability investigation, which was offered in Section V, can
be applied.

Another approach to compare is based on applica-
tion of Navier-Stokes partial differential equation system
(see e.g. [15]). However it is more appropriate for
microfluidic-based immunoassays. When we have immuno-
sensor consisting from pixels, lattice differential equations
describe discrete spatially structure better.
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FIGURE 5. Electrical signal from transducer characterizing the number of
fluorescencing pixels at τ = 0.24.

FIGURE 6. Electrical signal from transducer characterizing the number of
fluorescencing pixels at τ = 0.28.

At last when comparing our model of immunosensor with
models mentioned above, we note that they don’t consider
cyber-physical systems, so they don’t give tools for dynamic
logic-based modeling.

VII. CONCLUSION
In this paper, we have constructed and investigated the com-
putation model of CPISS. For this purpose general scheme
of CPSS offered in [12] was used. It was modified tak-
ing into account particularities of immunosensors. Namely,
we consider immunosensor as two-dimensional array of
immunopixels. We pay attention that each immunopixel may
be considered as CPS as well. Namely, it includes con-
tinuous dynamics of immunological response. Additionally,
fluorescencing states change due to discrete dynamics laws.
Moreover immunopixels communicate each other with help
of diffusion of antigens.

Mathematical description of CPISS includes the continu-
ous population dynamics combined with dynamic logic used
for discrete events. So, here we study a class of lattice differ-
ential equations with time delay simulating antigen-antibody
interactions within immunopixels. Spatial operator is mod-
eling diffusion-like interaction between immunopixels.
Continuous mathematical modeling is insufficient in order to
simulate discrete dynamics of immunosensor. Hence, we use
the syntax of dynamic logic which was offered for CPS by
A.Platzer to describe discrete states of the immunopixel as a
result of fluorescencing.

Electrical signal which is simulated as a number of
immunopixels fluorescencing is important from viewpoint of
CPISS design. Namely, stability research can be performed
using its form. Stable focus, limit cycle and chaotic behavior
are characterized with corresponding shape of immunosensor
electrical signal. Also decision on immunosensor stability
may bemade basing on the tile plot displaying fluorescencing
pixels.

Stability research is focused on a notion of practical sta-
bility. For this purpose we constructed specific randomized
multivariate algorithm which provides a probabilistic esti-
mate of the practical stability of the immunosensor system.
In particular, we use Monte Carlo technique. It analyses both
initial conditions and time delay and rate parameters.

The experimental results obtained provide a complete anal-
ysis of immunosensor model stability with respect to changes
of time delay. Namely, as the time delay was increased,
the stable endemic solution changed at a critical value to a
stable limit cycle. Further, when increasing the time delay,
the behavior changed from convergence to simple limit cycle
to convergence to complicated limit cycles with an increas-
ing number of local maxima and minima per cycle until at
sufficiently high time delay the behavior became chaotic.
Such behavior can be seen using both phase portraits, tile
plots and simulated electrical signal. Mathematical models
and algorithms, which are developed in the paper, may be
considered as additional skills of CPISS. There is shown their
software implementation as methods in language R.

We realize that a lot of mathematical problems dealingwith
evidencing positivity of solutions, persistence, and extinction
of antigen-antibody populations have left to be open. Namely,
we need some conditions enabling us positivity of the model
solutions.

Practical experiments show us that the diffusion D should
be small enough, that the values of Vi,j(t) be positive. On the
other hand, when considering the problem of extinction of
antigene population, we get experimentally that the numberN
should be big enough that the values of Vi,j(t) be not tending
to zero.

Clear conditions of positivity, persistence, and extinction
of the computation model of CPISS are of special interest.

Another very important problem to be solved is deal-
ing with the synchronization of populations through
biopixels. Such a problemwas studied experimentally in [21].
We believe that the modification of the algorithm of stability
investigation offered above, allow us to get corresponding
conditions for the CPISS model parameters.
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