
Received January 9, 2019, accepted April 12, 2019, date of publication May 8, 2019, date of current version May 15, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2913615

Identifying the Mode and Impact
of Technological Substitutions
IAN P. MARR 1, CHRIS MCMAHON2, MARK LOWENBERG 2, AND SANJIV SHARMA1
1Airbus Operations Ltd., Bristol BS34 7PA, U.K.
2Faculty of Engineering, University of Bristol, Bristol BS8 1TR, U.K.

Corresponding author: Ian P. Marr (ian.marr@airbus.com)

This work was supported in part by Airbus Operations Ltd., as a part of the Agile Wing Integration Project, and in part by the University of
Bristol’s Industrial Doctorate Centre in Systems under EPSRC Grant EP/G037353/1.

ABSTRACT Technological substitutions play a major role in the research and development efforts of
most modern industries. If timed and provisioned well, successful technology substitutions can provide
significant market advantages to firms that have anticipated the demand correctly for emergent technologies.
Conversely, failure to commit to new technologies at the right time can have catastrophic consequences,
making determining the likely substitution mode of critical strategic importance. With little available data,
being able to identify at an early stage whether new technologies are appearing in response to the perceived
stagnation in existing technical developments, or as a result of pioneering leaps of scientific foresight, poses
a significant challenge. This paper combines bibliometric, pattern recognition, and statistical approaches to
develop a technology classification model from historical datasets where literature evidence supports mode
labeling. The resulting functional linear regression model demonstrates robust predictive capabilities for
the technologies considered, supporting the literature-based substitution framework applied and providing
evidence suggesting that substitution modes can be recognized through automated processing of patent data.
Furthermore, preliminary evidence suggests that classification can be achieved based on partial time series,
implying that future extensions to real-time classifications may be possible for decision-making in the early
stages of research and development.

INDEX TERMS Adner’s classification scheme, emergence, patent bibliometrics, pattern recognition,
technological substitutions, technology life cycle.

I. INTRODUCTION
Technology substitutions occur when an incumbent tech-
nology is replaced by a radical innovation resulting in a
new socio-technical regime [1]. The introduction of new
technologies and replacement of incumbents in heavily reg-
ulated industries such as aerospace is often a very com-
plex, time-consuming, and expensive challenge that requires
significant levels of research and development to ensure a
successful technology substitution. This challenge is exac-
erbated when new technologies represent a fundamental
shift away from well-established principles, as the risk and
uncertainties involved increase significantly. Simultaneously,
the opportunities associated with these innovations may be
sufficient to warrant decision-makers adopting new techno-
logical approaches. In some cases, new technologies arise
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even while existing technologies are still undergoing further
developments, and have not yet reached the peak of their
performance. This further complicates the decision for enter-
prises, as devoting significant resources to a new techno-
logical approach that may or may not out-perform the old
one presents great commercial risk. The potential for high
gains or equally high losses arising from the technology
adoption choices made by a company reflects the importance
of these substitution events for long-term planning, meaning
they are often considered of critical strategic importance. It is
therefore beneficial to be able to identify early whether a new
technology is likely to have scope for development beyond
that of the current dominant technology, and commercially
when the tipping point might occur where the new candidate
would become the industry ‘mainstream’ technology option.

This paper develops a new methodology for automat-
ically classifying the dynamics observed in technological
substitutions based on aligning scientific and technological
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FIGURE 1. Overview of the analysis framework developed in this study.

development patterns recorded for a range of historical case
studies against a recently proposed classification scheme.
In particular, this paper looks to test ameans of identifying the
most suitable combination of bibliometric measures for indi-
cating the likely substitution mode from patent data available
during early stages of development. In doing so, this paper
demonstrates how substitution modes may be recognized
through automated processing of patent data. In addition,
preliminary evidence from the technologies considered sug-
gests that classification may be possible based on partially
complete datasets (i.e. segmented time series), providing a
potential route to real-time classifications in future exten-
sions. Consequently, the methodology outlined in this paper
moves towards a process that can be used in supporting tech-
nology strategy and innovationmanagement by indicating the
likely mode of adoption from early patent activity.

The multi-level regression methodology described in this
paper combines bibliometric, pattern recognition, and sta-
tistical analysis techniques to patent data gathered for
20 representative technology substitutions. The substitutions
considered in this analysis have been labeled based on cou-
pling literature evidence with previously published concep-
tual models of substitution mechanisms. Statistical validation
is presented for both the selection of the patent indicator set
chosen for use in building the final classification model, and
the suitability of the resulting functional linear regression
model for in and out-of-sample predictions. The first of these
validation stages is addressed by the application of exhaustive
statistical significance testing and cross-validation processes
to enable a complete ranking of all possible patent indicator
combinations from the indicators considered. This in turn
directly informs the selection of patent indicators used in
the final time-based model. Subsequently it is found that the
functional linear regression model developed performs well

against the expected literature classifications. Further, bench-
marking against other common regression models, coupled
with permutation analysis, suggests that this result is not a
chance occurrence and that the model should extend reason-
ably well to out-of-sample predictions (although based on a
limited initial sample size). Lastly, the potential extension to
real-time applications is supported by the successful classi-
fication of the technologies considered from the segmented
time series data used in this analysis.

The paper begins by providing some background to tech-
nology substitutions and patent-based analysis techniques
in section II, followed by an overview of bibliometric
data sources, statistical analysis, and method selection in
section III. Details of the derivation of the technology clas-
sification model using statistical ranking and functional data
analysis are then provided in section IV, along with the
corresponding results and discussions in section V. Finally,
conclusions from the patent indicator ranking and classi-
fication model building exercises are then summarized in
section VI. The methodological stages considered in this
analysis are summarized in the framework shown in Fig. 1
to provide a more coherent picture of the methods adopted in
the following sections.

II. BACKGROUND
Technological substitution often plays an important role in
the fortunes of enterprises. As such, numerous studies have
examined the many complex factors that influence tech-
nology development and adoption trends. An overview of
the relationships between technological performance, per-
ceived limits of science and technology, observed substi-
tution patterns and behaviors, and patent-based forecasting
techniques are provided here to explain the analysis that
follows.
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A. TECHNOLOGY FORECASTING, SUBSTITUTION
PATTERNS, AND TECHNOLOGICAL FAILURE
Correctly predicting which emerging technologies are likely
to be most influential can ensure that a company is best
positioned to gain an advantage over its competitors when
the new technology comes to fruition. Conversely, failure to
anticipate the arrival of large technological shifts can leave
businesses severely diminished. This is often illustrated by
the dramatic impact on Kodak’s business following the intro-
duction of digital photography that rendered many of the
company’s existing film products obsolete, following an early
lead in the digital field that was not fully capitalized upon [2].
Equally, investing heavily in a nascent technology too soon
can have grave consequences, as Bertlesmann found from
investing in Napster [3]. As such, forecasting techniques are
commonly used to determine strategies in large organizations
by providing an initial guide to future opportunities, risks,
challenges, & areas of uncertainty [4].

In this field, considerable work has already been under-
taken on modeling technology diffusion in these substitu-
tion events. This has included, amongst many other areas
of study (see [5]), the influence of successive technology
generations, and the impact of time delays on the per-
ception of new technologies (see [6] and [7] respectively).
Classically, the introduction of new technologies is often
described as following an S-curve that assumes uptake is
initially slow in the earliest stages, until performance and
functional benefits of the new technology are seen to be
greater than those of existing technologies, at which point
uptake significantly accelerates [8], [9]. This model assumes
that all technologies eventually arrive, driven by research and
development efforts, at an ultimate limiting condition based
on physical constraints, where performance improvements
stagnate once again. However, in reality, periods of perfor-
mance stagnation can also occur when challenging technical
obstacles appear, or when market uptake slows (potentially
due to market saturation, regulatory changes, or competi-
tion from new technologies), reducing investment in research
and development [10], [11]. This results in substitutions to
the next generation of technologies occurring either before
or after arriving at a perceived performance limit, which
may or may not be an actual, or ultimate, performance
limit [12], [13].

This brings about the notion of continual technological
(or functional) failure, at the point where a replacement
technology is sought for a currently stalled technological
paradigm [14]. However, the technological ‘failures’ that lead
to this reactive type of substitution vary greatly, and cannot
just assume a single simple definition. On this topic, previous
work has examined what is meant by ‘technological failure’,
and has broadly categorized these occurrences as outlined
in the work of Gooday [15]. Beyond continually increasing
human expectations of technology this work takes on board
notions of non-linear development in the history of tech-
nologies (i.e. the stop-start nature of progress), the potential
effects of social marginalization, as well as demographic and

cultural influences that can lead to a divergence of opinions
of whether a technology has ‘succeeded’ or ‘failed’. More
recently, the work of Edgerton has delved further into these
concepts by introducing the idea of Creole technologies that
can appear, disappear, and subsequently reappear throughout
the course of history, whilst also highlighting the lag between
technology development and widespread use [16]. In this
regard, segmentation of technology life cycles into clearly
defined sequential stages is not necessarily a straightforward
task (as noted in section III-C.1). Additionally, Edgerton has
contested the role of ‘bleeding-edge’ technologies, noting
that conventional technologies have a remarkably long shelf-
life, sustained impact, and are capable of resurgence [16].
Taking these notions of non-linear development into account,
in the analysis that follows, this study focuses specifically
on failures relating to the ever more demanding performance
expectations that human users impose on their technologies.
Specifically, the definition of technological failure used in
this study is given as:

"A point in time at which technology performance
development stagnates/plateaus, with no further
progressive trajectory improvements foreseen for
a significant period of time in comparison to the
overall technology lifecycle considered, which is
subsequently followed by the substitution of a new
technology/architecture that is on a progressive tra-
jectory"

This means that a technology has been able to reach what
could be observed to be a temporary performance limit in
this condition before substitution to a new discontinuous
technology occurs [17]. This definition also follows on from
the work of Sood & Tellis which applied a sub-sampling
approach to analyze different types of ‘multiple S-curves’,
and subsequently concluded that technologies tend to follow
more of a step-function, with long periods of static perfor-
mance interspersed with abrupt jumps in performance, rather
than a classical S shape. In this study, stagnation periods
were recorded where technology performance during a given
sub-sample had an upper plateau longer in duration than the
immediately preceding growth phase, whilst the subsequent
jump in performance in the year immediately after the plateau
was almost double the performance gained during the entire
plateau [14].

Up till now, only substitution patterns associated with
technological failure have been discussed. However, previous
studies have identified that technological substitutions are not
just the result of the existing technology being deemed to have
‘failed’. Edward Constant argued that a feature common to
all technological revolutions is the emergence of ‘technolog-
ical anomalies’, which can be traced to either scientific or
technological crisis [18]. In the work of Constant the first,
and most common, cause of these technological anomalies
was attributed to functional failure. Conversely, technologi-
cal anomalies were also identified as arising as a result of
presumptive technological leaps. The mechanisms driving
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TABLE 1. Identified examples of reactive and presumptive technological substitutions.

technological substitutions are discussed in more detail in
chapter 2 of [19].

B. MODES OF SUBSTITUTION
Building on the works of Constant, Schilling, and Sood,
a conceptual framework for analyzing technology sub-
stitutions was published by Ron Adner that considers
both the emergence challenges facing new technologies
and the extension opportunities still available to existing
technologies [12]. The relationships between emergence
challenges, extension opportunities and the substitution
regimes proposed by Adner are explored in greater detail in
chapter 2 of [19], along with subsequent mapping to the more
global classifications of reactive and presumptive substitution
types used in this study.

Whilst Adner’s framework provides a means of map-
ping observed substitutions to conceptually distinct patterns,
the theoretical framework proposed by Adner does not go
as far as developing a process for automatically recognizing
substitution modes. The method outlined in this paper is
therefore a first attempt at translating Adner’s conceptual
framework into a repeatable and generalizable methodology.
As such, the current study only considers the extension oppor-
tunity dimension in its classification of substitution modes,
to facilitate the development of the data-driven methodology
presented here. It is worth noting that this analysis could
be repeated and decomposed further into the higher fidelity
regimes proposed by Adner, but this would require additional
case studies to ensure a sufficient number of technologies are
available in each category, whilst also requiring supplemen-
tary literature or expert evidence to support category assign-
ments. For this reason, this study only considers the ability
to distinguish between the two broader extension opportu-
nity driven modes of substitution from analysis of historical
scientific and technological data. More specifically, substitu-
tions based on low extension opportunities for existing tech-
nologies are here termed reactive. Conversely, where there
still appears to be high extension opportunities for existing
technologies, substitutions are termed presumptive. In terms
of performance trends this means that a reactive substitution
corresponds to a period of performance stagnation prior to the

new technology first appearing, whilst a presumptive substi-
tution corresponds to the new technology first emerging as the
existing technology continues to improve. The characteristics
of these two broader substitution modes used in this paper
are explored in greater depth in chapter 2 of [19]. The modes
considered in this paper are illustrated in Fig. 2.

FIGURE 2. Illustration of reactive and presumptive substitution modes,
based on Adner’s framework.

Table 1 uses Adner’s framework, alongside the defini-
tions provided in section II-A and chapter 2 of [19], with
performance evidence obtained from literature, to classify a
sample set of technologies according to the broader modes of
substitution observed.

In addition to the broader modes of substitution out-
lined in Table 1, other technologies have been identified as
non-starters; these are marginalized technologies that were
never mass commercialized (such as wire recorders or chain
printers). In many cases these technologies could have been
adapted for the target markets considered, but were either
never used or failed to demonstrate the required features
or performance and cost improvements necessary to war-
rant further development beyond initial trials. Non-starters
are excluded in this study as there is often very little
patent data pertaining to these technologies due to their
very brief life-spans. However, as the analysis that follows
is based on technologies that are known to have been suc-
cessfully commercialized (falling into either the reactive or
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presumptive categories) it is not believed their inclusion
would influence the results presented here. In reality,
non-starters would need to be included for predicting the
commercial success or failure of emerging technologies in the
first instance [14], but this additional classifier dimension is
left as an extension for future studies.

Based on Constant and Adner’s classifications of substi-
tution modes, this paper looks to test whether bibliometric
measures of scientific and technological development can
provide an indication of the mode of adoption likely to
occur. Further classifier requirements based on these con-
ceptual models of substitution mechanisms are discussed in
chapter 2 of [19].

C. MEASURING PERCEPTIONS OF LIMITS
OF SCIENCE AND TECHNOLOGY
Many indicators of science and technological progress have
been developed in the fields of bibliometrics and scien-
tometrics in recent decades. Whilst largely developed for
the purposes of identifying and targeting gaps in existing
knowledge, and determining the effectiveness of funding in
specific fields of research, these indicators also provide a
systematic approach to compare development trends across
a broad range of scientific domains. When attempting to
measure scientific and technological extension opportunities
it is however important to ensure that anymeasurements taken
are suitable indicators of the development characteristics
that are being studied. In this regard conceptual distinctions
exist between scientific activity, scientific production, and
scientific progress [26]. In this study, the emphasis is not on
assessing the performance or influence on technical direction
of a specific set of papers, but rather to gauge the adoption
trends of the field as a whole. As technology diffusion models
also rely on non-invested parties being made aware of sci-
entific and technological progress, communication and pro-
motion of scientific research are important factors to include
in adoption processes [6]. Adoption is equally dependent on
perceptions of current scientific and technological rates of
progress (shaped by social and political pressures, as well as
technical [15], [16]), rather than the actual rates of progress
(shaped by technical contributions to knowledge). Lastly, dif-
fusion effects are population size, word-of-mouth, and time
dependent [6]. As a result, measures of scientific production
are felt to be a more relevant indication of likelihood to adopt
than measures of scientific progress in this study.

D. PATENT-BASED TECHNOLOGY FORECASTING
The use of patents for forecasting technology development
trends, and the close links to economic activity, has evolved
considerably since the earliest literature was published on
measuring innovation from patent statistics by the likes of
Schmookler and Scherer in the 1960s [27], [28]. More recent
publications have expanded these early concepts and demon-
strated on numerous occasions how patterns in historic patent
data can be used to build predictions of future development
trends, including using partially complete or mined datasets
when historical data is not yet available. Many of these

studies attempt to assess the development maturity of a given
technology (not to be confused with measures of commercial
market adoption [12], [16]) against commonly recognized
milestones and features in observed technology evolution
patterns. Chief amongst these is comparison to Arthur Little’s
Technology Life Cycle (TLC) [29]. Comprising four stages
(emergence, growth,maturity, and saturation), Little’s frame-
work describes a means of measuring technological devel-
opment efforts relative to a technology’s competitive impact
and progress in transitioning from product to process-based
innovation.

Classically, TLC studies have relied on simple counts
of patent records to determine the maturity of technolo-
gies on this scale. However, contesting the accuracy and
reliability of matching a single patent indicator against
pre-determined growth curves, Watts, Porter, and Haupt
advocated the use of multiple patent metrics in their tech-
nology evaluations [30], [31]. Building on this, Gao demon-
strated the use of a trained nearest neighbor classifier, based
on thirteen extracted patent data dimensions, to assess a
technology’s life cycle progress [32]. This was followedmore
recently by Lee’s proposal for the use of a stochastic method
based on multiple patent indicators and a hidden Markov
model (i.e. an unsupervised machine learning technique) to
estimate the probability of a technology being at a certain
stage of its life cycle [33]. In parallel to these extensions to
sets of indicators and pattern recognition techniques, the use
of text-mining approaches to improve speed, relevance, and
accuracy of patent analysis methods have been demonstrated
by Ranaei’s automatic retrieval of patent records for forecast-
ing the development of electric and hydrogen vehicles [34].
Similarly, patent content clustering techniques for technology
forecasting purposes have also been explored by the works
of Daim et al. [4] and Trappey et al. [35]. Daim’s analysis
illustrated how technology forecasting results for emerging
technologies can be improved by combining patent-based
statistics with bibliometric clustering and citation analysis
techniques for the purpose of data acquisition (as a proxy
indicator for technology diffusion when historical data is
unavailable). However, being able to determine the technical
readiness of a new technology is only part of the technology
forecasting problem. The other critical aspect that must be
considered is the market adoption of the technology once
it has been commercialized [12], [16]. Here, Daim’s work
subsequently coupled the patent-based and academic litera-
ture data-mining techniques employed with the use of system
dynamics modeling as a means of exploring causal rela-
tionships and non-linear behaviors in technology diffusion.
Based on these works, the current study looks to combine
the recent advances made in pattern recognition applications
with a simplified version of Adner’s technology substitution
framework.

III. METHODOLOGY
There is a range of possible techniques that can be used
for measuring the progress of technological development
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and classifying substitution modes. Appendix A provides a
summary of the methodologies considered in this analysis,
their respective utility and limitations, and how these can
potentially be adapted to the current study.

Based on the relative advantages of the different method-
ologies available, a multi-level regression approach is
adopted here to enable the variation between different patent
indicators to be viewed separately from the phase variation
observed between different technologies. In this sense, bib-
liometric approaches enable patent indicators to be defined
from the extracted patent datasets, pattern recognition tech-
niques perform classification and time-based model building
roles using these indicators, and statistical approaches enable
significance testing, error checking, and ranking exercises to
be carried out to verify the robustness of proposed models.
The specific methods selected within each of these fields to
achieve the desired research objective are discussed in further
detail in section III-C.

Considering the sources of information available that chart
technological development, growth trends, and substitutions,
existing analysis suggests that patent data has been observed
to account for 90 to 95% of the world’s inventions [36], [37].
In this study, bibliometric data has therefore been extracted
based on patent records as this has become a well-established
means of assessment for both industry market comparisons
and government policy setting purposes. An overview of the
considerations taken into account in the selection of specific
methods and model development techniques for analyzing
this data are discussed below.

A. BIBLIOMETRIC DATA
Patent data has been sourced from the Questel-Orbit patent
search platform in this analysis. More specifically, the full
FamPat database was considered, which groups related
invention-based patents filed in multiple international juris-
dictions into ‘families’ of patents in accordance with EPO’s
strict family rules1. As such invention-based patent families
are counted in this analysis, including both patent applica-
tions and granted patents to provide a complete reflection
of associated technological development activities (bearing
in mind the distinction between scientific production and
progress discussed in section II-C). The data gathered covers
all patent offices registered in the FamPat database2. Some of
the core functionalities behind this search engine are outlined
in [38]. This platform is accessed by subscribers via an online
search engine that allows complex patent record searches to
be structured, saved, and exported in a variety of formats.
A selection of keywords, dates, and classification categories
are used in this search engine to build relevant queries for
each technology (this process is discussed in more detail in
section IV-B). The provided search terms are then matched
to the title, abstract, and key content of all family members

1https://www.questel.com/wp-content/uploads/2016/04/FamPat-Rules.
pdf

2http://static.orbit.com/orbit/help/1.9.6/en/index.html#!Documents/
thefampatcollection.htm

included in a FamPat record, although unlike title and abstract
searches, key contents searches (which include independent
claims, advantages, drawbacks, and the main patent object)
are limited to only English language publications.

B. STATISTICAL COMPARISONS OF TIME SERIES
This study considers 23 technologies, defined in Appendix B,
where literature evidence has been identified to classify the
particular mode of technology substitution observed. These
technologies were selected based on four criteria:

1) Is there a historical narrative available?
2) Is there accompanying (and consistent) performance

data available for both the preceding and replacement
technologies? (i.e. to provide evidence of the mode of
substitution)

3) Do a sufficient number of patent records exist for the
replacement technology?

4) Is there accompanying adoption data present for the
replacement technology for use in the subsequent tech-
nology diffusion studies? (not presented in this paper)

The evidence and process used in the subsequent cate-
gorization is outlined in detail in [19]. Using bibliometric
analysis methods it is possible to extract a variety of historical
trends for any technologies of interest, effectively generating
a collection of time series data points associated with a given
technology (these multidimensional time series datasets are
referred to here as technology profiles). This raises the ques-
tion of how best to compare dissimilar bibliometric technol-
ogy profiles, in an unbiased manner, to investigate whether
literature-based technology substitution groups can be deter-
mined using a classification system built on the assumptions
given in section II-B. In particular, comparisons of technol-
ogy time series can be subject to one or more areas of dissimi-
larity: they may be based on different number of observations
(e.g. covering different time spans), out of phase with each
other, subject to long-term and shorter term cyclic trends,
at different stages through the Technology Life Cycle (or fluc-
tuating between different stages) [29], or be representative of
dissimilar industries. As such, a body of work already exists
on the statistical comparison of time series, and in particular
time series classification methods [39]. Most modern pat-
tern recognition and classification techniques emerging from
the machine learning and data science domains broadly fall
within the categories of supervised, semi-supervised, or unsu-
pervised learning approaches. Related to this, an overview of
current preprocessing, statistical significance testing, classi-
fication, feature alignment, clustering, cross-validation, and
functional data analysis techniques for time series is pro-
vided in Appendix C for further details of the considera-
tions addressed in this study’s methodology beyond those
discussed directly in sections III and III-C.

C. METHOD SELECTION
Based on the technology classification problem considered,
available methodologies, bibliometric data available, and
specific methods discussed in Appendix C the following
methods have been selected for use in this analysis:

VOLUME 7, 2019 58291



I. P. Marr et al.: Identifying the Mode and Impact of Technological Substitutions

1) TECHNOLOGY LIFE CYCLE STAGE MATCHING PROCESS
For those technologies where evidence for determining the
transitions between different stages of the Technology Life
Cycle has either not been found or is incomplete, a nearest
neighbor pattern recognition approach has been employed
based on the work of Gao [32] to locate the points where
shifts between cycle stages occur. As noted in section II, tech-
nologies may in fact shift continually and non-sequentially
between the different stages of the Technology life Cycle,
however this is reflected in the outputs from the near-
est neighbor pattern recognition approach (as illustrated in
section 5.6 of [19]). This gives a measure of progress along
the Technology Life Cycle S-curve, but does not compare the
mode (i.e. shape) of the substitution observed to the typical
classification patterns described by Adner. However, for the
specific technologies considered in this paper, literature evi-
dence has been identified for the transitions between stages,
and so the nearest neighbor method for gauging progress is
not discussed further here.

2) IDENTIFICATION OF SIGNIFICANT
PATENT INDICATOR GROUPS
To identify bibliometric indicator groups that could form
the basis of a data-driven technology classification model,
a combination of Dynamic Time Warping and the ‘Partition-
ingAroundMedoids’ (PAM) variant of K-Medoids clustering
has been applied in this study. For the initial feature alignment
and distance measurement stages of this process, Dynamic
Time Warping is still widely recognized as the classifica-
tion benchmark to beat (see Appendix C), and so this study
does not attempt to advance the feature alignment processes
used beyond this. Unlike the Technology Life Cycle stage
matching process which is based on a well-established tech-
nology maturity model, this study is assuming that a classi-
fication system based on the modes of substitution outlined
in section II-B is not intrinsically valid. For this reason,
an unsupervised learning approach has been adopted here to
eliminate human biases in determining whether a classifica-
tion system based on reactive and presumptive technological
substitutions is valid, before defining a classification rule sys-
tem. This means that predicted clusters can be labeled, even
if labels are only available for a small number of observed
samples representative of the desired classes, or if none of
the samples are absolutely defined. This is particularly useful
if the technique is to be expanded to a wider population of
technologies, as obtaining evidence of the applicable mode
of substitution that gave rise to the current technology can be
time-consuming, and in some cases the necessary evidence
may not be publicly available (e.g. if dealing with commer-
cially sensitive performance data). Clustering may therefore
be able to provide an indication of the likely substitution
mode of a given technology, without the need for prior train-
ing on classes of technologies. Under such circumstances this
approach could be applied without the need for collecting
performance data, providing that predicted groupings are
broadly identifiable from inspection as being associated with

the suspected modes of substitution. This is of course easier
if some examples are known, but means it is no longer a hard
requirement.

The ‘PAM’ variant of K-Medoids is selected here over
hierarchical clustering since the expected number of clusters
is known from literature (for the technologies considered),
and keeping this number fixed enables easier testing of how
frequently predicted clusters align with expected groupings.
Additionally, a small sample of technologies is evaluated in
this study, and as a result computational expense is unlikely to
be significant in using the ‘PAM’ variant of K-Medoids over
Hierarchical clustering approaches. It is also worth noting
that by evaluating the predictive performance of each subset
of patent indicator groupings independently it is possible to
spot and rank commonly recurring patterns of subsets. This
is not possible when using approaches such as Linear Dis-
criminant Analysis, which can assess the impact of individual
predictors but not rank the most suitable combinations of
indicators.

3) RANKING OF SIGNIFICANT PATENT INDICATOR GROUPS
As the number of technologies considered in this study is
relatively small, exhaustive cross-validation approaches pro-
vide a feasible means to rank the out-of-sample predictive
capabilities of bibliometric indicator subsets that produce sig-
nificant correlations to expected in-sample technology group-
ings. As such, ‘leave-p-out’ cross-validation approaches are
applied for this purpose, whilst also reducing the risk of
over-fitting in the following model building phases [40].

4) MODEL BUILDING
Themisalignment in time between life cycle stages relative to
other technologies can make it difficult to identify common
features in time series. This is primarily because this phase
variance risks artificially inflating data variance, skewing the
driving principal components and often disguising underlying
data structures [41]. Consequently, due to the importance of
phase variance when comparing historical trends for differ-
ent technologies, and the coupling that exists between adja-
cent points in growth and adoption curves, functional linear
regression is selected here to build the time-based technology
classification model developed in this study (see notes on
Functional Data Analysis in Appendix C for further details).
The prior clustering stages therefore test the suitability of
Adner’s classification scheme based on complete patent indi-
cator profiles (testing variation and correlation in the patent
indicator dimension), whilst the regression analysis builds
time-dependent models for each patent indicator considered
in the selected classification scheme.

IV. BUILDING A TECHNOLOGY CLASSIFICATION MODEL
FROM TECHNOLOGY LIFE CYCLE FEATURES
A. PATENT INDICATOR DEFINITIONS
The work of Gao et al. identifies a range of studies that
have been conducted previously based on using either sin-
gle or multiple bibliometric indicators to investigate techno-
logical development and performance [32]. Their review of
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these methods concluded that multiple patent indicators are
required to avoid generating potentially unreliable findings as
a result of using a single indicator extracted from patent data.
As such, the nearest neighbor matching process developed
in Gao’s study to assess progress through the Technology
Life Cycle S-curve proposes thirteen separate patent indi-
cators. The current study has accordingly reproduced these
metrics where possible, resulting in a total of 10 patent
indicators (i.e. producing time series for each technology
with 10 dimensions). Indicators 11, 12, and 13 considered
in [32]were specific to theDerwent Innovation Index3, which
was not used in this study due to the limited ability to
bulk export the results from this database. Table 2 summa-
rizes the bibliometric indicators extracted for each technol-
ogy within this analysis. The dependencies between each of
these indicators during different TLC stages is explored in
the cross-correlation analysis presented in section 2.4 and
Table 4 of [32]. Aside from indicator 1, all of the other patent
counts considered in Table 2 are based on the earliest priority
date of the collated patent family records.

TABLE 2. Bibliometric indicators used in this study (based on the work of
Gao et al. [32]).

Apart from using the Questel-Orbit FamPat database
instead of the Derwent Innovation Index, the indicator def-
initions and assumptions used in this study are consis-
tent with those outlined in sections 2.1.1 to 2.1.5 of [32].
The only other notable difference is that the Questel-Orbit
patent records are not automatically designated as corporate,
non-corporate, or individual patent assignees. Consequently,
counts of corporate and non-corporate indicators (which
would otherwise be based on this assignee designation) are
determined instead from the ‘Family Normalized Assignee
Name’ field in the patent records, as records with entries in
this field correspond to corporate designations.

B. SEARCH STRATEGY AND TERMS FOR IDENTIFYING
RELEVANT PATENT PROFILES
Previous bibliometric studies have explored the different
ways in which patent records can be correctly identified for a
given field or topic [42]–[49]. Whilst filtering search results
based on technology classification categories is generally
preferred where possible to ensure a more rigorous search

3https://doi.org/10.1108%2Fmi.2003.1235 21820cab.008

strategy [44], it is also advisable to keep the steps that sup-
plement or remove patents from search queries to a min-
imum, to maintain data consistency and repeatability [49].
Accordingly, the search queries in this analysis are based
primarily on filtering by International Patent Classification
(IPC v2017.01) or Cooperative Patent Classification (CPC)
labels. Where possible, IPC categories have been reused from
previous studies to replicate existing search queries so as
to extract comparative datasets, or based on expert defined
groupings such as the European Patent Office’s Y02 classi-
fication which specifically relates to climate change mitiga-
tion technologies. Otherwise, keyword search terms and IPC
labels are combined that focus on matching closely adjoining
instances of each search term (or their common synonyms).
Using IPC technology category filters in this manner ensures
that a higher level of relevance and repeatability is achieved.
Based on these preprocessing steps, the final search queries
are presented inAppendix B alongwith the number of records
retrieved.

C. PATENT INDICATOR DATA EXTRACTION PROCESS
Using the technology classification categories, and where
applicable the keywords in Appendix B, the results of
these search queries were exported in batches of up to
10,000 records at a time in a tabulated HTML format.
Exported records were based on only the representative fam-
ily member for a given FamPat grouping in order to avoid
duplication of records across multiple jurisdictions. Each
record included key patent information and full details of
both cited patent and non-patent literature references within
the current record. As some searches generated very large
numbers of records (i.e. hundreds of thousands), batch pro-
cessing enabled large quantities of records to be handled in
manageable formats, but required batches to be subsequently
imported into a tool capable of processing the volumes of
data considered. For this purpose, MATLAB was used, and a
script (provided as a supplementary document upon request)
was developed to convert each HTML batch file into a cor-
responding .MAT file (based on a pre-existing conversion
script), ready for data cleaning processes.

D. PATENT INDICATOR DATA CLEANING PROCESS
Whilst the consistency of the Questel-Orbit patent data is of
a high standard, several steps are required to extract patent
indicator metrics from this data. This is based on WIPO
preprocessing guidelines [48], to ensure that the datasets are
translated into a tabulated format suitable for the automated
analysis processes to follow, and to correct any easily rec-
tifiable data-entry errors in the extracted data (such as the
omission of application or priority dates from the relevant
columns when these dates are available elsewhere). This
allows a more accurate chronology of patent events to be
established which is presented in chapter 5 of [19]. These
chronologies when coupled with historical narratives in [19]
provide evidence to suggest that patent data does in fact
capture many of the real-life socio-economic, political, and

VOLUME 7, 2019 58293



I. P. Marr et al.: Identifying the Mode and Impact of Technological Substitutions

TABLE 3. Technology Life Cycle transition points based on literature evidence.

organizational factors that influence the growth of a new tech-
nology beyond pure technological developments. As such,
these profiles reflect the non-sequential nature of technology
development observed by Gooday [15] and Edgerton [16].
This data cleaning process is not discussed in detail here, but
is available as a supplementary document upon request.

E. TECHNOLOGY LIFE CYCLE STAGE MATCHING PROCESS
With bibliometric profiles extracted for each of the tech-
nologies considered, the first stage of analysis consists of
identifying transition points between different stages of the
Technology Life Cycle to establish time series segments for
use in later comparative analysis. For the technologies con-
sidered in this study, evidence was identified from literature
to suggest when these transitions had occurred, such as in
the innovation timeline assessments prepared for a range
of technologies by Hanna [50]. Full details of the transition
points used in this study are provided in Table 3. These
transition points define the time series segments each tech-
nology dataset was decomposed into relative to evidence
presented by the complete historical development profiles
and narratives.

Of the 23 technologies listed in Table 3, 20 had patent data
pertaining to the emergence stage (i.e. excluding incandes-
cent lights, landline telephones, and wireless data transfer).
Therefore only those technologies with patent data available
during the emergence stage are considered in the following
analysis.

A nearest neighbor pattern matching process was also
developed as outlined in section III-C.1 based on the work
of Gao et al. [32]. This enables the analysis described in
this paper to be expanded to additional technologies where
evidence is not immediately apparent for the definition of
TLC segments relative to the observed historical profile.
This methodology is not discussed in further detail in this
paper.

F. IDENTIFICATION OF SIGNIFICANT
PATENT INDICATOR GROUPS
Having defined the time periods corresponding to each Tech-
nology Life Cycle stage for the technologies considered, it is
now possible to segment the bibliometric time series into
comparable phases of development. Significant predictors of
substitution modes in each TLC stage are then identified by
analyzing data from each TLC stage separately using the
procedure outlined in Fig. 3.

FIGURE 3. Overview of the process used to identify and rank significant
patent indicator groups.

As discussed in sections III-C.2 and III-C.3 an unsuper-
vised learning approach has been employed here based on
applyingDynamic TimeWarping (DTW) and the ‘PAM’ vari-
ant of K-Medoids clustering on the relative distance measures
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FIGURE 4. Calculating the distance between each pair of technology time series for each indicator grouping (illustrative).

calculated between time series. This is again implemented as
a MATLAB script based on the DTW and K-Medoid func-
tions made available byMathsWorks4 5, which is provided as
a supplementary document upon request. The first step of this
process involves generating a list of all unique subsets that can
be created from the 10 patent indicator metrics considered.
This produces 1,023 (i.e. 210 − 1) possible combinations of
patent indicators to be tested.

Next, the raw patent data time series are transformed using
an inverse hyperbolic sine function and normalized, to con-
vert the data into a suitable format for long-term comparisons
(see notes on preprocessing in Appendix C). The data points
are then filtered based on the current Technology Life Cycle
stage being considered, ensuring focus on comparable curve
features.

After transforming the datasets and filtering based on the
current Technology Life Cycle stage, Dynamic TimeWarping
is used to calculate the Euclidean distance between each pair
of technology time series when compared using the time
series dimensions specified by each patent indicator grouping
in turn. This process is depicted visually in Fig. 4, illustrating
the successive layers of filtering that are applied for each
technology pairing and each patent indicator grouping con-
sidered. Fig. 4 also provides an illustration of how the DTW
alignment process distorts technology profiles to reduce the
dissimilarity between the multidimensional sets of features
being compared (i.e. in this case aligning two ten-dimensional
signals spanning different time periods). The output from this
process is an i × j × 1023 distance matrix, where i and j
specify the current technology pair, and the value quoted
is the measured distance between multi-dimensional time

4https://uk.mathworks.com/help/stats/kmedoids.html
5https://stats.stackexchange.com/questions/131281/dynamic-time-

warping-clustering

series based on the current patent indicator subset. In parallel,
the corresponding warping paths required to measure the
distance between the N-dimensional curves in each condition
are stored in two separate matrices for later use.

Using this distance matrix it is now possible to apply
K-Medoids clustering to determine the technology groupings
predicted when each patent indicator subset is used. By com-
paring the predicted technology groupings to those expected
from the earlier literature classifications (see section II-B
and Appendix B), a confusion matrix is created for each
patent indicator subset that shows the alignment between
predicted and target groupings. Fisher’s exact test is then
applied to each confusion matrix to calculate the probability
of obtaining the observed clusters. In doing so, significant
patent indicator subsets are identified based on those that have
less than a 5% chance of natural occurrence.

G. RANKING OF GROUPED PATENT
INDICATOR DIMENSIONS
As discussed in section III-C.3 and Appendix C leave-p-out
cross-validation techniques provide a means to rank bib-
liometric indicator subsets that have been identified as
producing a significant match to the expected technology
groupings. More specifically, this form of permutation test-
ing enables the ranking of these indicator subsets by pro-
viding an estimate of how accurately the current predictive
model will perform in out-of-sample conditions (based on the
results produced from using numerous reduced forms of the
in-sample data sets). The first stage of this process consists
of generating lists of all possible training technology and
corresponding test technology combinations, when leaving
one technology out at a time. Leave-one-out cross-validation
was selected to ensure that a sufficient number of resam-
pling points were present in each K-Medoids training set.
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FIGURE 5. Ranking of grouped patent indicator dimensions (for illustration purposes only).

This enables meaningful clusters to be formed whilst still
allowing a sufficient number of permutations to be tested. The
procedure then progresses in a similar format to the initial
calculation of distances between each pair of technology
time series as shown in Fig. 4, except that this time dis-
tance measures are only calculated between pairs of training
technologies, and the process is repeated for every possi-
ble combination of available training technologies. As such,
the output from this process is now an i x j x 1023 x n dis-
tance matrix, where i and j now specify the current training
technology pair considered, and n represents the number of
training combinations that can be used.

K-Medoids clustering is once again applied to the result-
ing training technology distance matrices, from which two
medoid technologies are identified for each patent indicator
subset, in each training condition. The test technologies can
now be evaluated individually against the two medoid curves
identified in each training condition, to determine the clos-
est medoid to the current test technology. This provides a
classification for the test technologies based on each train-
ing condition and each patent indicator subset. Comparing
predicted and expected technology classifications provides a
count of the number of misclassified test technologies for the
current combination of training technologies and patent indi-
cators. This in turn is used to calculate the average number
of test technologies misclassified for each patent indicator
grouping across all of the training conditions considered.
In this instance this means that each of the 1,023 possible
patent indicator subsets is assessed for predictive perfor-
mance, based on data only pertaining to the emergence stage,
against 20 different training technology combinations. Con-
sequently, an average misclassification value of 1 indicates
that test technologies were incorrectly classified in all test
conditions for the current patent indicator subset, whilst a

value of 0 indicates no misclassifications in any test condi-
tions. Using the average number of misclassifications ensures
a symmetrical and unbiased treatment of all the patent indica-
tor groupings considered. Finally, the results are sorted by the
minimum average number of misclassifications, to rank the
robustness of each patent indicator grouping. This procedure
is illustrated in Fig. 5. From this ranked list of patent indicator
subsets, the frequency of occurrence of individual patent
indicators in the top ranked subsets can be observed. This is
shown in Table 4 for the top performing 15% of subsets, with
the average number of misclassifications against each subset.
From this, the combination of indicators 4 and 6 is observed
to appear in all of the best performing subsets (i.e. the four
subsets that average a misclassification value of 0.1), whilst
reappearing consistently in the majority of the remaining
indicator subsets that achieve average misclassifications of
less than 15%. This does not mean that all combinations with
indicators 4 and 6 should automatically be used, as some
sets containing additional indicators may have counter-acting
effects. This is apparent since all combinations with indi-
cators 4 and 6 were calculated in this analysis, with only
those in Table 4 achieving the best levels of performance.
It is normally advisable in model building to use as few
parameters as possible (i.e. a parsimonious model), so Table 4
suggests that indicators 4 and 6 would bemost appropriate for
the classification scheme considered.

H. FUNCTIONAL MODEL BUILDING PROCESS
The ranking of different bibliometric indicator subsets pro-
vides a means to identify the time series dimensions that,
when combined, are most likely to provide robust out-
of-sample predictions of observed technological substitu-
tion modes. These indicators are therefore expected to
form a reasonable basis for Adner’s classification scheme.
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TABLE 4. Frequency of individual patent indicators in the top ranked
subsets.

However, for subsequent causal exploration (not discussed
in this paper), it is also necessary to trace the evolution of
both observed technology profiles and corresponding mode
predictions over time. For this, continuous time series are
required. As such, a time-based regression model of mode
prediction is also desirable, enabling technological devel-
opment and substitution dynamics to be mapped directly
against historical events, whilst accounting for the phase
variation observed between different technologies. In this
manner, variation in the patent measures defined in Table 2
is considered separately from phase variation between tech-
nologies, enabling model variation to be more accurately
mapped to specific influences [84], [85]. This ensures that
standard errors, confidence intervals, and significance tests
are not misled by incorrectly aggregating distinct influences
(i.e. overlaying influences specific to individual patent met-
rics with those linked to phase variance effects) [84]. Equally,
the use of clustering means that this approach is less error
prone and sensitive to outliers than using classical regression
techniques in isolation [86]. Conversely, clustering provides
limited insight into the residuals and variance associated with
predictions of individual technologies, whereas the meth-
ods now applied enable further exploration of uncertainty
in these predictions. Lastly, while the approach described in
this section can generate a technology classification model
without the preceding cross-validation and ranking exercises,
doing so would not provide insight into how the chosen patent
indicator subset may perform in comparison to other subsets,
in terms of out-of-sample predictive capabilities. This means
that in-sample classification results could potentially match
those produced by other model variants, but when extended
to new test cases the performance could vary drastically. The
goodness-of-fit measures and permutation testing discussed
in section V subsequently verify that the model developed in

this section conforms to the predictive expectations inferred
from the cross-validation exercises.

The preceding cross-validation exercise therefore acts as
the first stage of the multi-level regression procedure dis-
cussed in section III, and provides a basis for an informed
selection of the time series components to use in model build-
ing. Drawing on these findings, a time-dependent technology
classification model is now developed using functional data
analysis (see section III-C.4 and Appendix C) that is based on
patent indicators 4 and 6 (i.e. the number of non-corporate
assignees and the number of cited references by priority
year).

Besides being present in all of the highest scoring sets
of top ranked predictors, the chosen patent dimensions can
potentially be associated with the rate of development in
technology and science respectively. This is in the sense that
cited references show a clear link to scientific production
that is directly influencing technological development efforts,
whilst the number of non-corporates by priority year (which
counts the number of universities, academies, non-profit
labs and technology research centers) is associated with the
amount of lab work required to commercialize a technology.
Considering the measure of non-corporates by priority year
specifically, a large volume of lab work could indicate a lack
of technological maturity, or the presence of considerable
complexity in the emerging technology. By contrast, tech-
nologies with reduced non-corporate activity may represent
simpler technologies that mature more rapidly or intuitively.
Non-corporates by priority year could therefore equate to a
measure of technological complexity, or effort required to
mature.

However, it is also worth noting that there are other patent
indicator subset couples/triples that perform nearly as well.
It is possible that these other high-performing subsets may
be in some way related to the chosen indicators (i.e. per-
fect orthogonality cannot be assumed between these met-
rics following on from the correlation analysis conducted by
Gao et al. [32]). At this point it was decided to use the
indicators specified as these have been seen to be the most
statistically robust, whilst also being in good agreement
with previous literature conclusions (as discussed further in
chapter 2 of [19]).

Following on from the introduction to functional data anal-
ysis provided in Appendix C, and detailed methods presented
in [87], the method outlined in Fig. 6 has been implemented
inMATLAB for building a functional linear regressionmodel
for technology classification (theMATLAB script is available
as a supplementary document upon request).

Taking the chosen time series dimensions as a starting
point, a functional data object must first be created for each
of the patent indicators (or model components) included in
the chosen subset. This is necessary to combine all of the
technology profiles considered into two regression terms:
one representing the number of non-corporates by priority
year, and a second representing the number of cited refer-
ences by priority year. These terms, when multiplied by their

VOLUME 7, 2019 58297



I. P. Marr et al.: Identifying the Mode and Impact of Technological Substitutions

FIGURE 6. Functional model building process based on methods outlined
in [87].

respective regression coefficients (calculated in the subse-
quent regression analysis), provide the relationship between
the predicted mode of substitution and the two selected mea-
sures of science and technology. However, as the Technology
Life Cycle segments being combined have a different number
of observations for each case study technology, it is first
necessary to resample the segmented time series based on
a common number of resampling points. This ensures that
even if a Technology Life Cycle stage spans 20 years in one
time series, and spans 50 years in another, both time series
will have 50 observations. This enables the two curves to
be aligned relative to each other for the current Technology
Life Cycle stage. Next, a B-spline basis system is created
for each model component based on the common number of
resampling points defined, and also for the regression coeffi-
cients (βi) to be estimated by the functional linear regression
analysis (see Eq. 1 and Eq. 3 in Appendix C, as well as
sections 3.4.1, 3.4.2, 9.4.1 and 9.4.2 of [87]). Fig. 7 provides
an illustrative example of how three B-spline basis systems
are combined in this instance, corresponding to a single con-
stant regression term in addition to two terms relating to the
selected model components.

Before functional data objects can be generated from the
B-spline basis systems, the degree of curve smoothing to
be applied has to be determined (i.e. the tightness of fit).
Following the process in [87] a functional parameter object
that allows smoothness to be imposed on estimated func-
tional parameters is now created (see section 5.2.4 of [87]).
Functional parameter objects extend the existing datasets,
by storing additional attributes relating to the smoothness
constraints that need to be respected in any B-spline curve fit.
A functional data object is then created for the current model
component, using the new functional parameter object and
an initial value of the smoothing parameter (λ). The degrees
of freedom and generalized cross-validation criterion coeffi-
cient (see section 5.3 of [87]) can then be calculated for the

current functional data object. By repeating this process for a
range of λ values and plotting the results (not shown here) a
suitable smoothing parameter can be identified to use in the
final functional data object for each model component. Selec-
tion of a smoothing parameter in this fashion ensures that the
functional data object generated will have the best chance of
capturing dynamics present in the data, whilst being more
likely to fit future out-of-sample technologies. An example of
a smoothed functional data object generated for the number
of non-corporate assignees associated with different tech-
nologies in a given priority year is shown in Fig. 8. This
example illustrates how technology development profiles are
realigned on to an equivalent time span, the duration of
which is based on using either a) each technology’s complete
historical profile (as shown in this example), or b) specific
comparable TLC stages, in the analysis. It is worth noting that
although multiple technology profiles are shown in Fig. 8,
as a functional data object, these curves are treated as a single
data object when applied in the later functional regression
analysis. In this regard, a single model component (i.e. each
patent indicator) includes curves representative of all of the
technologies considered.

Having created a functional data object representation of
each model component from the selected bibliometric subset,
the MATLAB script assesses the fit of each functional data
object to the trend data. This is accomplished by calculat-
ing the residuals, variance, and standard deviations between
the real and modeled values across the technology curves
included, and across the time span of the Technology Life
Cycle stage considered (see section 5.5 of [87]). Residuals
are typically found to be within 10% of the actual data points,
with RMSE values of less than 5%. As such, the distribu-
tions appear to show a good functional fit has been achieved
on a technology-by-technology and life cycle basis (this is
reviewed in more detail in chapter 5 of [19]). A related sanity
check for the functional data objects generated for eachmodel
component (before they are used in the functional linear
regression analysis) is the plotting of functional descriptive
statistics (see section 6.1.1 of [87]). The functional mean and
standard deviation of the data objects (i.e. solid and dashed
lines) for the number of non-corporates and the number of
cited references by priority year are shown in Fig. 9 and
Fig. 10 respectively. These figures show that for both model
components, variation from the mean generally increases
towards the end of the emergence stage (as may be expected
for a relatively diverse spread of technologies and indus-
tries). More specifically, for the two patent indicators plot-
ted the standard deviation indicates that once these tech-
nologies begin to emerge, the rate of growth observed for
these particular patent metrics varies significantly between
technologies. In addition, mean functional data object values
show that there is often an early surge, followed by a dip,
in non-corporates by priority year, during the emergence
phase before a technology achieves mainstream adoption.
This potentially corresponds well to the hype cycle associated
with new technologies in early development, when significant
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FIGURE 7. Building functional models of selected patent indicator groupings (for illustration purposes only).

FIGURE 8. Functional Data Object for all technology profiles based on
non-corporates by priority year.

levels of R&D may initially be committed to achieve com-
mercialization, which can sometimes prove premature or
short-lived [88]. By contrast, mean cited references by prior-
ity year values show a steadily accelerating growth during the
emergence phase, without significant fluctuation, potentially
implying that scientific development efforts are less sensitive
to disturbances as they accumulate.

1) IDENTIFICATION OF SMOOTHING PARAMETER
VALUES FOR REGRESSION COEFFICIENTS
With the functional data objects for each model compo-
nent now ready, a cell array containing these components
along with a constant predictor term (i.e. a cell array equal
to 1 for all technology terms) is generated for use in the
functional linear regression. Before running the final regres-
sion analysis, a smoothing parameter for the regression coef-
ficient basis system has to be selected. This is separate
from the earlier parameter for smoothing the technology pro-
files; this second parameter only addresses the roughness of

FIGURE 9. Mean and standard deviation of functional data object created
for non-corporates by priority year.

FIGURE 10. Mean and standard deviation of functional data object
created for cited references by priority year.

regression coefficients. This is again necessary to try to pre-
vent over-fitting, and ensure that functional linear regression
converges on a model that has the best chance of performing
well out-of-sample when extended to future datasets. This
smoothing parameter is selected by calculating leave-one-out
cross-validation scores (i.e. error sum of squares values) for
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functional responses using a range of smoothing parameter
values, as per section 9.4.3 and 10.6.2 of [87]. The results
of this selection process are presented in chapter 5 of [19].
The functional parameter object for the regression coefficient
basis system is then redefined using this more optimized
smoothing parameter value.

V. RESULTS AND DISCUSSION
The functional linear regression analysis is now run with the
identified smoothing parameters and scalar response vari-
ables to identify the βi coefficients and corresponding vari-
ance (used to define the 95% confidence bounds; see sections
9.4.3 and 9.4.4 of [87] respectively). Fig. 11 and Fig. 12 show
the resulting βi coefficients and confidence bounds (solid and
dashed lines respectively) for the number of non-corporates
and the number of cited references by priority year during
the emergence phase when using a high-dimensional regres-
sion fit (i.e. when the beta basis system for each regression
coefficient is made up of a large number of B-splines). In the
high-dimensional model, the constant regression coefficient
is found to have a value of 0.0071. Fig. 11 and Fig. 12
meanwhile show that values of the βi coefficients and 95%
confidence limits calculated for the two selected patent indi-
cators change continuously with time during the emergence
stage. Based on these coefficient functions the regression
fit successfully identifies the correct mode of substitution,
from patent data available in the emergence stage, for 19 of
the 20 technologies considered, as summarized in Table 5.
Therefore on preliminary inspection, this time-based classi-
fication model looks to provide a good degree of accuracy.
However, further investigation is required to ensure the model
is not over-fitted, and that the result is not simply a naturally
occurring phenomenon.

FIGURE 11. Estimated regression coefficient for predicting technology
cluster from non-corporates by priority year based on emergence
stage data.

From the confidence bounds on these plots it can be seen
that for both the number of non-corporates and cited refer-
ences indicator counts the variance across technology profiles
is highest at the start of the emergence phase. This is typically
when the least amount of data is available for comparing
each technology, and also when development activity is most
sporadic, which is unsurprising as this represents the point of
greatest uncertainty. Consequently, the confidence intervals

FIGURE 12. Estimated regression coefficient for predicting technology
cluster from cited references by priority year based on emergence
stage data.

suggest that the largest uncertainty around derived regression
coefficients occurs at this point, particularly in the case of
cited references (see Fig. 12). As time advances and more
patent data becomes available, confidence bounds tighten
around both of the calculated functional regression coeffi-
cients. By about 60% of the way through the emergence
phase, the confidence bounds for the two model components
have both narrowed to what appears to be near their minimum
bandwidth. This possibly infers that any real-time classifi-
cations made after this point may be converging towards
their final predicted label. This is observed in more detail for
the technologies considered in chapter 5 of [19] by plotting
the inner product of the patent indicator count values and
regression coefficients over time. Taking time series segmen-
tation a step further, these results and the successful use of
segmentation in this analysis suggest that future extensions
to real-time applications may be possible.

Fig. 11 and Fig. 12 also illustrate how the relative impor-
tance of each patent indicator in determining the predicted
mode of substitution varies in time throughout the emer-
gence phase (based on the datasets used). However, no causal
explanation for why they receive these relative weightings is
directly provided by these functions. Deviations from zero in
these coefficient functions represent an increased positive or
negative weighting for the associated patent indicator count at
that time, within the determination of the predicted mode of
substitution. For example, Fig. 11 suggests that any patents
registered to non-corporate assignees at t = 0 (assuming
these are present) will have a more significant influence on
the predicted classification than at any other point in the
emergence phase. The regression results also suggest that
the impact of non-corporate activity next peaks around 40%
of the way through the emergence phase (potentially corre-
sponding to the hype effect suggested by Fig. 9), and again
at the end of the emergence phase. For the number of cited
references, this regression model suggests that the times of
greatest impact on the mode of substitution are at the very
beginning and end of the emergence stage. Whilst these coef-
ficient plots gives some indication of relative patent indicator
count weightings as time progresses, the cumulative nature
of the inner products used in functional linear regression
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TABLE 5. Results of high dimensional model fit.

TABLE 6. Benchmarking results.

(see Eq. 3 in Appendix C) means it is not possible to visually
infer which mode the test technology is converging towards
from the coefficients alone. This requires the corresponding
patent indicator counts that the coefficient terms are multi-
plied by for specific test technologies.

Regression coefficient plots help to provide a possible
interpretation of relationships between each model compo-
nent and predicted technology substitution modes. However,
it is also necessary to check the goodness-of-fit measures
associated with these results. These common statistical mea-
sures examine the amount of variability that is explained
by the current model, and test the likelihood that the same
result could be obtained by chance. As such, R-Squared,
adjusted R-Squared, and F-ratio statistics are calculated (see
section 9.4.1 and 9.4.2 of [87]) to assess the overall fit of the
high-dimensional functional linear regression model. These
are summarized in Table 5.
The R-squared and adjusted R-squared values in Table 5

suggest that a reasonable fit has been achieved with this
model across the 20 technology profiles considered during
the emergence phase. These values, which describe the pro-
portion of variation that is predictable from the selected patent
indicators, suggest a good level of accuracy based on the
classification residuals. F-ratio values provide a measure of
the variance observed between the two classification groups
to the variance observed between individual technologies,
taking into account the number of independent variables
used in the model. In doing so, F-ratio values provide an
indication of whether the classification grouping is signif-
icantly distinguishable from noise that might be otherwise
observed between individual technologies. The degrees of
freedom presented in Tables 5 and 6 are used to determine
whether F-ratio values are above the critical F-ratio thresh-
old or not, and are calculated based upon methods out-
lined for functional regression models in sections 9.4.1 and
9.4.2 of [87]. In this instance, the F-ratio of 5.60 with degrees
of freedom 7.78 and 11.22 respectively implies that the
relationship established has a p-value somewhere between
0.0041 and 0.0060. As such, this result appears to be sig-
nificant at the 1% level, meaning that is unlikely that this

classification label set would occur by chance. This compares
well to the results of the cross-validation exercise outlined
in section IV-G for ranking indicator sets based on likely
predictive performance, and provides preliminary evidence to
suggest that substitution classification based on a simplified
version of Adner’s framework is reasonable.

However, to ensure that it provides the most appropriate fit
to available data, the original high-dimensional model was
subsequently benchmarked against a low-dimensional model
(i.e. a model where the beta basis system for each regression
coefficient consists of a small number of B-splines), as well as
constant and monomial based models. These variants use the
same patent indicator terms as the high-dimensional model,
ensuring that only the regression coefficients are changed
(based on the alternative B-spline basis systems used). The
corresponding ‘goodness-of-fit’ measures for the alternative
functional linear regression variants are compiled in Table 6.

Whilst the R-squared and adjusted R-squared measures
in Table 6 suggest that the low-dimensional model pro-
vides a better fit, the associated F-ratio score and corre-
sponding p-value suggests a lower significance than the val-
ues observed for the high-dimensional model. Conversely,
the constant basis model does not appear to provide as good
a fit to the expected scalar responses from the R-squared
and adjusted R-squared values, which is not surprising con-
sidering the more limited nature of models constructed
from constant terms. Finally, the monomial basis system
performs fractionally better on both the R-squared and
adjusted R-squared measures, whilst also achieving a com-
parable level of significance to the high-dimensional model.
Consequently, this benchmarking analysis suggests that the
high-dimensional and monomial basis system models are
the most suitable candidates. However, the performance of
the models could possibly be further improved by sensitivity
studies into the optimum number of B-splines to use in the
regression fit.

To further validate the statistical significance of the
four models considered here, permutation testing counts
the proportion of generated F values that are larger than
the F-statistic for each model (see section 9.5 of [87]).
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FIGURE 13. Permutation F-Test and null distributions for functional regression models based on emergence stage data.

This involves repeatedly shuffling the expected mode clas-
sification labels versus the technology profiles being read
(maintaining their original order) to see if it remains possible
to fit the regression model to these reordered responses. This
tests the sensitivity of the predicted classification labels to the
order that the technology profiles appear in, to examine how
the results would appear if there really was no relationship
between the derived classification functions and original data.
In doing so, this test also creates a null distribution versus
the qth quantile and observed F-statistic generated from the
models themselves. The results of this analysis are shown
in Fig. 13.

For statistical significance it is necessary that the observed
test statistic (shown as a solid blue line) is in the tail of
the distribution generated, implying that predicted classifi-
cation responses would only occur very rarely (i.e. not by
chance) if the data order was rearranged. Having generated
classification models based on the most robust predictors
from the earlier cross-validation exercise, all four models
suggest that a significant relationship has been identified
between expected substitution mode predictions and the two
patent indicator dimensions used, that is specific to the data
provided. However, as seen in Tables 5 and 6, the fit achieved
varies depending on the model used. As such, these dis-
tributions appear to reinforce the significance of the patent
indicators selected from the earlier clustering and ranking
exercise. Additionally, the permutation testing in this last
stage of analysis reveals that the high and low-dimensional

model variants are likely to perform best out-of-sample as
the observed F-statistics are furthest along each distribution’s
right tail, when compared to the distributions generated for
the constant and monomial based models. This indicates that
results from these two models have the lowest probability
of occurring by chance, and are most likely to be general-
izable to future datasets. A similar level of statistical sig-
nificance is observed between the high and low-dimensional
models, although as permutation testing was only based on
1,000 permutations, there is scope for the distributions to
evolve further withmore permutations. However, the constant
basis system model appears not to perform as well out-
of-sample here, with the observed F-statistic closest to the
main body of the distribution. This, in combination with the
other ‘goodness-of-fit’ measures in Tables 5 and 6, suggests
that the high-dimensional functional linear regression model
provides the best basis for a real-time technology substitution
classification model, based on the selected patent indicators,
from those tested in this analysis.

A. METHOD LIMITATIONS
Although precautions have been taken to ensure that the
methods selected for this study address the problem posed
of building a generalized technology classification model
based on bibliometric data as rigorously as possible, there
are known limitations that must be recognized. Many of
these stem from the fact that technologies have been selected
for which evidence is obtainable to indicate the mode of
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adoption followed. As such, the technologies considered here
do not come from a truly representative cross-section of
all industries, so it is possible that models generated will
provide a better representation of those industries considered
rather than a more generalizable result. This evidence-based
approach also means that it is time-consuming to locate the
necessary literature material to support classifying technol-
ogy examples as arising from one mode of substitution or
another, and to then compile the cleaned patent datasets for
analysis. Consequently, a relatively limited number of tech-
nologies have been considered in this study, which should
be expanded on to increase confidence in findings produced
from this work. This also raises the risk that clustering
techniques may struggle to produce consistent results for
the small number of technologies considered. Furthermore,
any statistical or quantitative methods used for modeling
are unlikely to provide real depth of knowledge beyond the
detection of correlations behind patent trends when used
in isolation. Ultimately some degree of causal exploration,
whether through case study descriptions, system dynamics
modeling, or expert elicitation is required to shed more light
on the underlying influences shaping technology substitution
behaviors.

Other data-specific issues that could arise relate to the use
of patent searches and the need to resample data based on
variable length time series. The former relates to the fact
that patent search results and records can vary to a large
extent depending on the database and exact search terms used,
although overall trends once normalized should remain con-
sistent with other studies of this nature. The latter meanwhile
refers to the fact that functional linear regression requires all
technology case studies to be based on the same number of
time samples. As such, as discussed in Appendix C, linear
interpolation is used to ensure consistency between the num-
ber of observations, whilst possibly introducing some small
errors which are not considered to be significant.

VI. CONCLUSIONS
Expanding on previous historical accounts of technological
substitutions, this study has outlined a new methodology for
automatically classifying the dynamics observed in substitu-
tions based on matching scientific and technological devel-
opment patterns against a recently proposed classification
scheme. The conceptual framework outlined by Ron Adner
defines technological substitutions in two dimensions based
on the emergence challenges facing new technologies and
the extension opportunities still available to existing tech-
nologies. The current study has focused on the extension
opportunity dimension of this framework to facilitate a first
attempt at translating Adner’s work into a repeatable and
generalizable method for automatically detecting substitution
modes. From this, two high-level substitution classes appear
to correspond to significantly different technology adoption
characteristics (not discussed in this paper), with scientific
foresight believed to play a crucial role in the identifica-
tion of presumptive innovations, and performance stagnation

leading to reactive transitions. The former class of substitu-
tion corresponds to situations where extension opportunities
for existing technologies still appear to be high at the point
when new technology emerges, whilst the latter relates to
situations where the extension opportunities appear to be low
(e.g. performance stagnation).

As such, this paper has considered 23 example technolo-
gies where literature evidence of performance development
trends has been found, to test the ability to correctly iden-
tify associated adoption modes using bibliometric, pattern
recognition, and statistical analysis techniques. This forms a
multi-level regression methodology, where the patent indica-
tors most likely to produce a reasonable basis for Adner’s
classification scheme are identified by an initial clustering
and ranking analysis, before time dependent patent indicator
models (for use in subsequent causal analysis) are constructed
from functional linear regression. This allows variation spe-
cific to individual patent indicators to be considered separate
from phase variation observed between technologies. The
results obtained suggest that statistical analysis of patent
indicator time series, segmented according to identified Tech-
nology Life Cycle features, provides a possible means for
automated classification of technological substitutions using
Adner’s framework. Specifically, for the datasets considered,
measures of the number of cited references and involvement
of non-corporate entities by year during the emergence phase
were found to provide a good indication of the expected mode
of substitution when used as a basis for functional linear
regression (correctly classifying 19 out of 20 technologies
included in this stage), and performed consistently well in
statistical ranking of both in and out-of-sample predictive
capability. The selected patent data dimensions can also be
associated with perceptions of scientific and technological
production respectively.

Whilst these two patent metrics occur in all of the most
robust predictor subsets (i.e. most reliable out-of-sample)
when basing analysis on the emergence stage, this does not
prove that these are the only indicators capable of predicting
substitution modes. As discussed in section IV-H, the possi-
bility of orthogonality has not been ruled out for the other
patent indicators in Table 2. However, these two dimensions
are also in good agreement with the technological anomaly
arguments put forward by Constant in [18], so were felt to
be reasonable for forming the basis of the time-based clas-
sification model that has been developed using functional
linear regression. Subsequently, a regression fit made from
beta coefficient functions with many B-spline elements was
found to provide a viable means of correctly matching the
mode of substitution to the technology profile being evaluated
when considering multiple ‘goodness of fit’ measures.

Permutation testing of the time-based classification model
further suggests that the regression fit is sensitive to the
ordering of the expected mode labels, relative to the technol-
ogy time series being considered. The relationship observed
appears therefore to be based on the specifics of the individual
technology curves considered, and does not appear to occur

VOLUME 7, 2019 58303



I. P. Marr et al.: Identifying the Mode and Impact of Technological Substitutions

by chance. This implies that it may be possible to predict
modes of substitution using Adner’s framework from limited
bibliometric data during the earliest stages of technology
development, providing some evaluation of progress through
the early stages of Technology Life Cycle is made (this can
be obtained using a nearest neighbor matching process, not
discussed in this paper). Equally, this suggests the functional
regression corroborates the earlier statistical rankings pro-
duced using Dynamic Time Warping, K-Medoids clustering,
and leave-one-out cross-validation leading to the selection
of patent indicators, providing evidence of compatibility
between the methods used in this analysis.

It is also important to remember the potential limitations
of this study, which would need to be addressed for fur-
ther confidence in the methodology. Firstly, only a relatively
small number of technologies have been evaluated here due
to the time-consuming process required for data extraction,
preparation, and identification of supporting evidence from
literature for the assignment of expected classification labels.
Consequently, whilst precautions have been taken to mini-
mize the risk of model over-fitting, the cross-validation pro-
cedures employed would benefit from further verification
with a more diverse spread of technologies to ensure that out-
of-sample errors are accurately captured. Regression models
based on small sample sizes can be very fickle to the datasets
they are calibrated to, so it cannot be ruled out that the results
obtained are a better fit to the industries included, rather than
a model that can be generalized to all technologies.

However, perhaps the most important note of caution
relates to the quantitative approaches used here. Whilst sta-
tistical approaches are well-suited to detecting underlying
correlations in historical and experimental datasets, this on
its own does not provide a detailed understanding of the
causation behind associated events. This is particularly rel-
evant when considering the breadth of reasons for techno-
logical stagnations, ‘failures’, or presumptive leaps. Equally,
statistical methods are not generally well suited to predicting
disruptive events and complex interactions; other simulation
techniques such as system dynamics and agent based mod-
eling perform better in these areas. Accordingly, to identify
causation and test the sensitivity of technological substitu-
tion patterns to variability arising from real-world socio-
technical behaviors not captured in simple bibliometric indi-
cators (such as the influence of competition, organizational,
and economic effects), the fitted regression model also needs
to be evaluated from a causal perspective.

Similarly, to demonstrate practical applicability, the mode
of substitutions considered here based on Adner’s classifica-
tion scheme need to be related to observed adoption charac-
teristics (not discussed in this paper). Consequently, a system
dynamics model built on the regression functions identi-
fied in this study is proposed (although not discussed here),
to calibrate these extracted technology profiles and mode
predictions to empirical adoption data. This aims to more
thoroughly explore the causal mechanisms relating early indi-
cators of technological substitution to the eventual adoption

patterns observed, and provide a means of applying greater
reasoning to the relationships identified here. In doing so, this
may enable businesses to recognize substitution patterns at
an early stage, and subsequently determine the likelihood of
an emerging technology out-performing and displacing the
existing dominant technology in a given time frame.
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