
Received April 14, 2019, accepted May 3, 2019, date of publication May 8, 2019, date of current version May 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2915597

An `0-Norm Minimization for Energy- Efficient
Timetabling in Subway Systems
ZIYAN LUO 1, XIAOTONG YU 2, AND XIAOYU LI2
1State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China
2Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China

Corresponding author: Xiaotong Yu (18121627@bjtu.edu.cn)

This work was supported by the Fundamental Research Funds for the Central Universities of China (2019JBM078).

ABSTRACT In this paper, a sparse optimization model with `0-norm and the squared `2-norm as the
objective function is proposed for energy-efficient timetabling in subway systems by means of improving the
regenerative braking energy utilization. Optimality analysis is addressed for the proposed sparse optimization
problem. Specifically, the local minimizer is shown to be a KKT point without any additional constraint
qualification. Moreover, based on the hard-thresholding operator, we yield an explicit formula for the
Lagrangian dual problem for the proposed non-convex discontinuous optimization problem and achieve
the strong duality under the stationarity condition. To evaluate the effectiveness of our proposed model
for the energy-efficient timetabling, we design a hard-thresholding based alternating direction method of
multipliers for solving the proposed model. The case study on Beijing Metro Yizhuang Line is conducted
and the comparison to some recent existing approaches illustrates the effectiveness of our model in terms of
energy saving rate and the efficiency of our proposed algorithm in terms of computation time.

INDEX TERMS `0-normminimization, hard-thresholding operator, energy-efficient timetabling, optimality
analysis, alternating direction method of multipliers.

I. INTRODUCTION
With ever-increasing energy consumption in metro railway
systems, energy-efficient timetabling has attracted more and
more attention from both academic and industrial commu-
nities, see several survey papers [1], [27], [30], [39] and a
more recent paper by Wang and Goverde [29]. It is known
that the regenerative braking energy will be fed back into the
overhead contact line and then be utilized for adjacent accel-
erating trains in a short period before being wasted by heating
resistors installed on the overhead contact line [9], [21]. The
net energy consumption turns out to be the difference between
the total required tractive energy and the total utilization of
regenerative braking energy. Thus, a special treatment on the
utilization of regenerative energy has then been performed
in the last decade, see, e.g., [7], [8], [16], [20], [23], [24],
[37], [38], [40]. In 2008, Ramos et al. [24] aims to maximiz-
ing the overlapping time between speed-up and slow-down
actions of all the trains circulating at any time and located
in the same electrical section. Later, by maximizing the total
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duration of synchronization for effective acceleration and
regenerative braking train pairs, Peña-Alcaraz et al. [23] and
Das Gupta et al. [7] have built mixed integer programming
models for energy-saving metro timetabling; By maximizing
the time overlaps of nearby accelerating and braking trains,
Yang et al. [38] have proposed an integer programming prob-
lem which was approximately solved by a genetic algorithm.
Huang et al. [13], [14] proposed timetabling method by opti-
mizing passenger trip time and operational energy consump-
tion including the utilization of regenerative braking energy.
Particularly, a two-step linear programming model with the
first step to minimize the total energy consumed by all trains
and the second step to maximize the utilization of regener-
ative braking energy was proposed by Das Gupta et al. [8].
The resulting linear programming problem for the second
step is actually the tightest convex relaxation for the original
`0-`1 norm minimization problem. By replacing the involved
`0-norm with the squared `2-norm in the original model
in [8], Luo et al. [20] proposed a two-stage alternating
direction method of multipliers for the resulting convex
programming problem and performed the case study on
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TABLE 1. A list of notation.

Beijing Metro Yizhuang Line to illustrate the effectiveness
of the proposed approach. A natural question arises: can we
formulate a more appropriate `0-norm involved optimiza-
tion model to improve the utilization of regenerative braking
energy in metro railway system, and handle the resulting
sparse optimization problem directly rather than relaxing it
in an undirect way.

The main challenge comes from the discontinuity and
non-convexity inherited in the `0-norm. Problems with such
a norm as objective functions or constraint functions are in
the range of sparse optimization. Such a type of optimization
problems was popularized by the well-known compressed
sensing [5], [6], [10], and found numerous applications in
signal and image processing, high-dimensional statisti-
cal regression and machine learning, sparse portfolio in
finance, network design, data and knowledge intelligence,
etc, see [2], [10], [11], [15], [18], [28], [31] and references
therein. Considerable concentrations have been attracted
from theoretical and algorithmic perspectives due to the
non-convexity and discontinuity inherited by `0-norm. From
the algorithmic perspective, the iterative hard threshold-
ing (IHT) methods are one of those methods that handle
the `0-norm directly, rather than those relaxation schemes.
The IHT-based algorithms have been proposed for solv-

ing sparsity constrained problems (i.e., the `0-norm acts
as a constraint function) and `0-norm regularized optimiza-
tion problems, see for example [3], [19], [44] and references
therein.

Inspired by the effectiveness of IHT-based methods for
`0-norm related problems, we aim to design an efficient
hard-thresholding based iterative algorithm for solving a
special type of `0-norm coupled with the squared `2-norm
minimization problems over a convex polyhedral set, arising
from the energy-efficient timetabling. This specific sparse
optimization takes the form of

min
1
2
‖Ax − b‖22 + λ‖Ax − b‖0

s.t. Fx − g = 0 (1)

Ex − f ≤ 0,

where A ∈ Rn×n, E ∈ Rm×n, F ∈ Rl×n. As can be seen
in (1), it is not covered by the standard form of the `0-norm
regularized optimization, and hence optimality analysis in
the theoretical aspect and algorithm design in the numerical
aspect are required. Additionally, with the application pur-
pose, we also need to verify the effectiveness of the model
and the efficiency of the proposed algorithm, in terms of the
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energy saving rate and the computation time. All of these
contribute the main contents in this paper.

By employing the tools in variational analysis, along
with the careful exploration to the `0-norm, we propose a
first-order necessary optimality conditions in terms of KKT
conditions without any constraint qualification (CQ), and a
sufficient first-order optimality condition for both the sparse
optimization problem and its Lagrangian dual with zero dual-
ity gap property in terms of stationarity. It is worth pointing
out that even for continuous nonlinear constrained problems,
the (local) minimizer is not always guaranteed to be acces-
sible to the KKT conditions unless some CQs are satisfied,
such as the Robinson CQ, or more specifically the MFCQ
or LICQ (see, [4]). All of these theoretical results tailored
for problem (1) are then reasonably regarded as a supple-
ment or a refinement in non-convex optimization theory.
By taking the benefits of the hard-thresholding operator and
the related scheme in IHT, we propose a hard-thresholding
based alternating direction method of multipliers. For the
purpose of effectiveness evaluation of our approach for
energy-efficient timetabling, we benchmark it against sev-
eral recent related approaches, including the two-step lin-
ear programming approach in [8] with Gurobi optimizer
and the `1-`22 model with the proposed TSADMM in [20].
The non-convex half-thresholding relaxation approach (i.e.,
the square root `1/2-norm, which is shown to be more spar-
sity promoting than `1-norm for `0-norm relaxation [34]) is
also proposed for (1) for comparison. Numerical experiments
are conducted as case study for the Beijing Yizhuang Line
timetabling, in which the effectiveness of our approach is
illustrated in terms of the energy saving rates and computation
time for different service instances.

The paper is organized as follows. In Section II, an `0-
`22 sparse optimization model is introduced for maximizing
the utilization of the regenerating braking energy in sub-
way systems. In Section III, the optimality conditions are
established for the proposed `0-norm minimization problem.
A hard-thresholding based alternating direction method of
multipliers (HTADMM) is proposed to get an approximate
optimal solution in Section IV. As a case study, our proposed
approach is applied to Beijing Metro Yizhuang Line for illus-
trating the effectiveness and the efficiency of our proposed
HTADMM in Section V. Conclusions and future research are
given in Section VI.

II. SPARSE OPTIMIZATION MODELLING
This section is devoted to mathematical modeling for the
energy-efficient timetable for metro railway system, with a
special treatment on how to maximize the utilization of the
regenerative braking energy in the system. Before proceed-
ing, some notations are listed in Table 1 for the convenience
of the subsequent model formulation.

The set of basic constraints in the metro train networks
including constraints of the trip time, the dwell time, the head-
way time, the total travel time and the domain of event times
are listed in Table 2, followed from [8].

FIGURE 1. The accelerating-cruising-coasting-braking speed profile.

Similar to [43], we adopt the speed profile which involves
four steps: accelerating, cruising, coasting and braking with
a multi-phase-speed-limit section from [35], as described in
Figures 1 and 2.

As the majority of power is consumed in the acceleration
phase, Das Gupta [8] proposed a nonlinear programming
problem with basic constraints distributed in Table 2 to effi-
ciently minimize the total energy consumption of trains in
a metro railway network. The corresponding optimization
model takes the form of

min
∑

(i,j)∈Ktr ,t∈T
fij(atj − d

t
i )

s.t. all constraints in Table 2 (2)

where the objective function fij : R++ → R++ is the energy
consumption function. Some appropriate estimation for such
an unknown function is obtained by sampling in the sense of
least-squares. We can introduce a matrix X of size 2N × T
with its (i, j)-th entry defined as

Xij =

{
aj(i+1)/2, if iisodd;

d ji/2, otherwise.
(3)

An approximate counterpart of (2) can be then obtained in
terms of

∑
(i,j)∈Ktr

cij(xj − xi) where cij’s are obtained from
least-squares estimator and x is the vectorization of thematrix
X , i.e., x = vec(X). By rewriting all the involved constraints
in terms of x, a linear programming is built up to achieve a
feasible timetable,

min
∑

(i,j)∈Ktr

cij(xj − xi)

s.t. lij ≤ xj − xi ≤ uij, (i, j) ∈ K
0 ≤ xi ≤ mT , i = 1, 2, . . . , n, (4)

where n = 2|T ||N |, K is the index set that collects all those
indices according to all the constraints in Table 2 except the
domain of event time constraints as listed, andKtr is a subset
of K that collects all those indices according to the trip time
constraints. If x̄ is the optimal solution to problem (4), then
by the definition of X as shown in (3), we can obtain atj ’s and

d
t
j ’s such that

∀t ∈ T , ∀(i, j) ∈ Kt , atj − d
t
i = atj − d

t
i (5)
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TABLE 2. The set of constraints.

FIGURE 2. The speed limit of a train with a multi-phase section.

∀(i, j) ∈ C, ∀(t, t ′) ∈ Oi,j, at
′

j − d
t
i = āt

′

j − d̄
t
i . (6)

This provides us a feasible timetable which admits a
small energy consumption in the accelerating phases,
regardless of the utilization of regenerative braking
energy.

Following from the modelling approach as introduced
in [20], we use t1, t2, t3 and t4 to be the time of maxi-
mum accelerating, cruising, coasting and maximum braking
phases, respectively. In the numerical experiments, we will
assign ti’s the percentages to get the corresponding time
by multiplying the percentage with the running time in
the corresponding period. aacc and abra are given which
stand for the accelerating rates of the accelerating and
braking phase. The conversion factor from electricity to
kinetic energy and the conversion factor from kinetic energy
to regenerative electricity are denoted by θacc and θbra,
respectively. The resistance rate at the cruising phase is
denoted by γ . For any two adjacent stations, the energy
consumption for accelerating and the regenerative energy
produced during braking, denoted by Econ and Ereg respec-
tively, are calculated with the following formulas for unit
mass [35]

Econ =
a2acct

2
1

2θacc
+

∫ t1+t2

t1

γ 2(t − t1)
θacc

dt =
a2acct

2
1

2θacc
+
γ 2t22
2θacc

and

Ereg =
θbraa2bra t

2
4

2
.

We adopt a simple heuristic method to approximately
calculate the power, see Figure 3. Here c and c′ are the
widths of the rectangles for accelerating and braking phases,
h and h′ are heights of the rectangles. Following from [8],
the midpoint of the width in the first rectangle is called the
regenerative alignment point (RAP), and the midpoint of
the width in the second rectangle is called the consumption
alignment point (CAP), termed as ati − ∇

t
i and d ti + 1t

i
respectively, with ∇ ti representing the distance between ati
and CAP and 1t

i representing the distance between d ti and
RAP.

In electric railway transportation systems, electric current
is transmitted through the overhead contact line to the train
and returned to the traction power substation through running
rails [42] as shown in Figure 4. Due to the electrical resistance
of the overhead contact line [9], [21] and imperfect insolution
to the ground [22], a part of the current drawn by the vehicles
from the traction power substation will leak out of the current
return circuit. Based on this, we simply use

Ēcont = η̄Econt , with η̄ = 110% (7)

to characterize the total energy consumption with considering
the factor of overhead contact line loss and stray current.

VOLUME 7, 2019 59425



Z. Luo et al.: `0-Norm Minimization for Energy-Efficient Timetabling in Subway Systems

FIGURE 3. Approximate calculation of energy.

FIGURE 4. Electric traction system.

It is known that, with regenerative braking, kinetic energy
can be converted into electricity which can be fed back to
the power supply system so that can be used by other nearby
trains in the same electric substation. Then to characterize the
utilization of the regenerative braking energy, it is reasonable
to consider the distance between regenerative and consump-
tion alignment points for possible train pairs. Recalling the
suitable train pairs as introduced in [8], we assume that plat-
form pairs which are opposite to each other are at the same
electrical substation. LetP be the set of all platform pairs. For
any pair (i, j) ∈ P and the set Ti ⊆ T contains all trains that
arrive at, dwell, depart from platform i. When the train t ∈ Ti
departs from (or arrives at) the platform i, it is a best choice
to find a train −→t at the platform j which is producing (or
absorbing) the regenerative braking energy in the following
way.
Definition 1: (See [8, Definitions 1,2]) Consider any

(i, j) ∈ P .
(i) For every train t ∈ Ti, the train −→t ∈ Tj is called the

temporally closest train to the right of t if

−→t = arg min
t ′∈
−→
�t


∣∣∣∣∣∣a

t
i + d

t
i

2
−
at
′

j + d
t ′

j

2

∣∣∣∣∣∣


where
−→
�t =

{
x ∈ Tj : 0 ≤

axj +d
x
j

2 −
ati+d

t
i

2 ≤ β

}
, β is

an empirical parameter determined by the timetable
designer and is much smaller than the time horizon of
the entire timetable.

FIGURE 5. Trains operation scenario.

(ii) For every train t ∈ Ti,the train ←−t ∈ Tj is called the
temporally closest train to the left of t if

←−t = arg min
t ′∈
←−
�t


∣∣∣∣∣∣a

t
i + d

t
i

2
−
at
′

j + d
t ′

j

2

∣∣∣∣∣∣
 .

with
←−
�t =

{
x ∈ Tj : 0 ≤

ati+d
t
i

2 −
axj +d

x
j

2 ≤ β

}
.

Denote the sets ←−ε and −→ε whose components are
(i, j, t,←−t ) and (i, j, t,−→t ) respectively. Consider any
(i, j, t,←−t ) ∈ ←−ε . To maximize the transfer of the regenerative
energy from the braking train←−t by the accelerating train t ,
we attempt to make the term (d ti +1

t
i−a

−→t
j +∇

−→t
j ) to be zero

or as close to zero as possible. Similarly, for (i, j, t,−→t ) ∈ −→ε ,
our goal is to make the term (d

←−t
j +1

←−t
j −a

t
i +∇

t
i ) to be zero

or as close to zero as possible. Followed from [8], we define
an auxiliary variable y ∈ Rn with n = 2n̄m̄, n̄ = |N | and
m̄ = |T | by

y =

(
(d ti +1

t
i − a

−→t
j +∇

−→t
j )

(d
←−t
j +1

←−t
j − a

t
i +∇

t
i )

)
(i,j,t,−→t )∈−→ε ,(i,j,t,←−t )∈←−ε

. (8)

Here components of y represent difference of the time
between the alignment points in accelerating and braking
phases. Once the running time is fixed, 1t

i and ∇
t
i are then

determined.
It is reasonable to approximately calculate such a regen-

erative energy in terms of y as follows: Given stations i, j,
and trains t , t̃ , Êreg(i, j, t, t̃) = 0 if |yk | ≥

(
c̃t̃j + c

t
i

)
/2;

Êreg(i, j, t, t̃) = min
{
c̃t̃j , c

t
i

}
∗ min

{
hti , h̃

t̃
j

}
if |yk | ≤∣∣∣(cti − c̃t̃j) /2∣∣∣; and Êreg(i, j, t, t̃) =

((
c̃t̃j + c

t
i

)
/2− yk

)
∗

min
{
hti , h

t̃
j

}
otherwise. Generally, we will ignore the trans-

mission losses of electricity since the transmission distance is
short between the successive trains (see, e.g., [38]). In addi-
tion, with the consideration of stray current (see, Figure 5),
we assume that 95% of the regenerative braking current is
transmitted to the overhead contact line for nearby accelerat-
ing train, and 5% of them becomes stray current, following
from [22], [42]. Thus, the regenerative braking energy that
can be utilized turns out to be

Ēreg(i, j, t, t̃) = τ̄ Êreg(i, j, t, t̃), with τ̄ = 95%. (9)

Then the energy saving rate r , adopted as a criterion to eval-
uate the approach for energy-efficient timetabling, is defined
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by

r =

∑
(i,j,t,t̃)∈−→ε ∪←−ε Ēreg(i, j, t, t̃)

6
|T ||N |
t=1 Ēcont

× 100%, (10)

where Ēcont and Ēreg(i, j, t, t̃) are defined as in (7) and (9),
respectively.

In order to maximize the utilization of the regenerative
braking energy for a higher energy saving rate, we adopt the
following `0-`22 optimization model from [20]:

min
1
2
‖y‖22 + λ‖y‖0

s.t. y− Ax + b = 0

Fx − g = 0 (11)

Ex − f ≤ 0.

Here A ∈ Rn×n, E ∈ Rm×n, F ∈ Rl×n with m = 2(2n̄(m̄ −
1)+ n̄m̄+ m̄+ n) and l = (n̄− 1)m̄. Specifically,

A =
(
A(1)T ,A(2)T , · · · ,A(k)T , · · · ,A(2n̄−1)T ,A(2n̄)T

)T
(12)

where A(ki) ∈ Rm̄×2n̄m̄, with all odd integers k0 and all even
integers k1 in {1, . . . , 2n̄}, defined as below : for any given
i = (k0 − 1)m̄+ t , t = 1, · · · , m̄,

A(k0)ij =


−1 if j = i,
1 if j = (2n̄− k0)m̄+

←−t ,
0 otherwise.

(13)

with ←−t as defined in Definition 1; and for any given i =
(k1 − 1)m̄+ t, t = 1, 2, . . . , m̄,

A(k1)ij =


1 if j = i,
−1 if j = (2n̄− k1)m̄+

−→t ,
0 otherwise.

(14)

with −→t as defined in Definition 1.

E =
(
E>
1 ,−E

>
1 ,E

>
2 ,−E

>
2 ,E

>
3 ,−E

>
3 ,E

>
4 ,−E4

>

)>
,

(15)

F =


Om̄×m̄ Ê1 Om̄×2m̄ . . . Om̄×2m̄ Om̄×m̄
Om̄×m̄ Om̄×2m̄ Ê2 . . . Om̄×2m̄ Om̄×m̄
...

...
...

. . .
...

...

Om̄×m̄ Om̄×2m̄ . . . Om̄×2m̄ Ên̄−1 Om̄×m̄


(16)

with

E1 =


Ê1 Om̄×2m̄ . . . Om̄×2m̄

Om̄×2m̄ Ê2 . . . Om̄×2m̄
...

...
. . .

...

Om̄×2m̄ Om̄×2m̄ . . . Ên̄

 ,
Êi =

(
−Im̄×m̄ Im̄×m̄

)
,

E2 =
(
−Im̄×m̄ Om̄×(2n̄m̄−2m̄) Im̄×m̄

)
,

E3 = I2n̄m̄×2n̄m̄,

E4 =


Ẽ1 O(m̄−1)×m̄ . . . O(m̄−1)×m̄

O(m̄−1)×m̄ Ẽ2 . . . O(m̄−1)×m̄
...

...
. . .

...

O(m̄−1)×m̄ O(m̄−1)×m̄ . . . Ẽ2n̄

 ,

Ẽi =


−1 1 0 . . . 0
0 −1 1 . . . 0
...

...
. . .

. . .
...

0 0 . . . −1 1

 .
b, g, and f are the corresponding column vectors from con-
straints (8), (5), (6) and all the constraints listed in Table 2.
Indeed, the constraint y − Ax + b = 0 represents the con-
straint (8),Fx−g = 0 collects the constraints (5) and (6), and
f −Ex ≥ 0 stands for all the inequality constraints distributed
in Table 2.

As above, we will use the model (11) to improve the uti-
lization of regenerative braking energy and adopt the energy
saving rate r defined in (10) to measure the energy saving
efficiency.

III. OPTIMALITY ANALYSIS
Before proposing the solution approach, the optimality anal-
ysis for the non-convex discontinuous optimization prob-
lem (11) is elaborated in this section.

A. KKT CONDITIONS AND STATIONARITY
Problem (11) can be equivalently rewritten as

min
1
2
‖y‖22 + λ‖y‖0 + δRm+ (z)

s.t. y− Ax + b = 0

Fx − g = 0 (17)

Ex − f + z = 0.

The Lagrangian function associated with problem (17) is
defined by

L(x, y, z; u, v,w) :

=
1
2
‖y‖2 + λ‖y‖0 + δRm+ (z)+ u

> (y− Ax + b)

+ v> (Fx − g)+ w> (Ex − f + z) , (18)

for all (x, y, z, u, v,w) ∈ Rn
× Rn

× Rm
× Rn

× Rl
× Rm.

The KKT conditions for problem (17) can be expressed as

0 = ∇xL(x, y, z, u, v,w) = −A>u+ F>v+ E>w,
0 ∈ ∂yL(x, y, z, u, v,w) = y+ u+ λ∂‖y‖0,
0 ∈ ∂zL(x, y, z, u, v,w) = NRm+ (z)+ w,

y− Ax + b = 0,
Fx − g = 0,
Ex − f + z = 0,

(19)

where ∂‖y‖0 is the subdifferential of ‖ · ‖0 at y which takes
the form of

∂‖y‖0 =
{
h ∈ Rn

| hi = 0, if yi 6= 0
}
=: Rn

[n]\Iy , (20)

VOLUME 7, 2019 59427



Z. Luo et al.: `0-Norm Minimization for Energy-Efficient Timetabling in Subway Systems

with Iy := {i ∈ [n] | yi 6= 0} being the supporting set of y.
A first-order necessary optimality condition via KKT condi-
tions can then be established in the following theorem.
Theorem 1: If (x̄, ȳ, z̄) is a local minimizer of prob-

lem (17), then there exists (ū, v̄, w̄) such that (x̄, ȳ, z̄, ū, v̄, w̄)
satisfies the KKT conditions in (19).
Proof. The optimality of (x̄, ȳ, z̄) leads to its feasibility to
problem (17), i.e.,

(x̄, ȳ) ∈ � :=

(x, y)
∣∣∣∣ y− Ax + b = 0

Fx − g = 0
Ex − f ≤ 0

 , and z̄ = f − Ex̄.

Next, we claim that for any (x, y) ∈ �, the regular subdiffer-
ential (see, [26, Definition 8.3])

∂̂ (λ‖y‖0 + δ�(x, y))={0}Rm × (λ∂‖y‖0)+ N�(x, y), (21)

where N�(x, y) is the normal cone to � at (x, y). By virtue
of [26, Corollary 10.9], we get the inclusion

∂̂ (λ‖y‖0 + δ�(x, y)) ⊇ {0}Rm × (λ∂̂‖y‖0)+ N�(x, y). (22)

It then remains to show

∂̂ (λ‖y‖0+δ�(x, y)) ⊆ {0}Rm × (λ∂̂‖y‖0)+N�(x, y). (23)

For any given (v1, v2) ∈ ∂̂ (λ‖y‖0 + δ�(x, y)), it fol-
lows from the defintion of regular subdifferential as stated
in [26, Definition 8.3]) that for any (x ′, y′)→ (x, y), we have

o(‖(x ′, y′)− (x, y)‖) ≤ ‖y′‖0 + δ�(x ′, y′)

−‖y‖0 − δ�(x, y)

− v>1 (x
′
− x)− v>2 (y

′
− y). (24)

Particularly, if we choose any (x̃, ỹ) → (x, y) satisfying
(x̃, ỹ) ∈ � and ỹ ∈ Rn

Iy , where Iy := {i | yi 6= 0} and
Rn
Iy := {y ∈ Rn

| yi = 0, if i /∈ Iy.}. Then Equation (24)
should also hold for all (x̃, ỹ) ∈ � ∩ (Rn

× Rn
Iy ). Noting that

ỹ → y and ỹ ∈ Rn
Iy , we have ‖ỹ‖0 = ‖y‖0. Thus, (24) turns

out to be

o(‖(x̃, ỹ)− (x, y)‖) ≤ −v>1 (x̃ − x)− v
>

2 (ỹ− y), (25)

which indicates that (v1, v2) ∈ N
�∩

(
Rn×RnIy

)(x, y). Note
that � and Rn

× Rn
Iy are convex polyheral sets. It follows

from [25, Corollary 23.8.1] that

N
�∩

(
Rn×RnIy

)(x, y) = N�(x, y)+ NRn×RnIy
(x, y).

In virtue of the observation λ∂̂‖y‖0 = λ∂‖y‖0, together
with (20), the claim is proved. By reformulating problem (17)
as

min
x,y

1
2
‖y‖2 + λ‖y‖0 + δ�(x, y),

we can apply [26, Theorem 10.1] to get the following
first-order optimality condition

(0, 0) ∈ ∂̂
(
1
2
‖ȳ‖2 + λ‖ȳ‖0 + δ�(x̄, ȳ)

)

= (0, ȳ)+ ∂̂ (λ‖ȳ‖0 + δ�(x̄, ȳ))

= (0, ȳ)+ N�(x̄, ȳ)+ NRn×RnIy
(x̄, ȳ)

= (0, ȳ)+ {(ξ̄ , ū) | A>ū+ ξ̄ = E>w̄+ F>v̄,

∃w̄ ∈ NRm− (Ex̄ − f ), v̄ ∈ Rl
} + {0}Rn × Rn

[n]\Ī
,

(26)

where Ī := {i | ȳi 6= 0}. Here the first equality follows
from [26, Exercise 8.8(c)], the second equality follows from
the above claim. To get the last equality in (26), we know that

N�(x̄, ȳ)

=

{
(ξ̄ , ū) | ξ̄>(x−x̄)+ū>(y−ȳ) ≤ 0,∀(x, y) ∈ �

}
=

{
(ξ̄ , ū) | ξ̄>(x−x̄)+ū>A(x−x̄) ≤ 0,∀x ∈ �1 ∩�2

}
=

{
(ξ̄ , ū) | A>ū+ξ̄ ∈ N�1∩�2 (x̄)

}
=

{
(ξ̄ , ū) | A>ū+ξ̄ ∈ N�1 (x̄)+N�2 (x̄)

}
, (27)

where �1 := {x ∈ Rn
| Ex ≤ f } and �2 := {x ∈ Rn

| Fx =
g}. Together with N�1 (x̄) = E>NRm− (Ex̄ − f ) and N�2 (x̄) =
F>Rl , the desired equality in (26) follows. Utilizing the fact

w̄ ∈ NRm− (Ex̄ − f )⇔ 0 ∈ NRm+ (z̄)+ w̄, Ex̄ − f + z̄ = 0,

the desired result can then be obtained immediately. �
It is known from [26, Example 10.2] that the inclusion

condition 0 ∈ y + u + λ∂‖y‖0 in the above KKT system is
necessary for

y ∈ Proxλ‖·‖0 (−u), (28)

where the proximal mapping

Proxλ‖·‖0 (u) := arg min
y∈Rn

λ‖y‖0 +
1
2
‖y− u‖2

is the so-called hard-thresholding operator in [12] and [32]
and it has the following explicit expression:

Proxλ‖·‖0 (u) =

y ∈ Rn
∣∣∣∣yi =

 ui if |ui| >
√
2λ,

ui or 0 if |ui| =
√
2λ,

0 otherwise,

 .
(29)

Thus, by replacing this inclusion condition in (19) with (28),
we can get a stronger condition system than (19) for opti-
mality analysis. Any (x, y, z) ∈ Rn

× Rn
× Rm satisfying

such a new condition system is called a stationary point of
problem (17). Note that the condition in the third line in (19)
is equivalent to

w−5Rm+ (w− z) = 0, (30)

where 5Rm+ is the projection operator onto Rm
+. We can get

an equivalent reformulation for the stationary point system
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FIGURE 6. The graph of ϕ(t).

as follows

F(x, y, z, u, v,w) :=



−A>u+ F>v+ E>w
min

ϑ∈Proxλg(−u)
‖y− ϑ‖

w−5Rm+ (w− z)
y− Ax + b
Fx − g

Ex − f + z


= 0.

(31)

We call the involved mapping F the residual function for
problem (17). The stationarity condition can imply the opti-
mality of the primal problem (17) and its dual problem. This
will be discussed in the coming subsection.

B. DUAL OPTIMALITY
The Lagrangian dual problem of (17) is defined by

sup
w,u,v

inf
x,y,z

L(x, y, z; u, v,w). (32)

Note that

inf
x,y,z

L(x, y, z; u, v,w)

= u>b− v>g− w>f + inf
y

{
1
2
‖y‖22 + λ‖y‖0 + u

>y
}

+ inf
x

{(
−A>u+ F>v+ E>w

)>
x
}

+ inf
z

{
δRm+ (z)+ w

>z
}

=


ϕ(u)+ u>b− v>g− w>f , if A>u = F>v+ E>w,

and w ≥ 0;
−∞, otherwise.

where

ϕ(u) = −
1
2
‖u‖2 +

n∑
i=1

min
{
λ,

1
2
u2i

}
(33)

is a concave function in u, following from [25, Th. 5.5]. The
graph of the univariate version of ϕ is plotted as in Figure 6.
Thus, the dual problem has the following explicit form

max ϕ(u)+ u>b− v>g− w>f

s.t. −A> u+ F>v+ E>w = 0

w ≥ 0. (34)

Problem (34) with A, E, F defined as above is a convex
program and admits the following necessary and sufficient
optimality condition.
Theorem 2: Let A, E and F be defined as in (12)-(16).

Then (ū, v̄, w̄) is an optimal solution to (34) if and only if
there exists (x, y, z) ∈ Rn

× Rn
× Rm such that

−A>u+ F>v+ E>w = 0,
y ∈ conv

(
Proxλ‖·‖0 (−u)

)
,

y− Ax + b = 0,
Fx − g = 0,
Ex − f + z = 0, z ≥ 0,w ≥ 0,w>z = 0,

(35)

Proof. Problem (34) can be rewritten as

min − ϕ(u)− u>b+ v>g+ w>f + δRm+ (w)

s.t. −A> u+ F>v+ E>w = 0. (36)

The corresponding Lagrangian function with respect to (36)
is defined by

LD(u, v,w; x) : = −ϕ(u)− u>b+ v>g+ w>f + δRm+ (w)

− x>
(
−A>u+ F>v+ E>w

)
,

and hence the KKT conditions for (36) turn out to be
0 = ∂uLD(u, v,w; x) = ∂ (−ϕ(u))+ (Ax − b),
0 = ∇vLD(u, v,w; x) = g− Fx,
0 ∈ ∂wLD(u, v,w; x) = ∂δRm+ (w)+ f − Ex,
−A>u+ F>v+ E>w = 0,

(37)

From the nonnegativity of the function ‖ · ‖0, it is
known from [26, p. 21] that ‖ · ‖0 is prox-bounded
with the λg = +∞. By applying the subsmoothness
of Moreau envelopes addressed in [26, Example 10.32],
we have

∂ (−ϕ(u)) = u−
(
conv

(
Proxλ‖·‖0 (−u)

)
− (−u)

)
= −conv

(
Proxλ‖·‖0 (−u)

)
.

By employing the fact ∂δRm+ (w) = NRm+ (w), the condition in
the third line in system (37) is equivalent to the following
complementarity system

w ∈ Rm
+, f − Ex ∈ Rm

+, w> (f − Ex) = 0.

Thus, we conclude that the KKT system (37) can be equiva-
lently reformulated as (35) by setting y = Ax − b. By virtue
of the structure in F as defined in (16), we know that F is full
row rank. Thus, the generalized Slater condition, i.e., ∃w > 0
such that −A>u + F>v + E>w = 0, holds automatically.
Due to the convex programming theory, we can conclude the
desired equivalence. �

A sufficient optimality condition via stationarity is then
obtained to ensure the solvability of both Problem (17) and its
dual (34) with zero duality gap, i.e., the strong duality holds.
Corollary 1: If (x∗, y∗, z∗, u∗, v∗,w∗) is a stationary point

of (17), then (x∗, y∗, z∗) is an optimal solution of (17) and
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(u∗, v∗,w∗) is an optimal solution to (34) and the duality gap
vanishes.
Proof. Invoking [25, Example 10.2], we know that
(x∗, y∗, z∗, u∗, v∗,w∗) satisfies the KKT conditions of prob-
lem (17) as presented in (19). It also satisfies the conditions
in (35) by the property of convex hull in [25, Th. 2.3]. Thus,
(u∗, v∗,w∗) is an optimal solution to the dual problem (34)
and (x∗, y∗, z∗) is a feasible solution to Problem (17). Denote
the optimal values of problems (17) and (34) by p∗ and d∗

respectively. The feasibility implies that

p∗ ≤
1
2
‖y∗‖22 + λ‖y

∗
‖0 = L(x∗, y∗, z∗; u∗, v∗,w∗). (38)

On the other hand, by the observations
φ1(y∗, u∗) = inf

y
φ1(y, u∗),

0 = φ2(x∗, u∗, v∗,w∗) = inf
x
φ2(x, u∗, v∗,w∗),

δRm+ (z
∗)+ (w∗)>z∗ = inf

z

{
δRm+ (z)+ (w∗)>z

}
,

where φ1(y, u) := 1
2‖y‖

2
2+λ‖y‖0+u

>y, and φ2(x, u, v,w) :=

x>
(
−A>u+ F>v+ E>w

)
, we can immediately verify

that

L(x∗, y∗, z∗; u∗, v∗,w∗) = inf
x,y,z

L(x, y, z; u∗, v∗,w∗)

= ϕ(u∗)+ b>u∗ − g>v∗ − f >w∗

= d∗. (39)

Combining with the weak duality, i.e., p∗ ≥ d∗, and (38),
we have the duality gap p∗ − d∗ = 0, and hence (x∗, y∗, z∗)
is an optimal solution of Problem (17). The proof is
complete. �

To summarize, the first-order optimality conditions for
the primal and dual problems are established. Particularly,
the stationarity is shown to be a strong duality condition.
All of these enrich the contents for non-convex optimization
theory and hence of theoretical significance.

IV. A HARD-THRESHOLDING BASED ADMM APPROACH
The augmented Lagrangian function associated with the
sparse model (17) can be written as

Lσ (x, y, z; u, v,w)

= λ‖y‖0 +
1
2
‖y‖22 + δRm+ (z)+ u

>(y− Ax + b)

+ v>(Fx − g)+ w>(Ex − f + z)

+
σ

2

(
‖y− Ax + b‖22 + ‖Fx − g‖

2
2 + ‖Ex − f + z‖

2
2

)
where σ > 0 is the penalty parameter, u ∈ Rn,v ∈ Rl and
w ∈ Rm are Lagrangian multipliers. The iterative framework
of the hard-thresholding based alternating direction method

of multipliers (HTADMM) can be described as

(yk+1, zk+1) ∈ arg min
y∈Rn,z∈Rm

{
Lσ (xk , y, z; uk , vk ,wk )

}
;

xk+1 = arg min
x∈Rn

{
Lσ (x, yk+1, zk+1; uv, vk ,wk )

}
;

uk+1 = uk − τσ (yk+1 − Axk+1 + b);
vk+1 = vk − τσ (Fxk+1 − g);
wk+1 = wk − τσ (Exk+1 − f + zk+1),

(40)

with τ > 0 as the dual stepsize. For the first subprob-
lem in (40), by employing the hard-thresholding opera-
tor (29), together with the sparsity consideration, we can get
a closed-form expression for yk+1 as

yk+1i =


0, if |uk + σ (Axk − b)|i

≤
√
2λ(1+ σ );

1
1+σ (u

k
+ σ (Axk − b))i, otherwise.

(41)

and the first-order optimality condition for z yields the update

zk+1 = 5Rm+

(
−Exk + f −

wk

σ

)
. (42)

For the second subproblem in (40), we can also employ the
first-order optimality condition to get the x-update by solving
the following linear system

Hx = Rhs, (43)

where H D A>A C F>F C E>E and Rhs =

A>
(
uk
σ
− b+ yk+1

)
+F>

(
g− vk

σ

)
+E>

(
f − zk+1 − wk

σ

)
.

Note that matrixE is full column rank. ThusH is positive def-
inite and hence nonsingular, which leads to a unique solution
to System (43). For large scale problems, this linear system
can be approximately solved by adopting preconditioned
conjugate gradient (PCG) method. The detailed framework
of our HTADMM is presented in Algorithm 1.

Algorithm 1 HTADMM for Solving Problem (17)

Require: Choose an initial point
(
x00 , y

0
0, z

0
0, u

0
0, v

0
0,w

0
0

)
,

accuracy parameters ε > 0, the parameters λ, σ > 0.
Ensure: (x∗, y∗, z∗);
Step 1 Set (x0, y0, z0) = (x00 , y

0
0, z

0
0), (u0, v0,w0) =

(0, 0, 0) and k = 0;
Step 2 Compute

(
xk+1, yk+1, zk+1, uk+1, vk+1,wk+1

)
by (43), (41), (42) and (40);

Step 3 Set k = k + 1. If some criterion is satisfied to the
accuracy ε, then set (x∗, y∗, z∗) =

(
xk , yk , zk

)
and

stop. Otherwise, go to Step 2.

V. A CASE STUDY
In this section we conduct numerical experiments on Beijing
Metro Yizhuang Line spanning full service period of one
day to evaluate our proposed model. The numerical study
is executed by running Matlab (version 2016b) on a win-
dows laptop (Intel(R) Core(TM) i5-5250U CPU@ 1.60GHZ
1.60GHZ RAM 4.0G)
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TABLE 3. The windows of the dwell time constraints.

TABLE 4. The train utility rate and distribution of D for one-day(16 hours) services.

FIGURE 7. Beijing metro yizhuang line.

A. DATA PREPARATION
We provide some revelent information with regard to Beijing
Metro Yizhuang Line. Beijing Metro Yizhuang Line, opened
on December in 2010, is a railway extended to southeast
direction with 14 stations as shown in Figure 7. The total
length of Yizhuang Line is 23.23 km and the average distance
of two stations is 1.8 km, with the minimum distance being
1 km (between YZQ and YZWHY) and maximum distance
being 2.8 km (between SJZ and XC) respectively.

The number of departure trains, says m̄, is closely related
to the average headway time in the way that the num-
ber of trains increases when the headway time decreases.
Six different choices of m̄ are given according to the passen-
ger flow volume in non-peak hours and peak hours, which are
m̄ = 248, 259, 271, 282, 293, 305 with the passenger flows
varying from 215000 to 265000. Set n̄ = 28, which is the
number of stations (two lines) in Beijing Yizhuang Line. The
inputs in the equality constraint y−Ax+b = 0 are A ∈ Rn×n

with n = 2n̄m̄, where each row contains one−1, one 1 and the
rest is 0, determined by (12), (13) and (14). The component
of b ∈ Rn is −(1t

i + ∇
t̃
j )(i,j,t,t̃), where train t is accelerating

and t̃ is braking, and the opposite platforms i and j satisfy the
equation i + j = 29. In the equality constraint Fx − g = 0,
F ∈ Rl×m is a coefficient matrix with l = (n̄ − 1)m̄ and
g ∈ Rl is composed of trip time. In the equality constraint
z − f + Ex = 0, E ∈ Rm×n is the coefficient matrix of
inequality constraints with m = 2(2n̄(m̄− 1)+ n̄m̄+ m̄+ n).
The elements in the vector of f ∈ Rm are upper and lower
bounds of dwell time constraints, headway time constraints,

total travel time constraints, and the domain of event time
constraints.

Following from [20], the windows of dwell time con-
straints including lower bounds and upper bounds are pre-
sented in Table 3. Let D be the passenger demand for one-day
service, uD ∈ R16 be the distribution of D for each hour and
u ∈ R16 be the train utility rate for different hours which are
both given in Table 4. By using h = 3600×Ct×u

D , we can get
the headway time for each hour. The bounds of trip times are
calculated by Table 5 as reference. For each train t , the bounds

of trip time are more than
5∑

q=1

sq
vq

and the total travel time

constraints are related to the dwell time and trip time, we can
calculate the windows of total travel time constraints by
using

tt = r1 × (
28∑
i=1

dwi +
27∑

i = 1
i 6= 14

tr ij +
∑
i=14

κ ij)

tt = r2 × (
28∑
i=1

dwi +
27∑

i = 1
i 6= 14

tr ij +
∑
i=14

κ ij)

where r1 = 1.1 and r2 = 0.85.
To calculate the energy consumption and regenerative

energy, we set the maximum acceleration aacc = 0.5m/s2 at
accelerating phrase, and abra = −0.8m/s2 at braking phrase.
The resistance acceleration during the coasting phrase r =
−0.05m/s2, the conversion factor from electricity to kinetic
energy θacc = 0.7 and the conversion factor from kinetic
energy to regenerative energy θbra = 0.5. As presented in
Section II, we set parameters t1 = 20%, t2 = 25%, t3 = 20%
and t4 = 35% as the percentages of the running time to
approximately calculate the energy consumption for accel-
erating Econ and the regenerative energy produced during
braking Ebra. The parameters c and c′ in Figure 3 which
represent the width of the rectangles for Econ and Ebra are
chosen to be 14% and 21% respectively.
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TABLE 5. Speed limits of every section on beijing metro yizhuang line.

TABLE 6. Five different approaches for comparison.

B. INITIALIZATION AND STOPPING CRITERIA
Invoking the optimality analysis in Section III, we will use
the relative primal infeasibility and relative dual infeasibility,
defined as below, to measure the quality of the approximate
solution:

ηp =

{
‖yk − Axk + b‖

1+ ‖yk‖
,
‖Fxk − g‖
1+ ‖xk‖

,
‖Exk − f + zk‖

1+ ‖Exk‖ + ‖zk‖

}
,

ηd =
‖ATuk − FTwk − ET sk‖

1+ ‖ATuk‖ + ‖FTwk‖ + ‖ET sk‖
.

The algorithm will be terminated once ηp and ηd is less than
some prescribed accuracy parameter ε, or when the iteration
number k reaches the maximal iteration number Maxiter.
Here we choose ε = 10−3 and Maxiter = 104. Set the dual
stepsize τ = 1.618 in HTADMM.

In attempt to get a better performance of Algorithm 1,
we choose the initial point

(
x00 , y

0
0, z

0
0

)
by solving the follow-

ing convex problem

min
x,y,z

{
λ‖y‖1 +

1
2
‖y‖22 + δRm+ (z) | (x, y, z) ∈ F

}
with

F : ={(x, y, z) | y−Ax+b=0, Fx−g=0, Ex−f +z=0},
(44)

using the ADMM framework with the accuracy ε0 = 10−1.
The computation time for the initialization is also counted in
the sequent analysis on time comparison.

C. NUMERICAL RESULTS
To illustrate the effectiveness of our proposed approach for
energy-efficient timetabling on the case study for Beijing
Metro Yizhuang Line, the comparison among the following
five approaches, as listed in Table 6, will be conducted in
terms of the energy saving rate and the computation time.
In this table, the set F is defined as in (44), and the set F1
is defined by

F1 := {(x, y) | y− Ax + b = 0, Fx − g = 0, Ex − f ≤ 0}.

Specifically, the first approach A1 in Table 6 is the
approach proposed in [8], the second and the third approaches
are from [20], the fourth approach A4 is the proposed one
in this paper, and the last approach A5 is the square root of
`1/2-norm relaxation approach where the involved ‖y‖1/21/2 :=
n∑
i=1
|yi|1/2. We design an efficient ADMM algorithm based

on the so-called half-thesholding (HaTADMM), in which the
updating formula for y in (41) is replaced by

yk+1 =
(
h λ1
λ2+σ

, 12

(
σ (Axk − b)− uk

1+ σ

))n
i=1
. (45)

Here, h
τ, 12

is the half-thresholding operator [34] which takes
the form of

h
τ, 12

(ti) :=

{
f
τ, 12

(ti), if |ti| >
3√54
4 τ 2/3;

0, otherwise
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TABLE 7. Energy saving rates with different m̄.

TABLE 8. Energy saving rates for m̄ = 293.

TABLE 9. Timetable generated by A4 for the beijing metro yizhuang line
with m̄ = 293.

with f
τ, 12

(ti) = 2
3 ti
(
1+ cos

(
2π
3 −

2
3ζτ (ti)

))
, and ζτ (ti) =

arccos
(
τ
8

(
|ti|
3

)−3/2)
.

Energy saving rates calculated by aforementioned models
are listed in Table 7 with different choices of m̄. As shown
in Table 7, for all the instances, approaches A4 and A5 have a
quite competitive performance in terms of the energy saving
rate, both of which outperform the other three approaches.
More specifically, for our proposed A4, the saving rates are
at least 6.39 percent higher than those generated by A1 and
A2, both of which lack the consideration of the sparsity in
y, and with around 2.89 percentage in average higher than
those of A3 where the `1-norm is employed as a surro-
gate of the sparsity characterization `0-norm. Similar results
can be obtained by using different initial trip times from
references [17], [33], [36]–[38] with m̄ = 293, as shown
in Table 8.

According to the optimal timetable generated by A4,
the total travel time is T = 2044s and the arrival time and
dwell time at each station are shown in Table 9. We also
illustrate the timetable of A1 in Table 10. These figures indi-
cate that the trip time and dwell time in two timetables on
each station is different and therefore consumption energy
consumed by two trains is different.

One-way train diagram on Beijing Metro Yizhaung Line
for m̄ = 293 is illustrated in figure 8. It is shown that, all the
trains depart from the original station at different timestamps
one by one and then arrive at final station. The departure

TABLE 10. Timetable generated by A1 for the beijing metro yizhuang line
with m̄ = 293.

TABLE 11. Time comparisons with different m̄.

TABLE 12. Time comparison for m̄ = 293.

frequencies are essentially consistent with time, it can be
seen that the departure frequency is higher and the departure
headway is shorter during the morning and evening rush
hours.

Using timetable and train diagram, we can calculate the
average total energy and net energy consumed by all trains
passing through each platform for A4 and A1 with m̄ =
293 during the day as shown in Figures 9 and 10. We can
see that, the energy consumption after regulation decreased
significantly in Figure 9, which partially reflects the reason
why approach A4 outperforms A1 in terms of the energy
saving rate.

Besides the energy saving rate, we also evaluate five
approaches in terms of the computation time. The time com-
parisons for all the testing instances are listed in Table 11
with different choices of m̄. Compared with A3 and A5,
the computation time for A4 is the least. Particularly, for the
case of m̄ equal to 305, the computation time of A4 is the least
among all involved approaches.

The time comparisons for testing instances with differ-
ent choices of initial trip times from reference [17], [33],
[36]–[38] are listed in Table 12. Compared with A3 and A5,
the computation time for A4 is the least.

Although the computation time of A4 is longer than that
of A1 and A2, it superiorly outperforms A1 and A2 in terms
of energy saving rate as one can see in Tables 7 and 8.
Meanwhile, as shown in Figures 11 and 12, the number of
iterations of A4 is less than that of A3 and A5, which partially
explains the reason why the computation time of A4 is the
least among these three methods.
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FIGURE 8. One-way train diagram on beijing metro yizhuang line for A4 with m̄ = 293.

FIGURE 9. Comparison of total energy consumption and net energy
consumption for A4 with m̄ = 293.

FIGURE 10. Comparison of total energy consumption and net energy
consumption for A1 with m̄ = 293.

It is known that the theoretical convergence of non-convex
ADMM approaches is not always guaranteed, unless some
strong conditions are imposed to the objective functions and
feasible regions of the underlying models (see, e.g., [41] and
references therein). The existing conditions fail to hold for
our proposed non-convex model. Nevertheless, the numerical
convergence behaviors in terms of the infeasibility measure
for the above 11 instances are presented in the following
Figures. We can see that for each instance, the infeasibility
decreases rapidly as the number of iterations increases and it

FIGURE 11. Number of iterations with different choices of m̄.

FIGURE 12. Number of iterations for different trip time.

meets the required accuracy 10−3 within less than 1500 iter-
ations.

VI. CONCLUSION
An `0-norm minimization model has been built and
a hard-thresholding based alternating direction method
of multipliers (HTADMM) has been proposed for the
energy-efficient timetabling in subway systems. From the
theoretical perspective, a first-order necessary optimality
condition in terms of the KKT condition, and a first-order
sufficient optimality condition in terms of the stationarity,
have been proposed for the proposed `0-norm minimization
problem with no additional constraint qualifications. This,
to some extent, provides an enrichment or a supplement to
the optimization theory. From the practical perspective, our
proposed approach has shown to be efficient in terms of the
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FIGURE 13. The numerical convergence behavior of A4 with different choices of m̄.

FIGURE 14. The numerical convergence behavior of A4 for different trip time.

energy saving rate and the computation time in the case study
of Beijing Metro Yizhuang Line. It is worth mentioning that
the HTADMM is a first-order since we only use the first-order
(sub)-derivative information of the involved functions, future
research would be in considering some second-order methods
based on the optimality analysis to further accelerate the
iterative process.
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