
Received March 20, 2019, accepted May 3, 2019, date of publication May 8, 2019, date of current version May 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2915533

Driving Fatigue Classification Based on Fusion
Entropy Analysis Combining EOG and EEG
HONGTAO WANG 1,2, (Member, IEEE), CONG WU1, TING LI1, YUEBANG HE1, PENG CHEN1,
AND ANASTASIOS BEZERIANOS2
1Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen 529020, China
2Centre for Life Sciences, Singapore Institute for Neurotechnology, National University of Singapore, Singapore 117456

Corresponding authors: Hongtao Wang (nushongtaowang@qq.com) and Anastasios Bezerianos (tassos.bezerianos@nus.edu.sg)

This work was supported in part by the Defence Science Organisation (DSO), Singapore, under Grant R-719-000-027-592, in part by the
Technology Development Project of Guangdong Province under Grant 2017A010101034, in part by the Science Foundation for Young
Teachers of Wuyi University under Grant 2018td01, in part by the Natural Science Foundation of Guangdong Province under Grant
2018A030313882, in part by the Projects for International Scientific and Technological Cooperation under Grant 2018A05056084, and in
part by the Jiangmen Brain-like Computation and Hybrid Intelligence R&D Center under Grant [2018]359 and Grant [2019]26.

ABSTRACT The rising number of traffic accidents has become a major issue in our daily life, which
has attracted the concern of society and governments. To deal with this issue, in our previous study,
we have designed a real-time driving fatigue detection system using power spectrum density and sample
entropy. By using the wireless technology and dry electrodes for EEG collection, we further integrated
virtual reality simulated driving environment, which made our study more applicable to realistic settings.
However, the high accuracy of classification for driving fatigue has not been obtained. To measure the
time series complexity of the EEG signal, we proposed a fusion entropy (sample entropy, approximate
entropy, and spectral entropy) analysis method of EEG and EOG. First, a sample entropy was applied for
feature extraction from the horizontal and vertical EOG. Second, an approximate entropy, sample entropy,
and spectral entropy features of each sub-band of EEG are extracted. Third, feature fusion for sub-band is
performed by canonical correlation analysis (CCA). Finally, the features of EOG and EEG are classified
using a relevant vector machine (RVM). Twenty-two subjects participated in the driving fatigue experiments
for a duration of 90 min. The results demonstrated that the fusion entropy analysis combining EOG and EEG
could provide an alternative method for driving fatigue detection, and the average accuracy rate was up to
99.1± 1.2%. The authors further analyzed the effect of feature fusion in four sub-bands (δ, α, β, and θ ) and
compared with every single sub-band on classification performance, it is proved that the former is superior
to the latter presenting the proposed method can provide effective indicators for driving fatigue detection.

INDEX TERMS Driving fatigue, electroencephalogram (EEG), electrooculogram (EOG), sample entropy,
approximate entropy, spectral entropy.

I. INTRODUCTION
The World Health Organization released a report that
in 2015 more than 1.2 million young people died worldwide,
with an average of more than 3,000 people per day. Traffic
accidents are the number one killer of people between the
ages of 10 and 19 [1]. With the rising number of traffic acci-
dents in our daily life, the severity of this issue has attracted
the concern of society and governments [2]. Other experts
agree that driving fatigue is a significant cause of traffic
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accidents and is believed to account for 20-30% of all vehicle
accidents [3]. Actually, it is a conservative estimate that the
actual contribution of fatigue to road accidents may be much
higher [4], [5]. As well known, driving fatigue is a feeling of
extreme physical or mental tiredness which occurred after a
long distance of continuous driving. It became a major factor
to affect drivers resulting in slow reaction times, reduced
vigilance and an irregular driving aptitude [6]. Therefore,
the development of driving fatigue detection method that can
identify the levels of mental fatigue accurately to prevent
disastrous traffic events seems a crucial and urgent topic of
study.
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Several research groups try to detect and quantify mental
fatigue from themeasurement of physiology variables such as
electroencephalogram (EEG), electrooculogram (EOG), and
electromyogram (EMG) [7]–[11]. Compared with machine
vision based measures [12], [13], neurophysiology-based
measures [14], [15] can provide an objective characterization
of the state of the driver [16]. Among the numerous physi-
ological indicators available to estimate the driver’s fatigue
level, the EEG signal has been proven to do a good job of
mental state indicator [17]. Eoh et al. developed an algorithm
based on the changes of in the major EEG bands includ-
ing δ, α, β, θ to detect fatigue [18]. The performance of
ratios of δ, θ , α and β activities interesting features to be
detected with changes in the drowsiness level. Thus, four
parameters θ /β, α/β, (α + θ)/β and (α + θ )/(α + β) are
used to fatigue prediction [19]. Nikita Gurudath et al. used
a wavelet transform to extract sub-bands and calculated the
mean, median, variance, standard deviation as features for
drowsy driving detection [20]. Faramarz et al. only used the
changes ofα power formental fatigue detection [21]. Entropy
has also been applied to measure the changing complexity of
electrophysiological signals [22], [23]. Zhang et al. realized
an automated detection of driver fatigue system based on
entropy and complexity measures [24]. Hassan and Bhuiyan
carried out a series of research work about the identification
of sleep states from EEG [25]–[32]. In our previous study,
we proposed an integrated metric combined by averaging the
powers spectrum density of (θ + α)/β and θ /β to predict
the driving fatigue. Furthermore, sample entropy was also
applied to online driving fatigue detection [33].

EOG is another type of electrical signal generated by the
eye movement and can be measured by the skin around the
eyes. Themagnitude of EOG varies according to the displace-
ment of the eye ball from its resting location [34]. The EOG
signals contain rich information, which can reflect the level
of drowsiness directly [35], [36]. Bulling et al. found that
the EOG signal caused by the movements of eyes is a good
indicator of mental activities [37]. Zhang et al., Zheng and Lu
proposed different electrode placements on the forehead and
extracted various eye movement features (EOG) for fatigue
detection [38], [39].

Multi-modal system combing different kinds of signals has
become a new trend of system design, the advantage is it
can not only help to promote the robust of the system but
also improve recognition accuracy [40]–[42]. In fact, several
literatures have indicated that signals from different medals
can reflect different aspects of mental states [39], [43]. As we
are known, EEG is usually used to represent internal cognitive
states, while EOG is commonly applied to reflect the external
subconscious behaviors. The purpose of this paper is to fully
excavate the complementary information provided by these
two modalities and further to construct a more robust and
accurate driving fatigue classification system by integrating
EEG and EOG.

The remainder of this paper is organized as follows:
Section II provides the paradigm of system and data

FIGURE 1. The simulated driving system used for the implementation of
the proposed protocol.

FIGURE 2. (A) The blue pair dots (1 and 2) and (3 and 4) indicate the
electrodes placements for vertical and horizontal EOG collection
respectively. (B) The names and positions of twenty-four dry EEG
electrodes.

acquisition. Section III provides methodology including
signal preprocessing, feature extraction and classification.
Experimental results are presented in Section V. Further
discussions are presented in Section VI. The conclusion is
presented in Section VII.

II. PARADIGM OF SYSTEM AND DATA ACQUISITION
As shown in Fig.1, the virtual reality simulated driving envi-
ronment mainly consists of a simulated driving system and
a wireless dry EEG acquisition system (Cognionics head-
set HD-72). In order to provide a more realistic sense of
driving, the simulated driving system equipped with three
65 inches LCD screens, a Logitech G27 Racing Wheel simu-
lator (a driving wheel, three pedals, and a six-speed gearbox)
and a host computer which provides a driving environment.
Twenty-four dry sensors integrated into the Cognionics head-
set are used to collect electroencephalogram from the sub-
ject’s scalp and then the EEG signals are transferred wireless
by a Bluetooth module transmitter. A host laptop (Toshiba
Intel(R)Core(TM)i5-6200U Duo 2.4 GHz) is used to collect
the EEG signals by a Bluetooth receiver for further processing
and run a Cognionics software.

During signal collection, the EEG signals are referenced
to both right and left mastoids, while EOG signals are ref-
erenced to the right ear. As shown in Fig.2 (A), the ver-
tical and horizontal EOG are recorded by ECG Electrodes
(Skintact products). In Fig.2(B), twenty-four standard dry
electrodes are employed, which are placed at electrode sites
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FIGURE 3. The flow chart of driving fatigue classification based on fusion
entropy analysis method.

in the frontal, central, parietal, and occipital regions in accor-
dance by a modified international 10-20 system of electrode
placement [44]. In the present work, six channels (PO3, POz,
PO4, O1h, Oz, O2h) marked red are used for EEG entropy
calculation. All impedances are kept below 20 k�. EEG sig-
nals are amplified, sampled at a rate of 250Hz, and band-pass
filtered between 0.5 and 100Hz, the parameters can be preset
in the Cognionics software.

III. METHODOLOGY
As shown in Fig.3, the proposed driving fatigue classifica-
tion based on fusion entropy analysis method mainly con-
tains signal preprocessing, discrete wavelet transform for
sub-bands extraction and noise suppression, fusion entropy
feature extraction for EOG and EEG, and revelent vector
machine based classification.

A. SIGNAL PREPROCESSING
The acquired data were processed and analyzed using
EEGLAB [45] during the preprocessing stage. The prepro-
cessing of EEG and EOG signals includes spatially filtered
with common average reference (CAR) [46], de-trended,
remove mean and then band-pass filtered at 0.01-32 Hz.
We applied the discrete wavelet transform (DWT) [47]

to achieve EEG signal preprocessing with the following
parameters: Daubechies wavelet of db4 [48] and decompo-
sition level of six. DWT is particularly effective for repre-
senting various aspects of signals, such as trends, disconti-
nuities, and repeated patterns, where other signal process-
ing approaches fail or are not as effective [49]. The DWT
decomposes a signal into a set of basic functions called
Wavelets [22], [50]–[52]. The wavelet-packet decomposition
at the j-th level of EEG signals given 2j set of sub-band coef-
ficients of length

{
Pj,m (n) k = 1, 2, ..., N2j

}
. These wavelet

coefficient vectors reflet the change in the signal with time in
the frequency: [

(m− 1)Fs
2j+1

,
mFs
2j+1

]
(1)

where Fs is the sampling frequency, which is 250 Hz in this
study and m = 0, 1, ..., 2j−1. The frequency indexes range
from 0 to 2j − 1 for zero to the Nyquist frequency (125 Hz)

with an original sampling frequency of 250 Hz. The original
signals were decomposed with a DWT of 6 levels, which is
similar to our previous study [33]. In order to reconstruct the
original signal, the inverse wavelet transform was applied to
the wavelet coefficients. For example, δ band of the EEG
signal was constructed using the wavelet coefficients W6.0 -
W6.1. The reconstruction of θ , α and β band follows the same
manner. As shown in Table 1, on the basis of frequency bands
of extracted from the wavelet coefficients, the frequency
bands δ, θ α and β are defined by acquiring the mean of
corresponding frequency bands in relevant level. Thus the
sub-bands EEG signals can be obtained for further analysis.

TABLE 1. Frequency bands extracted from the wavelet coefficients and
grouped into corresponding frequency sub-bands (δ, θ , α, β ).

.

B. FEATURE EXTRACTION
Five categories of features are extracted in the present study
including (1) sample entropy calculated from vertical EOG,
(2) sample entropy calculated from horizontal EOG, (3) spec-
tral entropy calculated from EEG, (4) sample entropy cal-
culated from EEG, (5) approximate entropy calculated from
EEG. We use a sliding window with a length of 4 seconds
and 1 second step to calculate the entropy of EEG from the
selected six channels in the occipital region. Because in this
region, a significant change in entropy and complexity could
be found [24]. While a sliding window of 10 seconds and
1 second step to calculate the entropy of vertical and hori-
zontal EOG respectively. The details of the feature extraction
methods are as follows.

1) APPROXIMATE ENTROPY
approximate entropy (AppEn) is a nonlinear dynamic param-
eter, which can reflect the regularity of signals and is capable
for complex system classification [24], [53]. Approximate
entropy can be calculated by the following equations.

Let a time series containing N samples be X =

[x(1), x(2), ..., x(N )]. Two sub-sequences of X can be given
as follows:

X (i) = [x(i), x(i+ 1), ..., x(i+ m− 1)],

1 ≤ i ≤ N − m+ 1

X (j) = [x(j), x(j+ 1), ..., x(j+ m− 1)],

1 ≤ i ≤ N − m+ 1 (2)

Define the distance between any two m-dimensional vec-
tors X (i) and X (j) as:

d |X (i),X (j)| = max |x(i+ k)− x(j+ k)| (3)
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Define a threshold r = k × SD, (r > 0), which represent
the noise filter level. r = 0.2 in the present work and SD is the
standard deviation of the time series. num{d |X (i),X (j)| ≤ r}
is the number of statistics for each 1 ≤ i ≤ N −m+1, which
meet the condition of d |X (i),X (j)| ≤ r , and the ratio of its
total length to the vector Cm

i (r) is recorded as follows:

Cm
i (r) =

1
N − m+ 1

∗ num{d |X (i),X (j)| ≤ r}

i = 1, ...,N − m+ 1, i 6= j (4)

Cm+1
i (r) can be obtained in the similar way above.

Cm+1
i (r) =

1
N − m+ 1

∗ num{d |X (i),X (j)| ≤ r}

i = 1, ...,N − m+ 1, i 6= j (5)

AppEn(m, r,N ) is defined as follows:

AppEn(m, r,N ) =
1

N − m+ 1

N−m+1∑
i=1

logCm
i (r)

−
1

N − m

N−m∑
i=1

logCm+1
i (r) (6)

2) SAMPLE ENTROPY
Sample entropy (SamEn) is an improved method of
AppEn [54], which is given by the following equation.

SamEn(m, r,N ) = − ln
Bm+1 (r)
Bm (r)

(7)

Define Bm (r) as

Bm (r) =
1

N − m

N−m∑
i=1

Cm
i (r) (8)

In this study, the parameters are typically chosen as m = 2
and r = 0.2 ∗ SD.

3) SPECTRAL ENTROPY
Spectral entropy (SpeEn) has shown the potential on EEG
signal processing [55]. There are three steps for SpeEn cal-
culation. Firstly, estimate the parameters of the model-based
method from a given data sequence x(n), 0 ≤ n ≤ N −
1,N = 2500. Secondly, compute the PSD estimated from
these estimations. Thirdly, Shannon transformation.
Step one: The AR method is based on modeling the data

sequence x(n) as the output of a causal and discrete filter
whose input is white noise, which is expressed as below.

x (n) = −
p∑

k=1

a (k) x (n-k)+ ω (n) (9)

where a(k) is the AR coefficient, x(n) is the white noise of
variance equal to σ 2, and p is the order of the AR model.
In this work, AR coefficients are estimated by the recursive
Burg method, which is based on minimizing the forward
and backward prediction errors. From the estimation of AR

parameters by the Burg algorithm, PSD estimation is formed
as [56].

P̂burg (f ) =
êp∣∣1+∑p

k=1 âp (k) e
−jπ fk

∣∣ (10)

where êp is the total least squares error. The model order p of
AR method is determined by using the Akaike information
criterion (AIC) [57]. In this study, the model order is taken as
p = 10.
Step two: Then the PSD results of each frequency band

are normalized to obtain the relative PSD of one band to the
whole frequency band.

Prelative =

∑f=f2
f=f1

P (f )∑f=fH
f=fL P (f )

(11)

where [fL , fH ] = [0.1, 31.25] and [f1, f2] is determined by the
frequency sub-band selected according to δ, α, β, θ .
Step three: Following normalization, the correspond-

ing spectral entropy is defined according to Shannon
transformation:

H (f ) = Q(f ) ∗ log
1

Q(f )
(12)

The formula for calculating the SpeEn is as follows:

SpeEn =

∑
f
H (f )

log(N (f ))
(13)

4) FEATURE FUSION BASED ON CCA
Consider two n-dimensional variables X and Y , their linear
combinations can be presented by x = xTWx and y = yTWy
respectively. We use CCA to find the weight vectors Wx and
Wy that maximize the correlation between x and y to keep
their independent as much as possible.

max
Wx,Wy

ρ (x, y) =
E
[
xT y

]√
E
[
xT x

]
E
[
yT y

]
=

E
[
W T
x XY

TWy
]√

E
[
W T
x XXTWx

]
E
[
W T
y YY TWy

] (14)

where the maximum of ρ with respect to Wx and Wy is the
maximum canonical correlation, T means transposed matrix.

Finally, the feature fusion is as follows

F = Wx ∗W T
x ∗ x +Wy ∗W T

y ∗ y (15)

In the present work, there are five types of entropies
totally. For EEG entropy calculation, we can get three types
of EEG entropies from the sliding window of 4 s, they are
spectral entropy, sample entropy and approximate entropy
respectively. Furthermore, the EEG signals in δ, α, β and θ
bands are applied in entropy calculation and result in twelve
EEG entropy features. They are δSpeEn, δSamEn, δAppEn, αSpeEn,
αSamEn, αAppEn, βSpeEn, βSamEn, βAppEn, θSpeEn, θSamEn, θAppEn
respectively. Using equation (14)- (15), we can obtain the
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fusion entropy with four dimensions for each EEG seg-
ments. While for EOG entropy calculation, we can get two
types of EOG entropies from the sliding window of 10
s, they are sample entropy calculated from vertical EOG
(VerticalSamEn) and sample entropy calculated from horizon-
tal EOG (HorizonalSamEn). Finally, the six dimension entropy
combing EEG and EOG to component a new vector, which
can be fed to the RVM classifier.

C. CLASSIFICATION
Relevant vector machine was applied for the alert state and
fatigue state classification. Details for the two classes classifi-
cation are shown as follows: Given an input variable x, to get
its posterior probability relative to each class. According to
the theory of generalized linear models, the logical sigmoid
link function σ (y) = 1/1+exp(−y) is introduced for y(x;w)
making P(t|x) obey the Bernoulli distribution. Thus the
probability prediction of the input variable objective function
is:

p(ti = 1|w) = σ (y(xi;w)) =
1

1+ exp(−y(xi;w))
(16)

where y (xi;ω) =
∑N

n=1 ωnK (x, xi)+ω0,ωn are the weights,
K (x, xi) is the kernel function.
Assuming that the variables are distributed independently,

the likelihood function can be obtained as follows:

p(t|w) =
N∏
i=1

σ {y(xi;w)}ti ∗ [1− σ {y(x;w)}]1−ti (17)

where w is the weight and the target value is ti ∈ {0, 1}.
Michael E. Tipping Proposed a Laplace approximation pro-
cedure to solves the above equation, and the steps are as
follows [58]:
Step one: Given the iteration position of the model pos-

terior distribution, for the current parameter with the fixed
value α,the weight with the highest probability of wMP
can be obtained. Follow the of Bayesian theory p(w|t, α) ∝
p(t|w)p(w|α), we can get:

wMP = argmax
w

(w|t, α) = argmax
w

p(t|w)p(w|α)p(α)
p(α|t)

= argmax
w

p(t|w)p(w|α) = argmax log
w

p(t|w)p(w|α)

(18)

That is, wMP is obtained when maximizing the formula.

log p(t|w)p(w|α)

=

N∑
i=1

[ti log yi + (1− ti) log(1− yi)]−
1
2
wTAw (19)

where A = diag(α0, α1, ..., αN ), yi = σ {y(xi;w)}. The above
formula is a logical likelihood function with a penalty term,
and it can be able to obtain extreme values under repeated
iterations. The Hessian matrix of the formula (19) can be
calculated in the next step, using the Newton method, which
is an effective method [59].

FIGURE 4. Performance comparison of classification on features of the
sub-bands entropy (EEG+EOG) and fusion entropy (EEG+EOG).

Step two: The Laplacemethod is a quadratic approximation
of the logical posterior. Perform first-order and two-order
differentials by formula (19) and then we can get:

g = ∇w log[p(t|w)p(w|α)] = 8T (t − y)− Aw (20)

where 8 is a basic function.

8 = [φ (x1) , φ (x2) , ..., φ (xN )]

8(xn) = [1,K (xn, x1) ,K (xn, x2) , ...,K (xn, xN )]T

H = ∇w∇w log[p(t|w)p(w|α)] = (−8TB8− A)−1

(21)

1w = −H−1g (22)

wnewMP = wMP +1w (23)

where y = [y1, y2, ..., yN ]T ,B = diag(β1, β2, ..., βN ),
βn = σ [y(xn)]{1 − σ [y(xn)]}, H is a Hessian matrix and
covariance matrix

∑
can be obtained.∑
= −H = (8TB8+ A)−1 (24)

Step three: Using the first-order reciprocal g = 0 and the
formula (24) of the logical posterior distribution, we can get:

wMP =
∑

8TBt (25)

Using Gaussian approximation statistic
∑

and wMP
(instead of µ ) and continuously update the parameters,
the expression of the terminator is obtained as follows:

y∗(X∗,WMP) = 8(X∗)WMP (26)

Substituting the result into the formula (16), we can get
the probability that the test points belong to the classes 1 and
0 respectively. Then according to the probability value p(t∗ =
1|x∗) and p(t∗ = 0|x∗) determines the classification category
of x∗.

In addition, the choice of kernel function determines the
way the sample is mapped from low-dimensional space to
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FIGURE 5. The classification performance of the RVM based on sub-bands using different features (sample entropy, approximate entropy and spectral
entropy) for subject 1 to subject 22.

high-dimensional space. The comprehensive performance of
learning has a great impact. The kernel function chosen in this
paper is a radial basis function (RBF).

K (x, xi) = exp
(
−g ‖x − xi‖2

)
(27)

IV. EXPERIMENTAL PROTOCOL
A. PARTICIPANTS
To evaluate the performance of the proposed method,
twenty-two healthy subjects (seventeen males and five
females) from National University of Singapore participated
in the driving fatigue experiments at the Cognitive Engineer-
ing Laboratory of Singapore Institute for Neurotechnology
(SINAPSE). All the experiments were carried out in the after-
noon from 3 pm to 5 pm, as it was easier to induce fatigue.
These participants are 21.5± 1.5 years old with right-handed
and have a normal or corrected-to-normal vision. Before the
experiment, participants were asked to refrain from consum-
ing caffeine and alcohol approximately four h and alcohol 24
h and reported compliance with these instructions.

B. DRIVING EXPERIMENTAL TASK
The driving experimental task is designed similar to the proto-
col being followed in our previous work [33], [60], [61]. The
subject set in the front of the screen for a distance of 1.8
meters, these screens display the landscape along the road

FIGURE 6. Receiver operation characteristic of RVM for the subject 6
under different sub-bands features.

and obey to the left driving rules according to Singapore
standards. The driving experiment is a continuous task which
lasts for lasted 1.5 h. The participants were instructed to
drive a stimulated car at a pre-set constant speed of 80 km/h,
and follow a guided car in a two-way rural road without
crossroads. A questionnaire is completed by the participant
independently according to the NASA task load index [62]
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FIGURE 7. The classification performance of the RVM based on different features for subject 1 to subject 22.

C. OFF LINE DATA ANALYSIS
The duration of each experiment was 90 minutes and no one
quit the experiment because he/she was not exhausted enough
to sleep. From the NASA task load index provided by the par-
ticipants, the values of ‘‘Mental demand’’ and ‘‘Frustration’’
are 79± 5 and 65± 7, which indicates that most participants
perceived mental fatigue at the end of driving experiments.
Thus, in off line analysis, the first and last 10 minutes
(more than 10 minutes actually) were extracted for further
analysis, which are labeled to alert phase and fatigue phase
respectively. More detail, for the first 10 minutes, we used a
sliding window of 4 seconds overlapping 3 seconds resulting
in 600 segments for EEG analysis. Meanwhile, we used a
slidingwindow of 10 seconds overlapping 9 seconds resulting
in 600 segments for EOG analysis. For the last 10 minutes,
we applied the same process sequence according to the first
10 minutes. Finally, 1200 samples for each subject were
obtained and then be stored in random order. For the driving
fatigue classification, a cross-validation approach [63] was
applied for the RVM training and classification (60% for
training, 40% for testing).

V. RESULTS
We compared the performance of RVM classifier on dif-
ferent EEG entropy features extracted from different fre-
quency sub-bands (δ, α, β, θ ) and EOG entropy features. The
averaged accuracy and standard deviations for twenty-two
subjects are shown in Fig.4, which are 89.5 ± 7.1%, 94.5 ±
4.8%, 91.8 ± 7.3%, 94.2 ± 4.1% and 99.1 ± 1.2% under
four sub-bands entropy (EEG+EOG) and fusion entropy

(EEG+EOG) respectively. The statistical significance of the
entropy features was estimated by the two-tailed student-
test across all the five features [64]. The p-value from
the Student-test shows that the significantly different exist
between the fusion entropy and the sub-bands entropy(p <
0.001). A significance level of p < 0.01 was observed between
δ band entropy features and θ band entropy features, while
p < 0.05 is for α band entropy features and β band entropy
features. Furthermore, at the aim of providing more details
about the classification results, the accuracies obtained on
different entropy features for each subject are shown in Fig.5.
The bars and the error bars represent the average accuracies
and standard deviations respectively. Asterisks indicate the
significance levels of accuracy differences between different
features. (* p < 0.05, ** p < 0.01, *** p < 0.001).

The receiver operation characteristic (ROC) curve depicts
the relationship between the two rates of true positive
rate (TPR) and false positive rate (FPR) [65]. True posi-
tive (TP) presents the number of a fatigue sample is rec-
ognized as a fatigue state. True negative (TN) presents the
number of an alert sample is recognized as an alert state.
False positive (FP) presents the number of a fatigue sample
is recognized as an alert state. False negative (FN) presents
the number of an alert sample is recognized as a fatigue state.
TPR and FPR can be defined as follows,

TPR =
TP

TP+ FN

FPR =
FP

FP+ TN
(28)
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FIGURE 8. The values of different entropies averaged by all twenty-two participants.

In order to show the performance of RVM classifier on
different entropy features extracted from different frequency
sub-bands (δ, α, β, θ ) clearly, we calculated the ROC curve
for the subject 6 as an example shown in Fig.6.

VI. DISCUSSION
A. REACTION TIME
During the online experiment, reaction time has been
recorded as a behavior index, which can reflect the level
of fatigue. It is defined as the visual stimuli of a break
signal make by the guided car and the break signal made by
the participant. Thus we extracted the reaction time which
obtained in the first 10 mins and last 10 mins for twenty-two
subjects respectively. As shown in Fig.7, for each subject the
averaged reaction time in the last 10 mins obviously increase

compared with the averaged reaction time in the first 10 mins.
It revealed that after 90 mins driving experiment, for all the
subject have changed form alert phase to fatigue phase. The
averaged reaction time for twenty-two subjects during the
first 10 mins and the last 10 mins are 1.06± 0.06% secs and
1.82± 4.8% secs, respectively.

B. ENTROPY ANALYSIS
In the present study, five categories of entropies were
applied for driving fatigue classification as shown in Fig.8.
Fig.8(a) and (b) show the sample entropy calculated from
vertical EOG and horizontal EOG. The red asterisks stand
for the sample entropy calculated from the alert phase, while
the blue triangles represent the sample entropy calculated
from the fatigue phase. There are 600 samples for each phase.
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TABLE 2. The classification performance of the RVM based on sub-bands using different features (sample entropy, approximate entropy and fuzzy
entropy) for subject 1 to subject 22.

Additionally, the sample entropy for vertical EOG calculated
from the alert phase is bigger than the fatigue phase, which
indicates that the frequency of eye-blink became higher when
the participant feels mental fatigue. However, the NASA task
load questionnaire and the statistics reaction time showed the
subject was not exhaust enough to sleep, which means these
participants have not entered the excessive fatigue phase.
Thus the decrease pattern of eye-blink has not been observed.
The sample entropy for horizontal EOG calculated from the
alert phase is smaller than the fatigue phase, which indicates
that the movement of eyes became slow and the participant
unwilling or delay to pay attention the outside environment
when he/she feels mental fatigue. Another study also proved
that when a person enters into the fatigue state eye movement
decreases while the blink rate increases [66].

Fig.8(a)-(e) represent sample entropy calculated from ver-
tical EOG of the alert and fatigue phase, sample entropy
calculated from horizontal EOGof the alert and fatigue phase,
spectral entropy calculated from EEG of the alert and fatigue
phase, sample entropy calculated from EEG of the alert and
fatigue phase and approximate entropy calculated from EEG
of the alert and fatigue phase respectively. In Fig.8(c),(d) and
(e), with the time on task of driving, for most participants the
entropies (spectral entropy, sample entropy and approximate
entropy) in occipital area present an obvious decrease pattern

resulting in the values of the alert stare are much higher
than the fatigue state, especially for the approximate entropy.
This result well agrees with our previous study [33] and
Chi Zhang’s study [24]. More importantly, this phenomenon
reveals that with the depth of mental fatigue the complexity
of EEG signal in the occipital area reduced.

Furthermore, we have tried using fuzzy entropy [67] as an
alternative method of spectral entropy under the same test
environment. Experiment results prove that fusion of differ-
ent features can enhance the performance of the detection
system [22], [68]. As shown in Table 3 and Fig.5, the per-
formance sub-bands fusion entropy (sample entropy, approx-
imate entropy and fuzzy entropy) analysis of EEG and EOG
is not superior than the sub-bands fusion entropy (sample
entropy, approximate entropy and spectral entropy) analy-
sis (97.9 ± 3% vs. 99.1 ± 1.2%). Even fuzzy entropy is
robust [69], it is shown that spectral entropy is more sensitive
to fatigue-related EEG analysis.

C. COMPARISON OF DIFFERENT DRIVER FATIGUE
DETECTION METHODS
In this paper, we proposed a fusion entropy (sample entropy,
approximate entropy and spectral entropy) analysis of EEG
and EOG for driving fatigue classification was proposed in
this paper. Obviously, the simultaneous usage of EEG and
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TABLE 3. Summary of relevant research works in the field of driver fatigue detection using different methods.

EOG signals can increase the accuracy of identification and
classification results. A summery of the recent typical studies
about driving fatigue classification are shown in Table 3.
Compered with the existing systems and methodology, our
system is vast superior in higher classification rate and wire-
less dry EEG and EOG collection, which make it a further
step in a realistic application.

VII. CONCLUSION
In this paper, to measure the time series complexity of EEG
signal, fusion entropy (sample entropy, approximate entropy
and spectral entropy) analysis of EEG and EOG for driving
fatigue classification was proposed. Twenty-two subjects par-
ticipated in the fatigue driving experiments for a duration
of 90 minutes. The experimental results demonstrated that
the fusion entropy analysis combining EOG and EEG could
provide an effective method for driving fatigue detection,
and the average accuracy rate was up to 99.1 ± 1.2%. For
the sub-bands entropy, the averaged accuracy and standard
deviations are 89.5 ± 7.1%, 94.5 ± 4.8%, 91.8 ± 7.3%
and 94.2 ± 4.1% respectively. More interestingly, firstly we
found that when a person enters into the mental fatigue
state his/her eye movement decreases while eye blink rate
increases. Secondly, higher classification accuracy rate has
been obtained by sub-bands entropy fusion by simultaneous
usage of hybrid EEG and EOG signals. Thirdly, the p-value
from the Student-test shows that the significantly different
exist between the fusion entropy features and the sub-bands
(δ, α, β, θ ) entropy (p < 0.001).
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