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ABSTRACT Considering the strong fluctuation and the nonlinearity of wind speed, and atmospheric
uncertainties, wind speed prediction based on the hybrid model is presented, which is composed of the
neural network, variational mode decomposition (VMD), and Lorenz disturbance. First, the VMD is used
to process the data to get several intrinsic mode functions (IMFs). Second, the neural network model (NN
model) can be established by these IMFs of the training set, and the validation set is used to adjust the model
parameters. Subsequently, given the nonlinearity of wind speed, Lorenz disturbance is added to determine
the finial model, and the best Lorenz disturbance parameter and the best Lorenz disturbance sequence can be
obtained by minimizing the mean absolute error of validation set. At last, the wind speed can be forecasted
by the hybrid model. Taking Sotavento wind farm in Spain as an example, the results show that, the hybrid
model has stable prediction performance, and the distribution characteristics of its results are consistent with
the actual wind speed. The general model only focuses on improving prediction accuracy. However, on the
basis of improving the forecasting accuracy, the proposed model not only enhances the prediction stability,
but also restores the characteristics of wind speed. This research work provides a more scientific basis for
wind power dispatching arrangement, and it is of great significance to improve the utilization rate of wind
power.

INDEX TERMS Wind speed, neural network, Lorenz disturbance, VMD, hybrid model, atmospheric

uncertainties.

I. INTRODUCTION

‘New Energy Outlook 2017’ in the Bloomberg New Energy
Finance (BNFN)[1] shows that, with the cost of renewable
energy decreasing, global total investment in power genera-
tion will continue to increase in the next 20 years, renewable
energy presents a good growth trend. The Asia-Pacific region
will be the main market for energy investment, and its total
investment scale will be roughly equivalent to the sum of the
rest regions, in which wind power and solar energy nearly
account for 1/3 respectively. According to the global wind
energy council (GWEC) [2], in 2017, the global cumula-
tive installed capacity of wind power exceeded 539 GW,
the global annual installed capacity is 52.6 GW, and the
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new installed capacity of Asia and China is 24.4 GW and
19.5 GW respectively. Asia has become an important market
for renewable energy, and China has become the country with
the largest wind power development in the world.

Wind power, with the characteristics of low cost and non-
pollution, has attracted the worldwide attention, but the ran-
domness, volatility of wind speed and intermittency of wind
power make its developments face great challenges. There-
fore, accurate and stable wind power prediction is essential,
which not only contributes to the stability of wind power
system, but also can provide a scientific basis for making
dispatching plan.

There are many methods to improve the prediction accu-
racy of wind power, such as the data preprocessing technol-
ogy, the proper prediction model and so on. At present, there
are many technologies of preprocessing data, such as wavelet
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transform [17], [29], [30], empirical mode decomposition
(EMD) [15], [16], [18], principle component analysis [31],
[26] and cluster analysis [35]. Principle component analy-
sis and cluster analysis are used to process the multivariate
data, wavelet transform and empirical mode decomposition
(EMD) are used for single variables or highly volatile data.
Compared with wavelet transform, EMD not only has the
advantage of multiresolution, but also overcomes the diffi-
culty of selecting wavelet basis and determining the decom-
position scale. However, EMD exists the problems of end
effect and mixed mode. In order to solve the problems of
EMD and wavelet transform, variational mode decomposi-
tion (VMD) is introduced. Compared with other data process-
ing methods, VMD can decompose wind speed into several
IMFs that fluctuates around a central frequency, which
helps to restore its fluctuating feature during the prediction
process.

At present, the forecasting methods of wind speed can
be divided into the statistical method, the physical method,
and the artificial intelligence method, among which the sta-
tistical method and artificial intelligence method are widely
used [3]. Time series method [4]-[6], MCMC [7], [8], support
vector machine (SVM) method [9], [10], [34], and neural net-
work [11], [12], [36], are often used to make wind speed and
wind power prediction. To depict the mean and fluctuation of
wind speed accurately, [5] builds many time series models
such as ARIMA, ARIMA-GARCH and ARIMA-GARCH
(M), and the results show that ARIMA-GARCH(M) model
can reflect the mean of wind speed and its fluctuating trend.
SVM has obvious advantage in regression and time series
prediction. Therefore, in [10], LS-SVM model is established
to make wind speed prediction, then the predicted results
are corrected by error. And the results shows that, compared
with the single LS-SVM model, the accuracy of the corrected
prediction results is improved significantly. In [26], ICA and
PCA are utilized to preprocess the wind speed, then
RBF neural network is used to predict the wind speed, the pre-
diction results show that the model has a small prediction
error and it can effectively display the wind speed charac-
teristics. [32] divides the forecasting into two stages, in the
first stage, the adaptive wavelet Neural network is used to
do a regression for each decomposition signal, in the second
stage, the feed-forward neural network is utilized to trans-
form wind speed into wind power forecast by the nonlinear
mapping. The result shows that, compared with the based
model, the proposed method is more effective in wind power
forecasting. The main purpose of these above methods is
upgrading the algorithm itself, they neglect that the uncertain
factors in atmosphere also affect the wind speed. In order
to quantify the atmospheric uncertainties, the paper intro-
duces the nonlinear system to establish Lorenz disturbance
model [13], [14], which can describe the nonlinear character-
istic, decrease the effect of uncertain factors, and improve the
prediction accuracy.

Given the nonlinearity of wind speed, NN model with
strong nonlinearity learning ability is presented. Based on
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the strong fluctuation of wind speed, the data is prepro-
cessed by VMD. Considering the atmospheric uncertainties,
Lorenz disturbance is introduced. To sum up, considering
the characteristic of wind speed, the paper establishes a
hybird model based on neural network, Lorenz disturbance
and VMD.

The structure of this paper is as follows: The second
section introduces the theories, which include VMD, neu-
ral network and Lorenz system. The third section intro-
duces the wind speed forecasting process in detail, including
the calculation of Lorenz disturbance sequence, data anal-
ysis and the whole prediction process. The fourth section
mainly introduces the prediction results and error analy-
sis, and the fifth section makes a conclusion and gives a
prospect.

Il. VMD, NEURAL NETWORK AND LORENZ SYSTEM
A. VARIATIONAL MODE DECOMPOSITION
VMD, proposed by Konstantin Dragomiretskiy and
Dominique Zosso in 2014, is a self-adaptive, quasi-
orthogonal, and completely non-recursive decomposition
method [27]. The method uses Hilbert transform and Wiener
filter to decompose the signal into several intrinsic mode
functions (IMFs) of finite bandwidth. It overcomes the alias-
ing problem of EMD. The decomposing steps are divided
into constructing the variational problem and carrying out
VMD algorithm.

The steps of constructing the variational problem are as
follows:

Step 1: Each mode function u; can get its analytic signal
S(t) by Hilbert transform, which is

S = [8() + L ue(o) ey
wt

Step 2: The analytic signal of each mode function is
multiplied by the estimated central frequency, and it
is moved to the base frequency spectrum B(f), which
is

B(t) = {[8(t) + #]*uk(r)}e*fwk’ @)

Step 3: Gaussian smoothing is used to solve the bandwidth
of each mode function, the sum of each mode function is
the decomposed signal X(#) and the constraint variational
problem is the minimum sum of the estimated bandwidth in
each mode function, that is:

min(Y" ¢ _ 18160 + Ly ue i)

s.t. Zk u =f 3)

In the formula (3), f is the original signal.

To implement VMD, penalty factor o and Lagrange
multipliers A(#) are introduced to transform constrained
variational problems into non-constrained variational prob-
lems. Among them, the augmented Lagrange formula is
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as follows:
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Step 4: Repeat the step 2-3 until the convergence
condition (8) is reached, then the renewal ends with getting
several narrow band IMF.

2

B. NEURAL NETWORK

Artificial neural network is a simplified computational model
that simulates the design of human brain, which is charac-
terized by its strong nonlinear mapping ability. This model
contains a large number of neurons organized in a hierarchical
way for calculation. A classical neural network consists of
three layers: input layer, output layer and hidden layer. Com-
pared with the traditional linear algorithm, the advantages
of artificial neural network mainly lie in its self-learning
function, associative storage function and the ability to search
optimal solutions quickly. Wind speed sequence has nonlin-
ear characteristic, so the neural network can embody the non-
linear process of wind speed well. In the paper, data is divided
into training set, validation set and test set, the neural network
algorithm flow is shown in figure 1.

In this paper, four neural network models are selected,
which is long short-term memory(LSTM) neural net-
work  [19], [33], back propagation(BP) neural
network [20], [21], radial base function (RBF) neural
network [22], [23] and Elman neural network [24], [25]
respectively. LSTM neural network solves the problem of
long-distance dependence and it is suitable for processing
time series data. BP Neural Network has the ability to pop-
ularize. RBF Neural Network has the advantages of simple

i\tn+1 o

2
g < e ®)
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FIGURE 1. The flow chart of neural network prediction.

TABLE 1. The parameters of neural network.

neural networks Activation function ;i:x\gt?xrrl;
LSTM Sigmoid 1-25-1
BP Sigmoid 1-18-1
RBF Gaussian 1-25-1
Elman Sigmoid 1-18-1

structure, fast learning, overcoming local minimum problem
and approaching arbitrary nonlinear function. Elman Neural
network not only has a fast convergence speed, but also has
strong associative memory and optimized computing ability.
They are all based on the structure of a three-layer neural
network. On the premise of satisfying the accuracy, the basic
principle is to minimize the number of hidden layer nodes.
The various parameters used in the neural network are shown
in table 1.

C. LORENZ SYSTEM

In 1963, E.N. Lorenz, a famous meteorologist, firstly discov-
ered chaotic motion to solve mathematical model equations
when studying the regional microclimate. While researching
in Rayleigh Bernard convection of the regional microclimate,
he intercepted the first three of Fourier series to simplify the
solution of the nonlinear ordinary differential equation, and
Lorenz equation was obtained as follows:

dx

g—t=—6(x—y)

d—);z—xz+rx—y )
dz

E b

o = bz
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TABLE 2. The actual fluid motions of lorenz system in the conditions of
o =10, b = 8/3 and different r.

Rayleigh number 7 Actual fuid motion

o<r<i Heat conduction
1<r <1397 Convection
13.97 <r <24.74 Transient chaos
7 >24.74 Chaos

In the formula (9), x, y, zis the state variable of Lorenz sys-
tem, in which, x is the turning rate of convection, y expresses
as the horizontal direction temperature difference of upper
and lower convection, and z indicates the deviation degree of
vertical direction temperature difference caused by convec-
tion. o, r and b are positive real numbers of unit dimension,
o represents the Prandtl number, r expresses Rayleigh num-
ber, b is related to the range of the climate region.

The solution of Lorentz equation is closely related to the
initial conditions, and table 2 is the actual fluid motion state
in different Rayleigh numbers. Selecting the initial condi-
tion as (0, 1, 0) and fixing the parameters o and b, namely
o = 10,b = 8/3, different Rayleigh Numbers r is set to
observe the Lorenz attractor morphology r. Figure 2 is Lorenz
attractor morphology respectivelyinr = 0.6,r = 12,r = 26
and r = 48. The formation of wind is the nonlinear process
of atmospheric power system, so this paper mainly studies
Lorenz system in chaos state

lll. WIND SPEED PREDICTION

A. LORENZ COMPREHENSIVE DISTURBANCE FLOW
According to table 2 and figure 2, with the change of initial
conditions and Rayleigh number, Lorenz attractor presents
different motion states. When r is 24.74, Lorenz system
starts to go into chaotic state. Considering the influence
of Lorenz system in chaotic state on wind speed, the con-
cept of Lorenz disturbance sequence (LDS) is proposed.
The steps of calculating Lorenz disturbance sequence are as
follows:

Step 1: Solve the Lorenz equation. The initial condition
of Lorenz equation is set as (0, 1, 0), and the parameter is
selected as 0 = 10, b = 8/3,r = 28.

Step 2: Standardize the data, the Min-Max method is to
eliminate the influence of dimensionality. The equation is as
follows:

Zt — Zmin

4 Xt — Xmin 4 Yt — Ymin Z,

t = = =

9 9
Ymax — Xmin Ymax — Ymin Zmax — Zmin

(10)

where, x;,y:,2,t = 1,2...n is the numerical solution
of Lorenz equation, Xmin, Ymin> Zmin aNd Xmax, Ymaxs Zmax
are respectively the minimum and maximum values
of x,y,z

Step 3: Calculate the Lorenz disturbance sequence. The
Chebyshev distance of the normalized data is as the
Lorenz disturbance sequence. The Chebyshev formula is
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FIGURE 2. Lorenz attractor morphology in different Rayleigh Numbers.

as follows:
D(C; — Co) = max(|x; — Xol, [yt — Yol 1zt —20)  (11)
where, C; is, Cy is (xo, Yo, 20)-
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FIGURE 4. Wind speed distribution.

Figure 3 is the Lorenz disturbance sequence calculated by
the Chebyshev formula.

B. WIND SPEED PREDICTION BASED ON LORENZ
DISTURBANCE AND VMD

1) ORIGINAL SEQUENCE ANALYSIS

This chapter selects the Spanish Sotavento wind farm
data [28] as an example analysis. The sampling interval time
is 10 minutes, the sample size is 256, the first 65% sample is
selected as the training set, the next 17.5% is the validation
set, the rest is the test set. Figure 4 is the wind speed series,
which shows that wind speed has a strong randomness and
volatility, and it is a non-stationary sequence.

2) DECOMPOSE THE ORIGINAL SEQUENCE

Wind speed, as time series data, has strong fluctuation.
VMD decomposes it into multiple components around its
corresponding central frequency, which can highlight the
fluctuation characteristic and alleviate the lag caused by time
series modeling. In figure 5, original sequence is decomposed
into several intrinsic mode functions by VMD, which reduces
the randomness of wind speed fluctuations.
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FIGURE 5. VMD of wind speed.

3) WIND SPEED FORECASTING PROCESS

In this paper, Matlab is used as analysis tool, VMD and
neural network are used to predict wind speed, LDS is used to
correct the predicted result of validation set, then wind speed
prediction result can be optimized. The steps of modeling are
as follows:

Step 1: Decompose the original series. The unstable orig-
inal sequence is decomposed into 7 intrinsic mode functions
by VMD.

Step 2: Establish model. IMFs of train set are used to
build neural network model (LSTM, BP, RBF, and Elman).
Neural network model optimized by VMD is called V-NN,
and LSTM, BP, RBF and Elman perfected by VMD are
respectively called as V-LSTM, V-BP, V-RBF and V-Elman.

Step 3: Adjust the parameters of NN model. The model
of training set is used to predict the validation set, and the
parameters is adjusted by the predicted value of training set.

Step 4: Determine the best Lorenz disturbance parameter
and Lorenz disturbance sequence. Given the influence of
atmospheric uncertainties on wind speed, LDS is used to
modify the prediction results of validation set, and its min-
imum mean absolute error is utilized to make sure of the
best Lorenz disturbance parameter and the best Lorenz dis-
turbance sequence. The correcting formulation is as follows:

Vip=V +IL (12)

In the formula (12), Vi p is the corrected prediction value
of validation set, V is its preliminary prediction result of
validation set, [ represents Lorenz disturbance parameter, and
its positive and negative represent the enhancement or atten-
uation of LDS, L denotes LDS. When the predicted value
is less than actual wind speed, [ is positive, whereas, [ is
negative. The models based VMD and Lorenz disturbance
are all called as LD-V-NN model. V-LSTM, V-BP, V-RBF
and V-Elman corrected by LDS are named as LD-V-LSTM,
LD-V-BP, LD-V-RBF and LD-V-Elman respectively.
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TABLE 3. The best disturbance coefficient and disturbance sequence.

Model / The best disturbance sequence
best
0.75
0.65 \\\
LD-V-LSTM 0.1224 g oo -
Zoas ~__ S B
3 0.35 - \\\
%% s 10 s 20 2 3 s
t
0.9 1
LD-V-BP 0.1429 r ™
o4 s 10 s 20 25 30 3 20
0.65
3 o6 //
LD-V-RBF 0.3469 goss // 1
§ 0.5 — —
t
LD-V-Elman -0.2653
~ —

Step 5: V-NN model is adopted to forecast the test set value,
then the result is modified by the best LDS of Step 4.

vip =V + lvestLpest (13)

In equation (13), v is the preliminary predicted value of
test set, vp is its modified predicted value, lp.5 represents
the best Lorenz disturbance parameter, and Lpes represents
the best Lorenz disturbance, Ilp.5; and Ly are determined
by the step 4.

According to the minimum Mae, the best Lorenz distur-
bance coefficient and the best Lorenz disturbance sequence
are determined, as shown in table 3.

IV. WIND SPEED PREDICTION RESULTS AND ERROR
ANALYSIS

A. WIND SPEED PREDICTION RESULT

Figure 7 shows the wind speed prediction results, in which
the black solid line is the actual wind speed, the green dotted
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line is the prediction results of NN model, the blue line with o
is the prediction results of V-NN model, and the red line with
* 1s the prediction results of LD-V-NN model. Figure (a) is the
prediction results based LSTM neural network, figure (b) is
the predicted values on basis of BP neural network, figure (c)
is the forecasting lines grounded upon RBF neural network,
figure (d) is the predictive curves founded on Elman neural
network. In figure (a), the predicted results of LSTM model
are obviously lagged the actual values, the fluctuation ampli-
tude of prediction results is greater than that of actual values.
With LSTM model compared, V-LSTM model solves the
lag problem of predictive values, and the predicted curve of
LD-V-LSTM model is closer to the actual values. Compared
with V-LSTM model, the prediction values of LD-V-LSTM
model are all smaller, and its errors are decreased.
In figure (b), the prediction results of BP Neural network have
a greater fluctuation amplitude than the original wind speed
sequence, and their fluctuation trend lags behind that of the
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original sequence distinctly. In V-BP model, the fluctuation
amplitude and trend of prediction values are basically con-
sistent with those of the original sequence, but the predicted
values are all less than the actual values. In LD-V-BP model,
the fluctuation trend, amplitude and size of predicted values
agree basically with the actual sequence.

In figure (c), the predictions of RBF model are far from the
actual curve, and the most evident one is at the end of predic-
tion values. The prediction tendency of V-RBF is similar to
that of actual wind speed, but its predicted values are below
the actual values. In LD-V-RBF model, the characteristics of
predicted values are not only similar to the actual one, but the
numeric size is closer to the real value. In the middle segment,
there is a certain consistency between the predicted trend of
Elman model and the actual trend, but the prediction effect is
not good at the end segment. The forecasting fluctuation trend
of V-Elman accords with the actual one, the values and the
tendency predicted by LD-V-Elman are completely identical
with the real one.

The predicted fluctuation amplitude and trend of
NN model are inconsistent with these of actual wind speed,
NN model optimized by VMD resolves these problems
exactly. Given the atmospherical uncertain factors, LDS is
added into the V-NN model, which modifies the predictive
results, improves the predicting precision, and shows the
fluctuation characteristics of wind speed. Not only does
LD-V-NN model take consideration of improving the pre-
diction accuracy, but also it quantifies the uncertainties in
the atmosphere. Thus, the proposed method has distinct
advantage in wind speed prediction.

B. MODEL EVALUATION OF WIND SPEED PREDICTION

There are many indexes to make model evaluation, such as
goodness of fit R?, mean absolute error (MAE), mean square
error (MSE), root mean square error (RMSE) and mean abso-
lute percentage error (MAPE) and so on. In this paper, three
indexes of MAE, MSE and MAPE are selected to evaluate the
model. The formula of MAE, MSE, MAPE is as follows:

1 .
MAE =~ 3 " |y = | (14)
t=1
1 & .
MSE = =% " (i =51 (15)
n t=1
L~ Gr =30
MAPE = ~ AR x4 (16)
n Z Vi

=1

In which, y(z) and 3(¢) represent the actual value and the
predicted value of wind speed at time ¢, the sample size is n.
Table 4 shows the model evaluation indexes. For sev-
eral NN models, all MAEs are smaller than 0.23, their
MSEs are all smaller than 0.06, their MAPESs are all smaller
than 0.06. For several V-NN models, all MAEs are smaller
than 0.18, all MSEs are smaller than 0.04, and their MAPEs
are 0.05. In these LD-V-NN models, MAEs are all smaller
than 0.07, MSEs are all smaller than 0.007, MAPEs are all
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TABLE 4. The model evaluation of wind speed prediction.

Specific model MAE MSE MAPE
LSTM 0.1075 0.0193 0.0248
NN
BP 0.1348 0.0270 0.0311
RBF 0.2024 0.0534 0.0466
Elman 0.2207 0.0587 0.0515
V-LSTM 0.0824 0.0104 0.0190
V-NN
V-BP 0.0891 0.0097 0.0203
V-RBF 0.1655 0.0301 0.0380
V-Elman 0.1720 0.0312 0.0402
LD-V-LSTM 0.0651 0.0068 0.0149
LD-V-NN
LD-V-BP 0.0351 0.0019 0.0081
LD-V-RBF 0.0304 0.0019 0.0070
LD-V-Elman 0.0295 0.0014 0.0068
TABLE 5. The decreasing proportion of model index.
Standard Comparative model MAE MSE MAPE
model
V-LSTM 23.33% 46.36%  23.33%
LSTM
LD-V-LSTM 39.48% 64.75%  39.90%
V-BP 33.87% 64.10%  34.56%
BP LD-V-BP 73.93% 92.82%  74.08%
V-RBF 18.24% 43.58%  18.54%
RBF
LD-V-RBF 84.98% 96.46%  85.07%
V-Elman 22.06% 4691%  21.97%
Elman
LD-V-Elman 86.61% 97.66%  86.73%

smaller than 0.02. Table 5 shows the decline percentage of
evaluation indexes. Taking NN model as the criterion, these
evaluation indexes of V-NN model and LD-V-NN model
are declined, in which the evaluation indexes of LD-V-NN
model are decrease more greatly, and its prediction accuracy
is obviously improved. According to table 4 and table 5,
these indexes of LD-V-NN model are far less than these of
NN model, so the prediction performance of proposed model
has been greatly improved, and the method is effective for
wind speed prediction.

C. ERROR ANALYSIS OF WIND SPEED PREDICTION

Table 6 is the error analysis of wind speed prediction,
the error range of LSTM model is in [—0.2721, 0.3935],
that of V-LSTM model is in [—0.2276, 0.1919], that of
LD-V-LSTM model is in [—0.2606, 0.1375]. The errors of
BP model distribute around [—0.5044, 0.2744], and these
of V-BP model distribute in [0.2349, —0.0305], these of
LD-V-BP distribute in [—0.1280,0.0900]. The error
range of RBF, V-RBF and LD-V-RBF is respectively in
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FIGURE 6. The flow chart of wind speed prediction.

[-0.5105, 0.3081], [—0.3293, —0.0355] and [-—0.1310,
0.0653]. The errors of Elman fluctuate in [—0.4008, 0.3866],
these of V-Elman fluctuate in [0.0650, 0.2715], these of
LD-V-Elman fluctuate in [—0.1049,0.1174]. Compared
with NN model, the error fluctuation interval of V-NN
model and LD-V-NN model are decreased, but the error of
LD-V-NN model is reduced much more than that of V-NN
model. Judging from the error distribution range, the errors of
LD-V-NN model have a smaller fluctuation amplitude, thus,
LD-V-NN model has stabler prediction performance.
Combined with table 6 and figure 8, the average error
of LSTM model is 0.0328, its standard deviation is 0.1359.
Compared with LSTM model, the error range of V-LSTM
model is significantly reduced, its measures of dispersion are
also decreased, the mean, measures of dispersion, fluctuation
range of error in LD-V-LSTM all make a great reduction.
There is a large error extremum in BP model, its errors has
strong random fluctuation and great measures of dispersion,
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and its standard deviation is 0.1625. With BP model com-
pared, the standard deviation, error extremum and error range
of V-BP model are reduced, the error of LD-V-BP model
fluctuates stably around 0 and its mean and standard deviation
are both close to 0. In RBF model, its average error and
standard deviation are respectively —0.1613 and 0.1675, and
its errors have large fluctuation range and strong measures
of dispersion. The range and intensity of error fluctuation
in V-RBF model is smaller than these of RBF model. The
predicted errors of LD-V-RBF model fluctuate around O,
which has small fluctuation range and measures of dispersion.
The mean and standard deviation of error in Elman model
are 0.1613 and 0.1582 respectively. Compared with Elman
model, the fluctuation range and the fluctuation tendency in
V-Elman model and LD-V-Elman are decreased evidently.
In addition, the average error of LD-V-Elman is about 0,
and its fluctuation is stable. Taking NN model as the stan-
dard, the errors of V-NN model reduce the fluctuation range
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FIGURE 7. The prediction result of neural network model. (a) The
prediction result of LSTM. (b) The prediction result of BP. (c) The
prediction result of RBF. (d) The prediction result of EIman.

and the fluctuation intensity, the average error of LD-V-NN
model is closer to 0, its standard deviation is less, which
reduces the size and the fluctuation range of prediction error.
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FIGURE 8. Error distribution of neural network. (a) The error of LSTM.
(b) The error of BP. (c) The error of RBF. (d) The error of ElIman.

After adding the Lorenz disturbance, the atmospheric uncer-
tainties are fully consideration, which decreases the error
size and measures of dispersion. Therefore, the proposed
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TABLE 6. Error analysis of speed prediction.

Error
Model Mean Minimum  Maximum Star.ldz'lrd
value deviation
LSTM 0.0328 0.2721 0.3935 0.1359
V-LSTM 0.0586 0.2276 0.1919 0.0843
LD-V-LSTM 0.0034 -0.2606 0.1375 0.0835
BP 0.0360 -0.5044 0.2744 0.1625
V-BP -0.0891 40.2349 -0.0305 0.0425
LD-V-BP 0.0182 -0.1280 0.0900 0.0406
RBF 0.1613 20.5105 0.3081 0.1675
V-RBF -0.1655 40.3293 -0.0355 0.0530
LD-V-RBF -0.0003 20.1310 0.1217 0.0440
Elman 0.1852 -0.4008 0.3866 0.1582
V-Elman 0.1720 0.0650 0.2715 0.0403
LD-V-Elman  0.0092 -0.0832 0.0653 0.0364

model, LD-V-NN model, perfects the prediction precision by
reducing the error, and improve the stability of prediction
performance by decreasing the measures of dispersion.

In summary, compared with NN model, the results of
V-NN model reflects the fluctuation trend of wind speed, and
the fluctuation range of prediction errors is also decreased.
The predicted value of LD-V-NN model is closer to the
actual wind speed, the fluctuation tendency and intensity
of predicted value are similar to the real one, and the pre-
diction error fluctuates around 0. Therefore, compared with
NN model, LD-V-NN model has better precision and more
stable prediction performance.

V. CONCLUSION AND PROSPECT

Taking Sotavento wind farm in Spain as an example, hybrid
model based on neural network is proposed. The results
show that, compared with the single neural network model,
the hybrid model has great stability and high prediction
accuracy, the distribution characteristics of predicted values
are on line with their actual features. This research uses
VMD technology and neural network to restore the
wind speed characteristics, and adopts Lorenz disturbance
sequence to perfect the accuracy and stability of wind speed
prediction. Therefore, the proposed method can provide more
scientific and more accurate basis for wind power dispatching
arrangement, and help to improve the development and uti-
lization of wind energy, then improve the economic benefits
of wind power.

Based on the improved effect of LDS and VMD on the
model, we will start from two aspects in the next research
plan: (1) VMD is combined with other traditional algorithms
to reflect wind speed fluctuation. (2) Lorenz disturbance is
added to other wind power prediction models to verify the
general adaptability of atmospheric disturbance system in
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correcting the predicted values and improving the prediction
stability.

ACKNOWLEDGMENTS

The authors would like to thank Prof. Shagufta Henna and
the anonymous referees for the thoughtful and constructive
suggestions that led to a considerable improvement of the

paper.

REFERENCES

[1]1 Bloomberg New Energy Finance (BNEF). Accessed: Jun. 15, 2017.
[Online]. Available: https://about.bnef.com/new-energy-outlook/

[2] Global Wind Energy Council (GWEC). Accessed: Feb. 14, 2018. [Online].
Available: http:/gwec.net/global-figures/graphs/

[3] G. Sideratos and N. D. Hatziargyriou, “An advanced statistical method
for wind power forecasting,” IEEE Trans. Power Syst., vol. 22, no. 1,
pp. 258-265, Feb. 2007.

[4] Y. G. Zhang, P. H. Wang, P. L. Cheng, and S. Lei, “Wind speed predic-
tion with wavelet time series based on Lorenz disturbance,” Adv. Elect.
Comput. Eng., vol. 17, no. 3, pp. 107-114, Aug. 2017.

[5] H. Liu, E. Erdem, and J. Shi, “Comprehensive evaluation of
ARMA-GARCH(-M) approaches for modeling the mean and volatility of
wind speed,” Appl. Energy, vol. 88, no. 3, pp. 724-732, Mar. 2011.

[6] H.Liu, H.-Q. Tian, and Y.-F. Liu, “An EMD-recursive ARIMA method to
predict wind speed for railway strong wind warning system,” J. Wind Eng.
Ind. Aerodyn., vol. 141, pp. 27-38, Jun. 2015.

[7]1 A. Almutair, M. H. Ahmed, and M. M. A. Salama, “Use of MCMC to
incorporate a wind power model for the evaluation of generating capacity
adequacy,” Electr. Power Syst. Res., vol. 133, pp. 63-70, Apr. 2016.

[8] G. Papaefthymiou and B. Klockl, “MCMC for wind power simulation,”
IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 234-240, Apr. 2008.

[9] J.Zhou,J. Shi, and G. Li, “Fine tuning support vector machines for short-
term wind speed forecasting,” Energy Convers. Manage., vol. 52, no. 4,
pp. 1990-1998, Apr. 2011.

[10] Y. Zhang, P. Wang, T. Ni, P. Cheng, and S. Lei, “Wind power prediction
based on LS-SVM model with error correction,” Adv. Elect. Comput. Eng.,
vol. 17, no. 1, pp. 3-8, 2017.

[11] Z.Liu et al., “Application of empirical mode decomposition and artificial
neural network for automatic bearing fault diagnosis based on vibration
signals,” Appl. Acoust., vol. 89, no. 3, pp. 16-27, Mar. 2015.

[12] H. Malik and S. Mishra, “Artificial neural network and empirical mode
decomposition based imbalance fault diagnosis of wind turbine using
TurbSim, FAST and Simulink,” IET Renew. Power Gener., vol. 11, no. 6,
pp- 889-902, May 2017.

[13] Y. Zhang, J. Yang, K. Wang, and Z. Wang, “Wind power prediction
considering nonlinear atmospheric disturbances,” Energies, vol. 8, no. 1,
pp. 475-489, Jan. 2015.

[14] Y. Zhang, J. Yang, K. Wang, and Y. Wang, “Lorenz wind disturbance
model based on grey generated components,” Energies, vol. 7, no. 11,
pp. 7178-7193, Nov. 2014.

[15] Y. Ren, P. N. Suganthan, and N. Srikanth, “A comparative study of
empirical mode decomposition-based short-term wind speed forecasting
methods,” IEEE Trans. Sustain. Energy, vol. 6, no. 1, pp. 236-244,
Jan. 2015.

[16] L. Karthikeyan and D. N. Kumar, “Predictability of nonstationary time
series using wavelet and EMD based ARMA models,” J. Hydrol., vol. 502,
pp. 103-119, Oct. 2013.

[17]1 C. Zhang, H. Wei, J. Zhao, T. Liu, T. Zhu, and K. Zhang, “Short-term
wind speed forecasting using empirical mode decomposition and feature
selection,” Renew. Energy, vol. 96, pp. 727-737, Oct. 2016.

[18] Z. Guo, W. Zhao, H. Lu, and J. Wang, “Multi-step forecasting for wind
speed using a modified EMD-based artificial neural network model,”
Renew. Energy, vol. 37, no. 1, pp. 241-249, Jan. 2012.

[19] L. Gao,Z. Guo, H. Zhang, X. Xu, and H. T. Shen, ““Video captioning with
attention-based LSTM and semantic consistency,” IEEE Trans. Multime-
dia, vol. 19, no. 9, pp. 2045-2055, Sep. 2017.

[20] F. Yuand X. Xu, “A short-term load forecasting model of natural gas based
on optimized genetic algorithm and improved BP neural network,” Appl.
Energy, vol. 134, no. 134, pp. 102-113, Dec. 2014.

60331



IEEE Access

Y. Zhang et al.: Novel Hybrid Model for Wind Speed Prediction Based on VMD and Neural Network

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

B. Wu, S. Han, J. Xiao, X. Hu, and J. Fan, “Error compensation based
on BP neural network for airborne laser ranging,” Optik, vol. 127, no. 8,
pp. 4083-4088, 2016.

Z.-Q. Wu, W.-J. Jia, L.-R. Zhao, and C.-H. Wu, “Maximum wind power
tracking based on cloud RBF neural network,” Renew. Energy, vol. 86,
pp. 466-472, Feb. 2016.

F. Zhu, Z. Yu, L. Zhao, M. Xue, and S. Zhao, “Adaptive-mesh method
using RBF interpolation: A time-marching analysis of steady snow drifting
on stepped flat roofs,” J. Wind Eng. Ind. Aerodyn., vol. 171, pp. 1-11,
Dec. 2017.

C. Yu, Y. Li, and M. Zhang, “An improved wavelet transform using sin-
gular spectrum analysis for wind speed forecasting based on Elman neural
network,” Energy Convers. Manage., vol. 148, pp. 895-904, Sep. 2017.
J. Wang, W. Zhang, Y. Li, J. Wang, and Z. Dang, ‘““Forecasting wind speed
using empirical mode decomposition and Elman neural network,” Appl.
Soft. Comput., vol. 23, pp. 452459, Oct. 2014.

Y. Zhang, C. Zhang, Y. Zhao, and S. Gao, “Wind speed prediction with
RBF neural network based on PCA and ICA,” J. Elect. Eng., vol. 69, no. 2,
pp. 149-155, 2018.

K. Dragomiretskiy and D. Zosso, ‘‘Variational mode decomposition,”
IEEE Trans. Signal Process., vol. 62, no. 3, pp. 531-544, Feb. 2014.
Sotavento Galicia [DB/OL]. Accessed: Jul. 2016. [Online]. Available:
http://www.sotaventogalicia.576com/en/real-time-data/historica

H. Shao, H. Wei, X. Deng, and S. Xing, “Short-term wind speed fore-
casting using wavelet transformation and AdaBoosting neural networks in
Yunnan wind farm,” IET Renew. Power Gen., vol. 11, no. 4, pp. 374-381,
Mar. 2017.

60332

(30]

(31]

(32]

(33]

(34]

(35]

(36]

Y. Liu, J. Shi, Y. Yang, and W.-J. Lee, ‘“Short-term wind-power
prediction based on wavelet transform—support vector machine and
statistic-characteristics analysis,” IEEE Trans. Ind. Appl., vol. 48, no. 4,
pp. 1136-1141, Jul./Aug. 2012.

Q. Hu, P. Su, D. Yu, and J. Liu, “Pattern-based wind speed prediction
based on generalized principal component analysis,” IEEE Trans. Sustain.
Energy, vol. 5, no. 3, pp. 866-874, Jul. 2014.

K. Bhaskar and S. N. Singh, “AWNN-assisted wind power forecasting
using feed-forward neural network,” IEEE Trans. Sustain. Energy, vol. 3,
no. 2, pp. 306-315, Apr. 2012.

M. Sundermeyer, H. Ney, and R. Schlueter, “From feedforward to
recurrent LSTM neural networks for language modeling,” IEEE/ACM
Trans. Audio, Speech, Language Process., vol. 23, no. 3, pp. 517-529,
Mar. 2015.

S. Buhan and I. Cadirci, “Multistage wind-electric power forecast by
using a combination of advanced statistical methods,” IEEE Trans. Ind.
Informat., vol. 11, no. 5, pp. 1231-1242, Oct. 2015.

M. Alj, I.-S. Ilie, J. V. Milanovic, and G. Chicco, ““Wind farm model aggre-
gation using probabilistic clustering,” IEEE Trans. Power Syst., vol. 28,
no. 1, pp. 309-316, Feb. 2013.

Y. Zhang, B. Chen, Y. Zhao, and G. Pan, “Wind speed prediction of
IPSO-BP neural network based on lorenz disturbance,” IEEE Access,
vol. 6, pp. 53168-53179, 2018.

VOLUME 7, 2019



	INTRODUCTION
	VMD, NEURAL NETWORK AND LORENZ SYSTEM
	VARIATIONAL MODE DECOMPOSITION
	NEURAL NETWORK
	LORENZ SYSTEM

	WIND SPEED PREDICTION
	LORENZ COMPREHENSIVE DISTURBANCE FLOW
	WIND SPEED PREDICTION BASED ON LORENZ DISTURBANCE AND VMD
	ORIGINAL SEQUENCE ANALYSIS
	DECOMPOSE THE ORIGINAL SEQUENCE
	WIND SPEED FORECASTING PROCESS


	WIND SPEED PREDICTION RESULTS AND ERROR ANALYSIS
	WIND SPEED PREDICTION RESULT
	MODEL EVALUATION OF WIND SPEED PREDICTION
	ERROR ANALYSIS OF WIND SPEED PREDICTION

	CONCLUSION AND PROSPECT
	REFERENCES

