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ABSTRACT In reliability analysis for the practical engineering problems with the time-consuming model,
it has become an important challenge that how to obtain accurate reliability assessment with a minimum
number of calls. In order to reduce the computational cost, this paper develops a new sequential surrogate
method combining adaptive kriging and Markov chain Monte Carlo simulation with a novel learning
strategy for reliability analysis. The proposed method is named AK-MCMC, which takes full advantage
of the classification feature of reliability analysis based on the surrogate models, and it can efficiently
approximate the classification boundary of the performance function. First, the learning strategy is developed
to sequentially pick out the informative samples for updating the experimental design samples. Then, a new
stopping criterion is adopted to guarantee the classification accuracy of the constructed kriging model. In this
way, the proposedmethod skillfully makes reliability evaluation independent of an adaptive iterative process,
which greatly improves the efficiency of model refinement. Finally, the proposedmethod is applied to several
examples, which contain small failure probability problem, non-linearity problem, and engineering problem
with an implicit performance function. In particular, the efficiency of the proposed AK-MCMC method is
proved for the problems with small failure probability.

INDEX TERMS Reliability analysis, krigingmodel,Markov chain, learning strategy, classification accuracy.

I. INTRODUCTION
In practical engineering problems, there are often various
uncertainties that ultimately affects the structural safety,
such as material properties, structural dimensions, boundary
conditions. Reliability analysis has become increasingly
important in engineering analysis in recent years, and it
can quantify the structural safety by considering these
uncertainties. In reliability analysis [1], a given vector
x = [x1, x1, · · · , xn] of random variables with n-dimension
affects the performance of a system or structure in variable
space �. According to the joint probability density function
f (x) of x, probability of failure PF can be calculated by the
following integral:

PF = P {G (x) ≤ 0} =
∫
G(x)≤0

f (x) dx (1)
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where G (x) is the performance function of a system or
structure.

Since the multi-dimensional numerical integration (1) is
time-consuming in the failure domain, it is hard to be directly
solved for general engineering problems. In the past few
decades, several methods have been developed to assess the
failure probability, and Monte Carlo simulation (MCS) is the
most convincing one. MCS converts the integral problem of
(1) into the summation problem of (2).

PF =
∫
Rn
I(x)f (x)dx ≈

1
Nmcs

Nmcs∑
i=1

I(x) (2)

where Rn shows the n-dimensional variable space; I (x) is
an indicator function as a two-class classifier, I (x) = 0
when G (x) > 0, and I (x) = 1 when G (x) ≤ 0. The
definition of indicator function I (x) converts the original
problem into a binary classification problem. But for low
failure probabilities, the computational burden of using direct
MCS becomes intolerable [2]. Many analytical methods have
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been developed to avoid this problem. For the purpose of
balancing efficiency and accuracy, the First Order Reliabil-
ity Method (FORM) and Second Order Reliability Method
(SORM) [3], [4] based on most probable point (MPP) are
developed to approximately compute the failure probabil-
ity. However, the results of failure probability computed by
FORM or SORM are not accurate for problems with high-
dimensional, high non-linear or implicit performance func-
tion [3], [4]. Therefore, it is necessary to develop some new
methods for accurately evaluating the probability of failure.

In the field of reliability analysis, digital simulation meth-
ods and surrogate models have been paid increasing attention
in recent years. Many digital simulation methods have been
proposed and developed, such as Importance Sampling (IS)
method [5], [6], Subset Simulation (SS) method [7], [8] and
Line Sampling (LS) method [9], [10]. IS [5] generates the
weighted random samples according to an important sam-
pling density distribution function, rather than the original
distribution. In IS, the determination of importance sampling
density function is a hard and inefficient, especially for prob-
lems with high nonlinear performance functions, or multiple
design points [6]. SS was proposed by Au and Beck [8],
which is a powerful tool for small probabilities, separates
the probability space of original variables into a series of
subsets, and then computes the probability of failure as a
product of conditional probabilities. However, the selection
of the proposal distribution of Markov Chain Monte Carlo
(MCMC) has vital influence on the result of reliability assess-
ment, and the conditional sample points generated by the
MCMC simulation have a certain correlation, which will
reduce the computational accuracy of SS [7]. LS [9], [10] is
used to evaluate the probability of failure based on the optimal
important direction, which is from the origin of coordinate to
the MPP in the standard normal space. But the efficiency of
LS will gradually decline as the deviation of the important
direction from the optimal important direction. Generally,
digital simulation methods are not practical in the reliability
analysis where the engineering problems are involved.

Surrogate models are also important approach to be used
for increasing the computational efficiency in complex engi-
neering analysis. In reliability analysis based on surrogate
model, the true performance function is replaced by a sur-
rogate model to evaluate the failure probability. At present,
the most common methods are Response Surface Method-
ology (RSM) [11], [12], Support Vector Machines (SVM)
[1], [13], [14], Artificial Neural Networks (ANN) [15] and
Kriging model [16], [17]. The RSM uses a polynomial func-
tion to replace the original performance function through
a sequence of experimental design samples. SVM [1], [14]
can explicitly divide the disjoint and non-convex boundaries
between failure domains and safety domains. ANN [15]
is trained with some actual experimental design sam-
ples and then is used to replace the original function.
Guarascio et al. [18] and Matheron [19] proposed and devel-
oped Kriging model, which has been used widely as an exact
interpolation method. Due to the stochastic propriety of the

Kriging model, it can not only estimate the predicted values
in any points, but also calculate estimations of the local
variance on the prediction points. This variance characterizes
of the prediction is termed as the Kriging variance. However,
the key to construct a high-precision surrogate model is how
to determine experimental design samples, and the methods
to determine samples are often named Design of Experiments
(DoE) [20], [21]. However, the prediction accuracy of the sur-
rogate models is usually unsatisfactory in reliability analysis
until the adaptive sequential surrogate methods [22], [23] are
proposed.

In recent years, Adaptive sequential surrogate meth-
ods [14], [24]–[35] have been developed in structural reliabil-
ity analysis, especially the methods based on Kriging model.
To assess the reliability of structures in a more efficient
way, Echard et al. proposed an iterative method combining
Kriging model with MCS, which is called AK-MCS [24].
Later, Echard et al. developed a method based on IS
and Active Kriging model, which is called AK-IS [25].
Zheng et al. [26] improved the AK-MCS method to improve
its speed of convergence for problems with a connected
domain of failure. Zhao et al. [27] proposed an efficient
reliability method based on adaptive IS and Kriging model
with an active learning strategy. Lv et al. [28] proposed a
new learning function H for Kriging based on information
entropy theory. Huang et al. [29] proposed a new method
based on Kriging model and SS, called AK-SS, which can
make full use of all statistical information obtained from the
constructed Kriging models to improve the computational
efficiency of the AK-MCS. Balesdent et al. [30] proposed a
method combining Kriging and adaptive IS for problems with
a small failure probability. Sun et al. [31] proposed the least
improvement function (LIF) to enrich DoE, and the accuracy
of constructed Kriging model is improved for reliability anal-
ysis. Leliévre et al. [32] proposed the AK-MCSi method for
solving the difficulty to assess small probabilities of failure
and inability to parallelize computations with the AK-MCS
method.

In addition, available adaptive sequential surrogate meth-
ods based on other surrogate model for reliability analysis
also have been extensively studied in recent years. Basudhar
and Missoum [23] proposed an adaptive explicit decision
function method using SVM with a learning strategy and a
new stopping criterion, and the method is further expanded
as an efficient reliability method combining adaptive SVM
and MCS (ASVM-MCS) [33]. Basudhar and Missoumy [14]
developed an adaptive reliability assessment method that can
quantify the probability of having an error in the approxi-
mation of the boundary of failure using probabilistic sup-
port vector machines (PSVMs). Xiao et al. [34] proposed
a new adaptive sequential sampling method base on back-
propagation (BP) neural network for efficient reliability anal-
ysis, and the method can provide an efficient manner with
multiple failure modes. Keshtegara and Kisi [35] proposed
the Radial basis M5Tree (RM5Tree) method by improv-
ing M5 model tree (M5Tree), and the RM5Tree method
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can reduce computational efforts for high dimensional
reliability problems. Li et al. [36] proposed a sequential
surrogate reliability method (SSRM) based on radial basis
function, and a special optimization problem in SSRM is
solved to iteratively update the surrogate model of the limit
state function.

Nevertheless, these adaptive sequential surrogate methods
mentioned above have a common disadvantage in iterative
process. The disadvantage is that adaptive sampling and reli-
ability assessment are nested with each other, which makes
the samples obtained by adaptive sampling dependent with
the reliability evaluation method and reduces the iteration
efficiency of adaptive sequential sampling algorithm. Since
there are fewer available samples in the vicinity of failure
boundary, the concentration phenomenon of samples in DoE
is more prone to occur with the adaptive sequential surrogate
method based MCS. The computational efficiency of those
adaptive methods based MCS is low, especially for problems
with small failure probabilities. In order to make reliability
analysis more efficient, this work develops a new adaptive
sequential surrogate method that makes reliability evaluation
independent from adaptive iterative process.

This paper includes the following parts. Section 2 presents
the basic theory of Kriging model and MCMC simulation.
Section 3 describes the detailed principles and process of
the proposed AK-MCMC method for reliability analysis.
Section 4 illustrates the proposed AK-MCMC method with
three classical numerical examples and one practical engi-
neering example, and the reliability analysis results are also
compared with some other available adaptive sequential sam-
pling methods in each example. Finally, conclusions and
future work is summarized in Section 5.

II. BASIC THEORY
A. KRIGING MODEL
Kriging model is a statistical theory-based interpolation tech-
nique, and it consists of a parametric linear regression model
and a nonparametric stochastic process [24], [25], [28].
Assuming those input variables are defined as x and the
corresponding response is defined as G(x), Kriging is given
as:

Ĝ (x) = F (β, x)+ z (x) = f T (x)β + δ (x) (3)

where an averaged approximation F (β, x) of the response is
the deterministic part, and it can be expressed as an ordinary
polynomial regression of x. β is the vector of regression coef-
ficients. F (β, x) is simplified to a constant in the ordinary
Kriging, and is taken as F (β, x) = β. All the following
formulas are deduced with the simplification of ordinary
Kriging. So Ĝ (x) can be simplified as

Ĝ (x) = β + δ (x) (4)

Here δ (x) is a zero-mean stationary Gaussian process with
auto-covariance at samples x and w defined as

cov (δ (x) , δ (x)) = σ 2R(x,w) (5)

where σ 2 is the process variance. Auto-correlation function
R(x,w) can also be considered several functions, such gauss
correlation function, exponential correlation function, and
cubic correlation function. In this paper, the Gauss correlation
function is employed, and it can be expressed as (6).

R (x,w) = exp

(
−

n∑
i=1

θi |xi − wi|2
)

(6)

where n is the dimension of design variables. xi andwi denote
the ith component of variable x and variable w, respectively.
θi is the correlation parameter to ensure the Kriging model
with an high flexibility.

A sample set DoE with Nd experimental samples
X = [x1, x2, · · · ,xNd ]

T (xi ∈ Rn) and theirs true responses
Z = [G(x1),G(x2), · · · ,G(xNd )]

TG(xi) ∈ R are given. Defin-
ing R = [R(xi, xj)]Nd×Nd and F as a Nd × 1 unit vector,
the unknown parameters β and σ 2 can be deduced by least
squares method:

β̂ =
(
FTR−1F

)−1
FTR−1Z (7)

σ̂ 2
=

1
Nd

(
Z− Fβ̂

)T
R−1

(
Z− Fβ̂

)
(8)

The parameter β of regression coefficients and the
parameter σ 2 of constant process are dependent on the corre-
lation parameters θ through the correlationmatrix. Therefore,
the correlation parameters θ must first be determined by
maximum likelihood estimation with (9).

θ̂ = argmin
θ

{
R(θ)

[
σ̂ 2
]Nd}

(9)

For an unknown predicted sample xp with θ , β and σ 2

known, the linear unbiased estimator of the response and
Kriging variance are computed as

Ĝ
(
xp
)
= β̂ + r(xp)

TR−1
(
Z− Fβ̂

)
(10)

σ̂ 2
Ĝ

(
xp
)
= σ̂ 2

(
1+ u

(
xp
)T (FTR−1F)−1 u (xp)

− r
(
xp
)TR−1r (xp)) (11)

where r
(
xp
)T , is a ns dimensional row vector representing

the correlative relations between unknown predicted sam-
ple xp and experimental samples X = [x1, x2, · · · , xNd ]

T ,
expressed as r

(
xp
)T

= [R
(
xp, x1

)
,R
(
xp, x2

)
, · · · ,

R(xp, xNd )]
T , and u

(
xp
)T
= FTR−1r

(
xp
)
− 1.

From (10), the gradient Ĝ
′ (
xp
)
= [ ∂Ĝ

∂xp1
, ∂Ĝ
∂xp2

, · · · , ∂Ĝ
∂xpn

]
T

can be expressed [37] as

Ĝ
′ (
xp
)
= Jr

(
xp
)TR−1 (Z− Fβ̂) (12)

where Jr is the jacobian of r
(
xp
)
,

(
Jr
(
xp
))
ij =

∂
(
R
(
xp, xi

))
∂xpj

(13)
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The process of calculating Ĝ
(
xp
)
, σ̂ 2

Ĝ

(
xp
)
, Ĝ
′ (
xp
)
can be

implemented by the MATLAB toolbox DACE [36], which
has been applied in several references [28], [31].

B. MARKOV CHAIN MONTE CARLO
SIMULATION
Markov Chain Monte Carlo (MCMC) simulation is a
powerful approach for sampling according to an arbitrary
probability distribution. In MCMC, samples are simulated
as the states of a Markov Chain which has the target
probability distribution as its limit stationary distribution
under the Traversal Hypothesis. Since the MCMC method
with the Metropolis-Hastings algorithm becomes inefficient
to simulate samples with many independent components,
Au and Beck [8] proposed a component-wise (or modi-
fied M–H) algorithm to improve the sampling efficiency
of MCMC. Instead of using an n-dimensional proposal
PDF in the original method, each coordinate ξj of the pre-
candidate ξ is generated from a one-dimensional proposal
PDF p∗j

(
ξj | xj

)
, which depends on the jth coordinate xj of

the current state. And the proposal PDF p∗j
(
ξj | xj

)
has a

symmetry property, i.e. p∗j (ξ | x) = p∗j (x | ξ).
In this paper, the MCMC simulation with component-wise

algorithm is employed to generate Nm samples that are
lying in the required region. The process of generating a
sequence of samples

{
x1, x2, · · · , xNm

}
from a given or ran-

domly generated sample x1 to xNm is briefly summarized as
follows [39]:

1) GENERATE CANDIDATE SAMPLE x̃
(a) Generate ξj by sampling from the proposal PDF
p∗j
(
ξj | xkj

)
.

In the process of Markov Chain, the transfer of a state to
another state is controlled by the proposal distribution. In this
paper, an n-dimensional uniform distribution within the inter-
val [xkj− lj

/
2, xkj + lj

/
2] (j = 1, 2, · · · , n) is selected as the

proposal distribution, that is,

p∗j
(
ξj | xkj

)
=

{
1/lj if

∣∣ξj − xkj∣∣ ≤ lj/2
0 else

(14)

where ξj and xkj are the jth component of n dimensional vector
ξ and the kth samplex of MCMC, respectively. lj is the side
length of xj component of n dimensional hypercube, and it
determines the maximum allowable range of the next sample
deviate from the current sample. The lj takes the empirical
value 6N−1/(n+4)m .
(b) Accept or reject ξj

x̃j =


ξj, with probability min

{
1,

qj
(
ξj
)

qj
(
xkj
)}

xkj, with probability 1− min

{
1,

qj
(
ξj
)

qj
(
xkj
)} (15)

where qj (·) is the jth coordinate xj of the limit stationary
distribution q(x) of Markov Chain.

2) ACCEPT OR REJECT x̃

xk+1 =

{
x̃ x̃ in DF

xk x̃ not in DF
(16)

where DF is the required region. (16) expresses that the next
sample xk+1 is set to candidate sample x̃ or the last sample xk
according to whether candidate sample x̃ lies in DF or not.
Here, a brief introduction to MCMC simulation is only

provided, and the details may consult the references [8], [38].

III. THE PROPOSED AK-MCMC METHOD FOR
RELIABILITY ANALYSIS
Generally, a given structure or mechanism with a determined
failure mode can be expressed as

Z = g (y) (17)

where Z = g (y) is the performance function. The safe and
failure domains are defined as Z > 0 and Z ≤ 0, respectively.
The vector y = (y1, y2, · · · , yn) denotes random variables.
The performance function g (y) is often an implicit function
in practical engineering problems, and the repeated finite
element simulation or dynamic simulation of structures or
mechanisms is usually time-consuming. Surrogate models
are able to reduce the computational burden significantly.
How to efficiently construct an accurate surrogate model with
a few samples has been an important challenge in reliability
analysis and reliability optimization.

Kriging model is often used to substitute the original
performance function to accelerate the process of reliability
analysis [24], [26], [28]. In recent studies, adaptive sequential
sampling methods based on Kriging model have the dis-
advantage that adaptive sampling and reliability assessment
are nested with each other. Iteration efficiency of adaptive
sequential sampling with these algorithms is lower. For the
purpose of improving the iteration efficiency of sequential
sampling, this work proposes a new adaptive sequential sur-
rogate method combining Adaptive Kriging and Markov
Chain Monte Carlo simulation, and the method is called
AK-MCMC.

In AK-MCMC, the adaptive iterative process is indepen-
dent with reliability evaluation, and Kriging model is used to
avoid a great amount of calls to the true performance function.
The algorithm ofAK-MCMCcan be divided into three phases
including initial preparation phase, model refinement phase
and reliability evaluation phase. The initial preparation phase
consists of determining the sampling space, constructing
the initial Kriging model, and generating the test samples.
The model refinement phase consists of generating MCMC
samples, selecting the optimal sample and updating DoE,
updating the Kriging model and calculating the test index.
After obtained the final Kriging model, the failure probability
is calculated in reliability evaluation phase. The process of the
proposed AK-MCMC method for reliability analysis can be
seen in Fig.1.
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FIGURE 1. The algorithm flowchart of the proposed AK-MCMC method.

A. INITIAL PREPARATION
1) DETERMINE PROPER INTERVALS
In the initial preparation phase of the proposed AK-MCMC
method, the first step is to define a proper interval
yiε [yiL , yiH ] (i = 1, 2, · · · , n) for each random variable. Two
approaches for determining the proper interval have been
developed by Rashki et al. [39] and Hamzehkolaei et al. [40].
The first one is to generate MCS samples according to prob-
ability distribution of each random variable. Another one is
based on a conservative assumption of the reliability index.
According to the approaches proposed by Rashki et al. [39],
two other similar methods are developed. One method to
determine interval is that the user directly gives it according
to the actual situation. Another is a practical and intuitive
approach according to the inverse cumulative distribution

function (CDF). With the practical approach, the lower and
upper bounds of the intervals [yiL , yiH ] can be obtained from
(18) and (19), respectively.

yiL = F−1i (8(−τi)) (18)

yiH = F−1i (1−8(−τi)) (19)

where8(·) denotes the CDF of standard normal distribution.
F−1i is defined as the inverse CDF of the ith dimension yi
of random variable y. τi denotes a scale parameter of the ith
dimension yi of random variable y, and it can represent the
length of the variable interval [yiL , yiH ]. The value of the scale
parameter τ is recommended between 4 and 8.

2) SPACE TRANSFORMATION
For the purpose of eliminating the influence of the variable
magnitudes, the second step is the transformation of sampling
space

[
yL, yH

]
and performance function (g). The sampling

space
[
yL, yH

]
is converted to [0, 1]n, and the transformation

between x ∈ [0, 1]n and y ∈
[
yL, yH

]
can be expressed as

x =
y−yL
yH − yL

(20)

Then, the performance function (g) is also converted to
the corresponding function (G). The relationship between
function (G) and performance function (g) can be expressed
as

g (y) = g
(
x
(
yH − yL

)
+ yL

)
= G(x) (21)

3) GENERATE INITIAL DOE AND CONSTRUCT KRIGING
MODEL
The next step is to generate Nd Latin Hypercube Design
(LHD) [24], [25] samples for initial DoE XD in the con-
verted sampling space [0, 1]n, and the ith random sample
of XD can be shown by xDi =

[
xDi1, x

D
i2, · · · , x

D
in

]
. Then the

according performance values [G(xD1 ),G(x
D
2 ), · · · ,G(x

D
Nd )]

T

are evaluated by calling to the performance function (G) for
all samples in XD. The sample point set

(
XD,G

(
XD))

={
(xi,G(xi))| xi ∈ XD, i = 1, 2, · · · ,Nd

}
is used to train the

Kriging model Ĝ (x). The number Nd of initial DoE is taken
as
[
a
√
n
]
(the symbol ‘[·]’ is an upwardly integer operator

symbol), and it means that the average number of samples
projected on the unit diagonal is equal to a. a can generally
be selected as 6-12, and it is taken as 6 in this paper. For
more accurate initial Kriging model, a larger value should be
selected.

√
n equals to the length of the diagonal of [0, 1]n,

and it can be used to represent the volume of the hypercube.

4) CONSTRUCT TEST SAMPLES
A constructed surrogate model should have a higher classi-
fication accuracy in reliability analysis. A test sample set is
adopted to catch the global capacity of the model classifi-
cation and update training samples, and it is termed by XT .
There are many available uniform sampling approaches, such
as Uniform Design, Halton Sampling and Latin Hypercube
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Sampling (LHS). For making the samples in XT with max-
imum possible uniformity, the LHS is used to generate NT
uniform samples in [0, 1]n for constructing the test sample set

XT
=

[
xT1 , x

T
2 , · · · , x

T
NT

]T
. In this work, the reference value

of NT is recommended to be set as
[
b
√
n
]
, and it means that

the average number of samples projected on the unit diagonal
is equal to b. As a result of the inexpensive calculation of
Kriging model, the parameter b can be set to a larger value,
and b = 105 is sufficient for a more accurate result in the
proposed AK-MCMC method.

B. MODEL REFINEMENT
For adaptive sequential sampling methods, one of the main
concerns is to determine the locations of the selected new
training samples in iterations. A learning function is nec-
essary to the proposed AK-MCMC method. The learning
function is used to select the optimal new training samples to
evaluate performance by calling the true performance func-
tion. For the purpose of selecting the optimal new training
samples at each iteration, a novel composite learning function
Ldpσ is developed, and it consists of sub-functions Ldp and
Lσ . The first sub-function Ldp focuses on the nearest distance
dnearest from the next optimal sample to the existing training
samples and the misclassification probability Pm of the next
optimal sample, simultaneously. The sub-function Ldp con-
tributes to select the optimal new training samples that locate
not only far away from the existing training samples, but
also having a higher chance of being misclassified. The sec-
ond sub-function function Lσ focuses on the points having
a higher uncertainty with the current Kriging model Ĝ (x).
The composite learning function Ldpσ takes into account
the advantages and characteristics of the two sub-functions
mentioned above. In the following subsections, these two
sub-functions and composite learning function are introduced
in details.

1) GENERATION OF CANDIDATE SAMPLES
The candidate sample set XM should be constructed before
selecting the new optimal sample. In this work, the short-
comings of candidate samples near the limit-state of Ĝ (x)
in the adaptive methods based on MCS are overcome. The
MCMC simulation as described in section 2.2 is employed to
construct candidate samples.

The limit stationary distribution q(x) and the proposal
distribution p∗j

(
ξj | xj

)
of the MCMC are set to be evenly dis-

tributed to make the candidate samples as evenly distributed
as possible near the limit state. Simultaneously, these candi-
date samples should be located in the area, where the distance
any sample to the limit-state of Ĝ (x) is not greater than
the allowable value 1d . The distance between the sample
xMi (i = 1, 2, · · · ,NM ) in XM and the hyper-surface
Ĝ (x) = 0 can be approximately expressed as

d
(
xMi
)
=

∣∣∣Ĝ (xMi )∣∣∣∥∥∥Ĝ′ (xMi )∥∥∥ (22)

In order to balance the efficiency and range of MCMC
sampling, the allowable value 1d is set to

√
n

20 , where n is
the dimension of sample space in the paper. d

(
xMi
)
≤ 1d

can be used to characterize that the occupy space of the
generated candidate samples by MCMC is no more than
10% of the total [0, 1]n space. The number Nm of candidate
samples is taken as NM = [c×1d × 2], and c = 104 can
be used to obtain a more accurate classification result in this
paper.

2) SUB-FUNCTION Ldp
Selected new training samples should be kept away from the
existing training samples to refrain information redundancy.
Since two samples are very close to each other, the problem
may be ill-conditioned for the constructing Kriging model.
From the discussion mentioned above, the optimal new train-
ing samples should be located not only far away from the
existing training samples, but also have a higher chance of
being misclassified. In order to achieve this purpose, the sub-
function Ldp is developed as

Ldp (x) = dnearest (x)× Pm (x) (23)

where dnearest (x) represents the distance between the sample
x inXM and its closest sample inXD. Pm(x) is the misclassifi-
cation probability of the sample x in XM . The indexes dnearest
and Pm of the ith sample xMi can be calculated by (24) [32]
and (25) [24], respectively.

dnearest
(
xMi
)
=

∣∣∣xMi − xnearest
∣∣∣ (24)

Pm(xMi ) = 8(−

∣∣∣Ĝ (xMi )∣∣∣
σĜ

(
xMi
) ) (25)

3) SUB-FUNCTION Lσ

The variance of prediction is used to choose an optimal train-
ing sample. The candidate sample with the highest variance
of prediction means that it has a higher uncertainty than the
other candidate samples. For this reason, it should be selected
as the optimal training sample to improve the classification
accuracy of the constructed Kriging model. The sub-function
Lσ is defined to determine the sample which has more signif-
icant effect for updating the current Kriging model Ĝ (x). The
score for the ith candidate sample xMi is calculated by using
the proposed sub-function Lσ .

Lσ
(
xMi
)
= σ 2(xMi ) (26)

where σ 2
(
xMi
)
is the variance of prediction of the ith candi-

date sample xMi .
In this paper, Jackknifing and cross-validation tech-

niques [41] are employed to estimate σ 2(xMi ). Jackknifing is
a classic resampling approach especially for variance estima-
tion. The following steps [41], [42] are to estimate variance
σ 2(xMi ) of the prediction.
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Step 1: Rewrite the existing Nd training samples to
construct the combination as

SP = (XD,G (XD))

=

((
xD1 ,G

(
xD1
))
,
(
xD2 ,G

(
xD2
))
, · · · ,

(
xDNd ,G

(
xDNd

)))
(27)

In the light of the principle of ks fold cross-validation,
the existing training samples are partitioned into ks sub-sets.
The combinations of cross-validation samples are obtained by
leaving one of the sub-sets out. For instance, the combinations
of cross-validation samples with ks = Nd can be defined as

S(−j)P =

(
X (−j)D ,G

(
X (−j)D

))
= (

(
xD1 ,G

(
xD1
))
, · · · ,

(
xDj−1,G

(
xDj−1

))
,(

xDj+1,G
(
xDj+1

))
, · · · ,

(
xDNd ,G

(
xDNd

))
) (28)

where j = 1, 2, · · · , ks.
Step 2: Construct Kriging model based on the combination

S(−j)P of ks cross-validation samples and the complete combi-
nation SP of all samples. Then the number of ks + 1 Kriging
models are constructed that can be expressed as

G̃(−j)(x) = Ĝ(−j)(x) and G̃(x) = Ĝ(x) (29)

where Ĝ(−j)(x) is the jth constructed Kriging model utilizing
the jth combination S(−j)P of cross-validation samples, and
Ĝ(x) is the constructed Kriging model adopting the complete
combination SP of all samples.
Step 3: Compute the pseudo-value of each candidate sam-

ple by employing Jackknifing approach. The pseudo-value of
the ith candidate sample xMi can be obtained by

G̃ijp = ks × G̃
(
xMi
)
− (ks − 1)× G̃(−j)

(
xMi
)

(30)

where i = 1, 2, · · · ,NM .
Step 4: Estimate the jackknife variance σ 2(xMi ) of each

candidate sample, which can be expressed as

σ 2
(
xMi
)
=

1
ks (ks − 1)

ks∑
j=1

(
G̃ijp − G

i
p

)2
(31)

where G
i
p =

1
ks

ks∑
j=1

G̃ijp .

4) COMPOSITE LEARNING FUNCTION Ldpσ
A composite learning function called Ldpσ is proposed for
the purpose of comprehensively considering the advantages
and characteristics of the two sub-functions. To achieve this
purpose, these two measures Ldp and Lσ must be normalized.
The comprehensive score for the ith candidate sample xMi
utilizing Ldpσ can be expressed as

Ldpσ
(
xMi
)
=

αLdp
(
xMi
)

max
(
Ldp

(
XM )) + (1− α)Lσ

(
xMi
)

max
(
Lσ
(
XM )) (32)

where αε [0, 1] denotes a weight coefficient, and its value
can be given by a user. In this work, α = 0.5 is adopted

to demonstrate the proposed AK-MCMC method. It should
be noted that the value of α can be adjusted according to the
importance of the two measures Ldp and Lσ . For example,
a small value can be given to α if the measure Lσ is more
important than the measure Ldp. On the contrary, a larger
value of α can be selected, if the measure Ldp is more
important.

According to the proposed composite learning function
Ldpσ , the property of the next optimal sample in both of
input parameter space and output parameter space can be
considered comprehensively. One of the main features of
the proposed composite learning function Ldpσ is that it can
furnish a trade-off between these two measures. α = 0 and
α = 1 represent that the composite learning function Ldpσ is
retrograded to the Ldp and Lσ , separately.

At each iteration, the candidate sample that maximizes the
criterion in (32) is selected as the optimal training sample,
and it response value is evaluated by calling to performance
function G(x).

5) UPDATING OF TRAINING SAMPLES
According to the proposed composite learning function Ldpσ ,
one training sample x∗ ∈ XM is picked out from the candidate
samples XM at each iteration. Then the sample point set(
XD,G

(
XD)) can be enriched by adding the sample point

(x∗,G (x∗)). With the enriched sample point set, the con-
structed Kriging models Ĝ(−j) and Ĝ(x) will be reconstructed
correspondingly at each iteration.

6) STOPPING CRITERION
The training sample point set and the constructed Krig-
ing models are successively updated. A new stopping cri-
terion is developed to fold up the model refinement phase
of the proposed AK- MCMC method. The cross validation
approach [34], [41] has been diffusely applied for evaluating
the accuracy of the constructed surrogate models. The main
advantage of this approach is that no extra performance func-
tion is needed to evaluate. In many existing cross validation
methods, the k-fold cross validation is one of the most widely
used [34].

To fully utilize the classification feature in reliability anal-
ysis, a misclassification index based on the principle of k
fold cross validation is proposed to evaluate the impact of the
last k samples of sample set XD on the Kriging model. The
misclassification index can be calculated by

δ
(−j)
mis =

1
NT

NT∑
i=1

∣∣∣Clabel (i)− C(−j))label (i)
∣∣∣

2
, j = 1, 2, · · · , k

(33)

where Clabel (i) =
{

1 Ĝ
(
xTi
)
> 0

−1 Ĝ
(
xTi
)
≤ 0

, i = 1, 2, · · · ,NT ,

and Clabel indicates the classification of samples in XT under
the Kriging model Ĝ(x) that is constructed by employing the
complete combination SP; C

(−j)
label indicates the classification
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of samples in XT under the Kriging model Ĝ(−(Nd−j+1))(x)
that is constructed by employing the (Nd − j + 1)th combi-
nation S(−(Nd−j+1))P , and it can be expressed as C(−j)label (i) ={

1 Ĝ(−(Nd−j+1))
(
xTi
)
> 0

−1 Ĝ(−(Nd−j+1))
(
xTi
)
≤ 0

, i = 1, 2, · · · ,NT ; δ
(−j)
mis is

defined as the misclassification rate that can be used to
describe the degree of difference between Ĝ(−(Nd−j+1))(x)
and Ĝ(x) on their respective classification boundaries; xTi is
the ith sample in XT .
Subsequently, a new stopping criterion is defined as

δmaxmis ≤ 1δ (34)

where δmaxmis = max(δ(−j)mis ) is the maximum misclassification
rate, j = 1, 2, · · · , k; 1δ is a small positive number that can
be set by user. For the purpose of considering both accuracy
and efficiency,1δ can usually be taken as a number between
1× 10−4 ∼ 2× 10−4. A smaller value should be taken for a
more accurate result. In this paper,1δ is set to 1× 10−4, and
k = 10 is sufficient for an accurate and efficient classification
result in the AK-MCMC method

C. RELIABILITY EVALUATION
1) SPACE INVERSE TRANSFORMATION
After the model refinement phase, the final constructed Krig-
ing model can be defined as G̃(x) = Ĝ(x). Then the inverse
transformation of sampling space [0, 1]n and the final Kriging
model function Ĝ(x) are executed by (35).

Ĝ (x) = Ĝ
(

y−yL
yH − yL

)
= ĝ (y) (35)

where ĝ (y) can be regarded as the Kriging model function of
the original performance function (g) in the original variable
space.

2) ESTIMATE FAILURE PROBABILITY
In this stage, NMCS samples are generated to create a sample
set YMCS = [yT1 , y

T
2 , · · · , y

T
NT ]

T by random Monte Carlo
sampling, and then the probability of failure P̂F and the coef-
ficient of variation cov with function ĝ (y) can be estimated
by (36) and (37).

P̂f =
1

NMCS

NMCS∑
i=1

I
(
yMCSi

)
(36)

cov =

√
1− P̂F

(NMCS − 1) P̂F
(37)

If cov is higher than the allowable value1cov, the number
NMCS of samples in sample set YMCS should be enlarged. The
stage of estimating the failure probability is repeated until cov
is less than 1cov. Generally, the initial value NMCS0 is taken
to 105, and the value of 1cov is set to 0.01.

IV. VALIDATION EXAMPLES
In this section, four examples are studied to illustrate the
applicability of the proposed AK-MCMC method, and both
of its efficiency and accuracy are demonstrated. Cases 1-4
are classic reliability analysis problems with nonlinear and
explicit performance functions, and they are often used in
literature. Case 4 is an aircraft door lock mechanism relia-
bility analysis problem with an implicit performance func-
tion. In addition, comparisons of efficiency and accuracy
between the proposed AK-MCMC method, the AK-MCS +
U method [24], the AK-MCS + EFF method [24], the AK-
MCS + H method [28] and MCS are also given for all
cases. The relative percentage error εPf compared to MCS
is expressed as

εPf =

∣∣Pf − PFmcs∣∣
PFmcs

× 100% (38)

where PFmcs is average probability of failure estimated with
MCS with 50 runs, and it is considered as a reference value;
Pf is estimated by the proposed AK-MCMC method, and
other three methods mentioned above. In order to consider
the impact of randomness, each method is executed 20 runs in
each example. When these algorithms are executed, the total
number Ncall of calls to true performance function, probabil-
ity of failure Pf , relative percentage error εPf , and computa-
tional time Tc are obtained with 20 runs, respectively. Then,
the interval

[
Nmin
call ,N

max
call

]
of Ncall , the average total number

N̄call , the interval
[
Pminf ,Pmaxf

]
of Pf , maximum relative

percentage error εmaxPf and average computational time T̄c are
counted. All algorithms are executed inMATLAB2016b with
Intel Core i7-7700K CPU@4.20GHz 8 cores.

Before executing the algorithm, the termination condition
should be set. The learning criterions, stopping conditions
and the other condition of the proposed AK-MCMC method
and other three AK-MCS are summarized in Table 1.

A. EXAMPLE 1: A 2D DESCRIPTION CASE WITH A SMALL
FAILURE PROBABILITY
A two-dimensional problem with a small failure probability,
adopted from references [25], [29], is considered to illustrate

TABLE 1. Definition of different parameters for each method.
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FIGURE 2. Variations of misclassification rate and failure probability with
iteration number for example 1.

the proposed AK-MCMC method. The two variables x1 and
x2 obey the standard normal distribution, and its performance
function is defined as

G (x1, x2) = 0.5(x1−2)2−1.5 (x2 − 5)3−3 (39)

MCS, the proposed AK-MCMC method, the AK-MCS +
U method, the AK-MCS + EFF method and the AK-MCS
+ H method are executed to evaluate the probability of
failure. The reference value PFmcs is defined as the average
probability of failure obtained out of 50 different MCS runs
with NMCS = 4×108 samples each. The number of MCS
samples is determined to have a coefficient of variation cov
on the probability of failure less than 1%. It is obviously
seen that the size of MCS samples is relatively large to
accurately predict the failure probability of the problem with
a small failure probability, and the predicted time cost of

Kriging model will increase significantly. For the purpose of
examining the robustness of AK-MCMC, AK-MCS + U,
AK-MCS + EFF and AK-MCS + H, each method is per-
formed with 20 different runs.

The reliability analysis results of the each method are
summarized in Table 2. They are compared by the average
number of calls N̄call to the original performance function,
their maximum relative percentage error εmaxPf and average
computational time T̄c with 20 different runs. As presented
in Table 2 , the probabilities of failure acquired by the four
methods are very similar to the reference value acquired
by MCS with 50 runs. However, the proposed AK-MCMC
method obtains a good accuracy with a smallest average
number N̄call = 17.45 than the other methods. Meanwhile,
the terms of εmaxPf and T̄c with the proposed AK-MCMC
method are smallest in the four methods.

In order to better demonstrate the proposed AK-MCMC
method, the iterative process for updating samples with one
run is presented in Fig. 2 and Fig. 3. Fig. 2 shows the
variations of the normalized maximum misclassification rate
δmaxmis and normalized failure probability Pf with iteration
number. The term of maximum misclassification rate δmaxmis
is computed in iterative process of the proposed AK-MCMC
method. The term of failure probability Pf is obtained after
the algorithm is executed, and it is only calculated to show
the relationship between it and maximum misclassification
rate δmaxmis with the number of iterations. As depicted in Fig. 2,
the failure probability is basically convergent after the 4th
iteration, and this corresponds to Fig. 3(e). However, max-
imum misclassification rate δmaxmis is not met the allowable
value 1δ = 1 × 10−4 currently, and it can be found that
the limit state Gz (x) = 0 of obtained Kriging model and the
limit stateG (x) = 0 of original performance function are not
perfectly coincident in Fig. 3(e). Then, the failure probability

FIGURE 3. Iterative process of AK-MCMC for example 1. (a) The initial surrogate model. (b) The 1st iteration. (c) The 2nd iteration. (d) The 3rd
iteration. (e) The 4th iteration. (f) The 5th iteration. (g) The 6th iteration. (h) The 7th iteration. (i) The 8th iteration. (j) The final surrogate model.
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TABLE 2. Reliability analysis results for example 1.

TABLE 3. Reliability analysis results for example 2.

deviates from the standard value at the 6th iteration. Finally,
maximum misclassification rate δmaxmis is met and a higher
accuracy estimated value of failure probability is obtained at
the 8th iteration.

As shown in Fig. 3(a), the Nd =9 initial DoE samples
are generated by LHD, and the initial Kriging model is con-
structed with the DoE. Subsequently, 8 extra samples are
added iteratively to the DoE as shown in Fig. 3(b)- Fig. 3(i).
These added samples are deposited in the vicinity of the
failure boundary and maintain a certain distance from the
existing samples in DoE. As shown in Fig. 3(j), the final Krig-
ing model is obtained after 8 iterations, and it is employed to
estimate the probability of failure.

B. EXAMPLE 2: A HIGH-ORDER CASE WITH NONLINEAR
PERFORMANCE FUNCTION
In this example, a structure with a high-order nonlinear [43]
is considered, and its performance function given by

G (x1, x2, x3) = 0.025x41 + 2x22 + x3 + 2.5 (40)

where x1, x2 and x3 are random variables, and they obey the
standard normal distribution.

Like example 1, all methods mentioned are employed
to evaluate the probability of failure. The reference value
PFmcs is calculated out of 50 different MCS runs with
NMCS = 7×106 samples each. The reliability analysis
results of the proposed AK-MCMC, AK-MCS + U, AK-
MCS + EFF, AK-MCS + H and MCS are summarized
in Table 3.

It is found that the probability of failure estimated by each
method is very similar to the reference value of PFmcs, and

FIGURE 4. Variations of misclassification rate and failure probability with
iteration number for example 2.

those four methods have a good accuracy as shown in Table 3.
Compared with other methods, the proposed AK-MCMC
method has more advantages in terms of average number of
calls N̄call to the original performance function, maximum
relative percentage error εmaxPf and the average computational
time T̄c with 20 runs. There is a shortest interval

[
Nmin
call ,N

max
call

]
with the proposed AK-MCMC method, which means that it
is more stable than other methods.

Fig. 4 is shown to describe the variations of the normal-
ized maximum misclassification rate δmaxmis and normalized
failure probability Pf with iteration number. Fig. 5 shows
the iterative process for updating samples with the proposed

60564 VOLUME 7, 2019



K. Song et al.: New Sequential Surrogate Method for Reliability Analysis and Its Applications in Engineering

FIGURE 5. Iterative process of AK-MCMC for example 2. (a) The initial surrogate model. (b) The 1st iteration. (c) The 2nd iteration. (d) The 3rd
iteration. (e) The 4th iteration. (f) The 5th iteration. (g) The 6th iteration. (h) The 7th iteration. (i) The 8th iteration. (j) The 9th iteration. (k) The 10th
iteration. (l) The 11th iteration. (m) The 12th iteration. (n) The 13th iteration. (o) The 14th 30th iterations. (p) The final surrogate model.

AK-MCMC method. In order to reduce the space,
Fig. 5 shows only parts of the iterative process. As shown in
Fig. 5, 11 initial samples (Fig. 5(a)) are generated and 30 addi-
tional samples are selected sequentially. Since the approxi-
mation of the limit state can be progressively improved in
the process of subjoining samples, the estimation accuracy of
failure probability with the proposed AK-MCMC method is
significantly improved as shown in Fig. 4.

C. EXAMPLE 3: DYNAMIC RESPONSE OF A NONLINEAR
OSCILLATOR
As shown in Fig. 6, a non-linear undamped single degree
of freedom system is considered. The reason this exam-
ple is selected is that it is a classical illustration in liter-
atures [24]–[26], [43] and involves a medium number of
stochastic variables. The statistical parameters of basic vari-
ables are given in Table 4. The performance function is
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FIGURE 6. A nonlinear oscillator for example 3.

TABLE 4. The statistical parameters of basic variables for example 3.

expressed by

G = 3r −

∣∣∣∣∣ 2F1mω2
0

sin
(ω0

2
t
)∣∣∣∣∣ (41)

where ω0 =

√
(c1 + c2)

/
m.

The reliability analysis results obtained by MCS and the
four adaptive sequential sampling methods are summarized
in Table 5. It is found that probabilities of failure acquired by
AK-MCMC, AK-MCS+U, AK-MCS+ EFF, and AK-MCS
+ H are quite close to the reference value PFmcs obtained out
of 50 different MCS runs with NMCS = 1×106 samples each.
As listed in the Table 5, the proposed AK-MCMC method
only needs average 105.40 calls to the original performance
function, whereas the AK-MCS + H requires the most on
the term of average calls N̄call (139.95 calls) with 20 runs.
Although the AK-MCMC method isn’t the most efficient
one, it is more accurate with the term of maximum relative
percentage error εmaxPf = 1.00% than the most efficient one
(AK-MCS + EFF) with εmaxPf = 1.01%, and the average
computational time of the proposed AK-MCMC method is
fewer than the one with AK-MCS+ EFF. Therefore, the pro-
posed AK-MCMC method is still superior to the other three
methods.

The variations of the normalized maximum misclassifi-
cation rate δmaxmis and normalized failure probability Pf with
iteration number are shown in Fig. 7. It can be found that the
fluctuations of failure probability are more severe before the
45th iteration, and it gradually converges between the 45th
iteration and the 90th iteration. The maximum misclassifica-
tion rate δmaxmis is met and a higher accuracy estimated value of
failure probability is obtained at the 90th iteration.

D. EXAMPLE 4: MODIFIED RASTRIGIN FUNCTION
The next example is based on themodifiedRastrigin function,
and it is often used in the literature as an application exam-
ple for testing reliability methods [24], [32]. This function

FIGURE 7. Variations of misclassification rate and failure probability with
iteration number for example 3.

FIGURE 8. Variations of misclassification rate and failure probability with
iteration number for example 4.

involving non-convex and non-connex domains of failure
characterizes highly nonlinear performance behavior, and it
is defined by (42). The two random variables x1 and x2 are
standard normally distributed.

G (x1, x2) = 10−
2∑
i=1

(
x2i − 5 cos (2πxi)

)
(42)

The proposed AK-MCMC method is compared with
Monte Carlo Simulation and other three AK-MCS methods,
and the reliability analysis results are listed in Table 6.

The probability of failure estimated by AK-MCMC with
average 243.54 calls is found to be the same than the one
obtained by MCS for the same population (Table 6). Fur-
thermore, in this case, AK-MCS + U, AK-MCS + EFF and
AK-MCS + EFF perform the same population. However,
the average number N̄call of required calls to the performance
function with the three AK-MCMC methods is much more
than the one with AK-MCMC for obtaining a similar relia-
bility evaluation result.
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TABLE 5. Reliability analysis results for example 3.

TABLE 6. Reliability analysis results for example 4.

Fig. 8 is also shown to describe the variations of the nor-
malized maximum misclassification rate δmaxmis and normal-
ized failure probability Pf with iteration number. It can be
found that the fluctuations of failure probability are more
severe before about 120th iteration, and it gradually con-
verges after the 120th iteration. The maximum misclassifi-
cation rate δmaxmis is met, and a surrogate model with a higher
accuracy for estimating failure probability is obtained at the
235th iteration. The failure boundary of final surrogate model
with 244 experimental samples by AK-MCMC to satisfy the
stopping condition is shown in Fig. 9. It is seen that the
samples are scattered in the design space, and they are located
in the vicinity of the limit state. Furthermore, Fig. 9 shows
that the limit state is well approximated by AK-MCMC. This
example shows that the proposed AK-MCMC can be used
on highly nonlinear limit states and on problems involving
non-convex and non-connex domains of failure.

E. EXAMPLE 5: AN AIRCRAFT DOOR LOCK MECHANISM
In this example, the reliability of an aircraft door lock mech-
anism on the locking position accuracy is analyzed. The
aircraft door lock mechanism [44] consists of 8 parts: lock-
body, lock-hook and lock-ring, push-rod, connecting-rod 1,
rocker, connecting-rod 2, tension-spring, which is described
in detail in Fig. 10 (a). Due to the randomness of components
in the lock mechanism, the locking position of the lock
mechanism is a random variable. This causes the position
of the aircraft door to overlap with the aircraft fuselage to
be misaligned, and the flight performance of the aircraft is
affected. The functional feature is defined as the angular
deviation α between the actual position of the lock-hook and
the ideal position at the lock position, as showed in Fig. 10(b).

FIGURE 9. The final surrogate model with 244 experimental samples by
AK-MCMC for example 4.

There are 13 variables with the truncated normal distri-
bution, which can be seen in Table 7. On the basis of the
kinematics principle of lock mechanism, the angular devia-
tion α can be established based on massless rod clearance
simulation analysis model in LMS Virtual.Lab Motion, and
it is easy to find that the angular deviation α is a function
of the 13 variables. When the angular deviation α exceeds a
given threshold α0, the lock mechanism is considered to be
invalid at the lock position. The performance function can be
defined as

G (x) = α0 − α (x) (43)
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TABLE 7. The statistical parameters of basic variables for example 5.

FIGURE 10. The schematics of an aircraft door lock mechanism for example 5: (a) the assembly of the lock mechanism, (b) the
characterization of the locking position accuracy.

where x = [x1, x2, · · · ,x13] and α (x) is the angular deviation
between the actual position of the lock-hook and its ideal
position at the locking position. The threshold α0 is set to
be 1.3◦. Since α (x) is computed by calling to the LMS
analysis model, this case is a problem with an implicit and
multivariable performance function and the calculation of the
analysis model is time-consuming.

Due to that the calculation process of MCS is time con-
suming, the reference value PFmcs estimated out of just one
MCS run with NMCS = 7 × 106 samples is 1.566 × 10−3 in
this example. First, 7× 106 samples are randomly generated
by MCS under the statistical parameters of variables, and
these samples are divided into 70 sample sub-sets contain-
ing 100,000 samples. Then, the data for sub-sets are stored
in 70 numbered excel files, respectively. The samples in

these files are sequentially calculated for the corresponding
simulation results on 8 computers with Intel Core i7-7700K
CPU@4.20GHz 8 cores in LMS Virtual.Lab 13.6. The aver-
age cost time of each computer is about 18 days in the case
of 24-hour work. Obviously, the calculation of MCS is time
consuming for reliability analysis of the lock mechanism on
the locking position accuracy.

Reliability analysis results are summarized in Table 8.
It can be seen that probabilities of failure acquired by AK-
MCMC, AK-MCS + U, AK-MCS + EFF, and AK-MCS
+ H are considerably close to the reference value of
PFmcs. The proposed AK-MCMC method only needs aver-
age 188.40 calls to the time-consuming simulation model,
which is the most efficient one, whereas the AK-MCS +
H requires the most average calls N̄call (317.60 calls) with
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TABLE 8. Reliability analysis results for example 5.

FIGURE 11. Variations of misclassification rate and failure probability
with iteration number for example 5.

20 runs. Meanwhile, the proposed AK-MCMC method is the
most efficient one with a maximum relative percentage error
εmaxPf = 0.94% than the most inefficient one (AK-MCS +
EFF) with εmaxPf = 2.70%. Although the AK-MCMC method
has a higher average computational time with T̄c = 14586s
than the minimal one (AK-MCS + U) with T̄c = 7799s,
there are a smaller εmaxPf and a less number N̄call of average
calls with the proposedAK-MCMCmethod. So, the proposed
AK-MCMC method is quite advantageous compared to the
other three methods.

For this example, the failure probability starts to converge
around 65th iteration as shown in Fig. 11. However, there
are more obvious fluctuations of failure probability during
the 65th iteration to the 160th iteration, and the term of
maximummisclassification rate δmaxmis is substandard and very
unstable during this period. The maximum misclassification
rate δmaxmis is met and a higher accuracy estimated value of
failure probability is obtained at the 166th iteration.

V. CONCLUSIONS
A new sequential surrogate method for reliability analysis,
AK-MCMC, is proposed by combining adaptive Kriging
and Markov Chain Monte Carlo simulation. The proposed
AK-MCMC method is subtly divided into three stages:
(1) initial preparation phase; (2) model refinement phase;
(3) reliability evaluation phase, which makes reliability

evaluation and adaptive iterative process independent of each
other for improving the efficiency of model refinement.
In model refinement phase of the proposed AK-MCMC
method, a new learning function and a novel stopping crite-
rion based on the principle of leave one out cross validation
are developed. To investigate the efficiency and accuracy of
the proposed AK-MCMC method, it is employed to evaluate
the failure probabilities of four classic cases and an implicit
and 13-dimensional engineering problem.

The applications of the first two examples and the 4th
example indicate that probabilities of failure assessed by all
methods mentioned above are quite similar to the reference
value estimated by MCS, and the relative percentage errors
are very small. However, in terms of the average number
of calls to the original performance function and calculation
time, the proposed AK-MCMC method is more advanta-
geous than the other three AK-MCS methods, especially in
the first case with a small failure probability and the 4th
example involving non-convex and non-connex domains of
failure. This fully demonstrates the advantage of the pro-
posed method to make the adaptive process and the relia-
bility analysis independent of each other. In example 3 and
example 5, the proposed AK-MCMC method has no longer
an advantage in the term of average computational cost. The
primary reason is that the generation of candidate samples
by MCMC becomes inefficient as the dimension of problem
increases. However, the proposed AK-MCMCmethod is still
more advantageous than the other three methods in terms of
the number of relative percentage error calls to performance
function.

In reliability analysis based on surrogate models, there
are three main directions in our future efforts for practical
engineering. The first is that how to improve the efficiency
of determining next optimal sample in a more efficient way.
The second is to employ a more efficient simulation method
in the reliability evaluation stage of the proposed AK-MCMC
method. The third is to find a more efficient alternative sur-
rogate model to replace the Kriging model.
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