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ABSTRACT With the development of aviation, the air traffic density in the terminal area is high and the
traffic situation is relatively complex, which brings challenges to the flight deployment. In order to fully
understand the air flight situation and provide decision-making basis for controllers, this paper proposes
a key conflict aircraft identification method based on complex network theory and node deletion method.
First, an aircraft state network is constructed with an aircraft as nodes and airborne collision avoidance
system (ACAS) communication relations as edges. Network efficiency, network robustness, connection
density, and largest component were used as the indexes of network performance. The weight of each
index is determined by using AHP-entropy weight method. A multi-attribute decision-making method was
introduced to quantify network performance. Then we used a node deletion method to determine key conflict
aircrafts. The simulation and experiment are respectively carried out on the artificial network and the aircraft
state network of a certain day in the terminal area of Kunming Changshui Airport. The results show that
the method proposed in this paper can identify the key conflict points in the aircraft state network. The
deployment of selected nodes can not only effectively reduce the complexity of the flight state network, but
also provide a reference for air traffic control services and reduce the control difficulty of the controller.

INDEX TERMS Aircraft state network, complex network, node deletion, air traffic control (ATC).

I. INTRODUCTION
In recent years, the civil aviation transportation industry has
developed at a high speed, the air traffic flow (ATF) is
increasing, and the airspace environment is becoming more
complicated. These have brought tremendous deployment
pressure to the controller. Accurate analysis of the current air
flight situation can effectively reduce the control difficulty
by providing assistant decision-making for controllers. This
has also become a hot issue in the modeling and evaluation
of current air traffic situation. In order to solve this prob-
lem, people use the controller workload, clustering algorithm,
intrinsic attributes and othermethods to describe the air traffic
situation, to understand and master the basic laws of air
traffic.

With the rapid development of complexity science, com-
plex network theory has been widely applied in various
fields. The research on air traffic using complex network
theory has also become a hot topic. ZHANG made a detailed
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analysis of foreign methods and theoretical achievements on
air traffic complexity [1]. In his research, he summarized the
strengths and weaknesses, as well as the problems should
be solved in the future. This has laid a foundation for the
study of air traffic complexity. After that, WANG applied
the complex network theory to the research of air traffic
complexity [2], [3], and ATF complexity [4]. However, these
researches mainly focus on the overall situation of airspace,
and the relationship between agents behavior and the airspace
situation is relatively few. In this study, a flight state network
is established: aircraft are taken as nodes, ACAS communi-
cation is established between aircrafts as edges. Analyze the
influence of each aircraft on the whole network.

In the study of complex networks, it is found that a few
nodes play the role of ‘‘key nodes’’ [5], [6]. These nodes
play an irreplaceable role in network performance and often
determine the structure and function of the network. On the
one hand, it can improve the survivability of the power
grid [7], [8] and the Internet of Things (IoT) [9] by improving
key nodes. On the other hand, it can also destroy some
networks by deliberately attacking these nodes. For example,
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in preventing the spread of diseases [10] and subgraph robust-
ness of complex networks under attacks [11]. Similarly, in the
aircraft state network, the adjustment of a few aircraft will
have a great impact on the current aircraft state structure. The
deployment of these aircrafts will quickly relieve air traffic
congestion and reduce air traffic complexity. How to find out
these key nodes is the core problem to be solved in this paper.

At present, there are many researches on the identification
of key nodes. The main method is to sort the nodes in the
network according to some attributes of nodes, among which
the first one is the key node. These attributes can be divided
into two categories: node metrics and network metrics.

Some node metrics are introduced in [12], [13]. Refer-
ence [14] proposed the node contraction method to evaluate
the node importance in complex networks. On this basis,
Refs. [15], [16] comprehensively considered the influence
of edge weights and proposed a node contraction method
to improve the weighted network. This method was later
applied to the road traffic network in [17]. Reference [18]
adopts FCM algorithm to evaluate the key nodes of complex
traffic network with node betweenness and node degree as
indexes. Node metrics are simple but inefficient. Because it
looks relatively simple, it ignores the overall characteristics
of the network and cannot quantify the importance weight of
nodes.

Typical network metrics mainly include degree central-
ity [19], closeness centrality [10], betweenness central-
ity [20], clustering coefficient [21] and so on. Each evaluation
index evaluates the importance of nodes from a specific
aspect and perform well in identifying key nodes. For exam-
ple, Reference [22] use largest component and the clustering
coefficient to find overlapping nodes in complex networks.
Reference [23] proposes a method to determine the key nodes
of complex networks by using the importance evaluation
matrix. And then Reference [24] redefines the weighted net-
work node importance contribution matrix and the node
importance evaluation matrix. NAN applied the improved
Page Rank algorithm to the protein interaction network to
measure the importance of junctions [25]. Based on the net-
work topology and the biological information characteristics
of PPI (protein-protein Tnteraction) network, GUAN gives a
key node search algorithm [26]. CAI proposed a node impor-
tance ranking algorithm based on improved kernel entropy
theory [27]. On the basis of complex network theory and
node deletion method, we proposed a ‘‘No Return’’ method
to identify key nodes in the aviation network [28]. Then, the
LS-SVM is used to speed up the algorithm [29]. Based on the
entropymethod theory REN identify the key points with great
influence in the route [30].

The degree of damage caused when a node is removed
from the network is equal to its importance. Node deletion
method [31] is the most typical kind of system analysis,
it avoids some problems resulted from unreasonable choice of
attributes and indexes in network analysis by reverse thinking.
The identification of key nodes of aircraft state network is
precisely to guide the aircraft at this node to break away from

the current network and reduce the complexity of air traffic.
So it is of great practical significance to use node deletion
method to sort the importance of nodes.

For node deletion method, the other fundamental prob-
lem is evaluating the network performance [32], [33] when
a node isremoved. Most of these methods measure nodes
importance by comparing network connectivity before and
after removingnodes. Corley and Sha proposed ‘‘shortest
path’’ [34]–[37], and measured the extent of the damage
to network due to theremoval of node by comparing the
change of the shortest path. Yong-Chen proposed ‘‘span-
ning tree’’ [38]–[41], measuredit by change of spanning
trees’ number. Since the characteristics of the aircraft state
network, the density is an important index which can-
not be neglected. On the basis of network robustness
researches and aircraft state network reality, we propose
four indexes: efficiency, robustness, connection density and
largest component [42], [43] to calculate network overall per-
formance. Evaluating node importance by comparing the
change of network overall performance before and after
deleting nodes.

The remainder of the paper is organized as follows.
In Section 2, an aircraft state network is established.
In Section 3, 4 indexes were chosen and the network per-
formance was evaluated based on multi-attribute method.
In section 4, the whole proposed method flow is introduced.
In Section 5, the effectiveness of our method is verified by
artificial network and actual network. Finally, this paper is
concluded in Section 6.

II. AIRCRAFT STATE NETWORK MODEL
In complex network theory, the network G = (V ,E)
refers to a collection of nodes and edges connecting nodes,
V = {vi| i = 1, 2, . . . , n} stands for the n nodes. E ={
eij(vi, vj) |i 6= j , vi, vj ∈ V

}
is the set of edges. The ‘n’ is the

number of nodes in the network.
In the aircraft state network, as shown in Fig.1(a), nodes

are aircraft, edges refers to the ACAS connection between air-
craft. In other words, ACAS communication was established
between aircraft to obtain flight information. And this model
takes into account the relative distance between aircraft, and
as a platform for conflict detection and resolution (CD&R)
warning in the pre-tactical stage, aircraft with good interval
are excluded, which can effectively reduce the frequency
of CD&R.

According to ICAO document 8168 [44], ACAS interro-
gates other transponder-equipped aircraft within a nominal
range of 26 km (14 nm). In the aircraft state network, eij = eji,
that is, the network belongs to an undirected network. As a
separate entity existing in the network, aircraft is also the
meaning of the actual existence of the network.

The relationship between nodes in the network can be
represented by adjacency matrix A =

(
aij
)
n×n.

aij =

{
1

(
vi, vj

)
∈ E

0
(
vi, vj

)
/∈ E

(1)

60958 VOLUME 7, 2019



W. Zekun et al.: Identification of Key Nodes in Aircraft State Network Based on Complex Network Theory

FIGURE 1. Model of aircraft state network. (a) Flight situation.
(b) Topology structure.

As shown in Fig.1(b), the adjacency matrix of the network
can be expressed as:

A =



0 1 1 0 0 0 0
1 0 1 0 0 0 0
1 1 0 0 0 0 0
0 0 1 0 1 0 0
0 0 0 1 0 1 0
0 0 0 0 1 0 1
0 0 0 0 0 1 0


(2)

In the operation of air traffic control, aircraft that have a
great impact on the network should be guided out as soon as
possible to avoid the deterioration of the air traffic situation.
According to the actual situation, we use the node deletion
method to compare the node importance. After deleting a
node, we calculate the network performance and compare it
with the original network. The greater the change in network
performance, the more important the node is.

To illustrate this method further, a flow chart was given as
in Fig.2.

FIGURE 2. Node deletion method.

III. EVALUATION OF NETWORK
A. INDEX DEFINITIONS
The network performance corresponding to the node is the
performance of the network after the node is deleted.We need
to evaluate the network performance when a node is removed
from the network, so as to calculate how much destruction it
caused. The evaluation of network overall performance need
to be comprehensive and objective, according to the existing
identification methods of key nodes in complex networks
and the basic characteristics of aircraft state networks, this
paper selects network efficiency, network robustness, connec-
tion density and largest component as the four typical overall
performance indexes. The above indexes basically reflect
all the information of static network performance and can
objectively evaluate the key nodes of aircraft state network.
The detailed introduction is as follows:

1) NETWORK EFFICIENT (NE)
Network efficiency is the average of the reciprocal sum of
distances between all nodes.

NE =
1

n(n− 1)

∑
i 6=j

1/dij (3)

where n is the total number of nodes in the network and
dij is the shortest path distance between nodes vi and vj.
The distance between two nodes in a graph is the number
of edges in a shortest path (also called a graph geodesic)
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connecting them. This is also known as the geodesic distance.
And it is calculated from the inverse of path distance between
nodes, therefore avoiding the meaningless definition in non-
connected graphs. Network efficiency can reflect the diffi-
culty of network information transmission. The larger NE is,
the closer the distance between nodes is, and the more likely
flight conflicts will occur in the network.

2) NETWORK ROBUSTNESS (NR)
The network robustness [45] is used to measure the average
influence of the ability to maintain connectivity between the
nodes in the network. That is, the ratio of the actual number of
connected edges in the network to the theoretical maximum
number of connected edges in the network. The calculation
formula of the network robustness NR is:

NR =
1

n (n− 1)

n∑
i=1

n∑
j=1

aij (4)

where n represent that number of remain nodes, aij represents
the connection relationship between nodes in the network.

3) CONNECTION DENSITY (CD)
In an unweighted network, connection density refers to the
ratio of the existing connection edge to the possible connec-
tion edge in the network [46]. For aircraft state networks, this
paper defines weighted connection density:

CD =

n∑
i

n∑
j
aijwij

n(n− 1)
(5)

wij = 1
/
lij (6)

where n is the total number of current network nodes. lij is
the distance between vi and vi. It can be seen that if CD is
larger, the overall heterogeneity is higher, the network traffic
is larger, and the network structure is more complex.

4) LARGEST COMPONENT (LC)
A sub-graph is a part of a network in which there is one
or more paths between all node pairs. If the graph is non-
connected, it can be divided into two or more subgraphs.
Among these sub-graphs, the one with the most nodes is the
largest component S:

LC = |S| (7)

where |S| is the size of the largest component. Generally
speaking, the more nodes in the largest component, the higher
the complexity of the aircraft state network.

B. AHP- ENTROPY WEIGHT METHOD
1) AHP METHOD
According to the contribution degree of the selected net-
work topology index relative to the key nodes of aircraft
state network, pairwise comparison is made. A represents
the importance degree of index i compared with index j, and
judgment matrix is constructed.

The value method of cij in the judgment matrix is shown in
table 1:

TABLE 1. Fundemental Scales.

TABLE 2. The RI value of the matrix order.

The inconsistency index is calculated by CI. The smaller
CI is, the greater the consistency is. IfCI > 0.1, the judgment
matrix should be adjusted again until it passes the consistency
test.

CI =
[λmax − m]
m− 1

(8)

CR =
CI
RI

(9)

λmax is the maximum eigenvalue of the break matrix,m is the
number of evaluation index,RI is the average random consis-
tency index. The value ofRI is related to the order of judgment
matrix, and Saaty has givenRI values corresponding to partial
matrix orders, as shown in table 3:

Then the weight of each evaluation index can be express as:

Wj =
x(j, d)
m∑
i=1

x(j, d)
, j = 1, 2, · · ·m (10)

x is the eigenvector matrix of the judgment matrix, d is the
column where the maximum eigenvalue is located and Wj is
the weight corresponding to index j.

2) ENTROPY WEIGHT METHOD
In order to overcome the defects of subjectivity of AHP
method and insufficient index identification ability [47],
entropy weight method is introduced to correct the
results.The entropy method [48] determines the index weight
according to the variation degree of each index value, which
is an objective weighting method and avoids the deviation
caused by human factors. Therefore, the entropy weight
method is used to revise the AHP method so as to make the
evaluation result objective and accurate as far as possible. The
algorithm steps are as follows:
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¬ Establishing an original index data matrix
Let’s say that the number of aircraft in the aircraft state
network is n, the set of nodes is N , N = (N1,N2, . . . ,Nn).
The set of evaluation index is S, S = {S1, S2, . . . , Sm}. The
initial decision matrix formed by them is G = (gij)n×m.

G =

 g11 · · · g1m
...

...
...

gn1 · · · gnm

 (11)

where gij is the value of the j-th index of the i-th node.
­ Standardize the original index data matrix

Due to the difference of magnitude of each data, the index are
standardized by min-max:

bij =
gij − gjmin

gjmax − gjmin
(12)

cij =
bij
n
6
i=1

bij
(13)

The decision matrix C =
(
cij
)
n×m is obtained by standardize

each element of the original index data matrix according to
the above equation.

® Calculate information entropy e

ej = −k
n
6
i=1

Cij lnCij (14)

k = 1
/
lnm (15)

¯ Calculate the difference coefficient d (information util-
ity value)

d ′j = 1− ej (16)

Using entropy method, the difference coefficient d ′j of the j-th
index can be calculated from equation (14). The larger the
difference coefficient, the more important the index is and
the greater the impact on the evaluation results.

In order to avoid the interference of other external fac-
tors,this paper is used to revise the aircraft state network
in 10 same airspace, different dates and different times, and
the obtained 10 groups of difference coefficients are averaged
to obtain the final difference coefficients dj.

° Revise the AHP evaluation index weight and normalize
it to obtain the final index weight:

H ′j = Wj × dj, j = 1, 2, · · ·m. (17)

Hj =
H ′j
m
6
i=1

H ′j

(18)

C. EVALUATION BASED ON MULTI-ATTRIBUTE
DECISION-MAKING METHOD
The change of network comprehensive performance is obtain
by multi-attribute decision-making method [49]. Since our
research is the network changes after different nodes are
deleted, we regard deleting different nodes as a solution,
then the evaluation indexes of network can be regarded as

attributes of each solution, thus the evaluation of the net-
work performance can be transformed into a multi-attribute
decision problem, and the evaluation of the comprehensive
performance of each solution is a decision criterion.

For comparison, the standard decision matrix C =(
cij
)
n×m obtained by equation (12) is adopted. As can be

seen from equation (16), the weight of the j-th index is
Hj(j = 1, 2, · · ·m),

∑
Hj = 1, based on standardized deci-

sion matrix C , weighted standardized matrix is formed:

Y =
(
yij
)
n×m =

(
Hjcij

)
n×m =

H1c11 · · · Hmc1m
...

. . .
...

H1cn1 · · · Hmcnm


(19)

Based on TOPSIS method [50], positive ideal scheme A is
decided according tomatrix Y . The element inA are themaxi-
mum of each column of the matrix Y . Among all the schemes,
A has the smallest reduction in comprehensive performance
value after deleting:

A =
{

max
i=1,2,··· ,n

(yi1 yi2 · · · yim)
}

= {y1max y2max · · · ymmax} (20)

Then, calculate the distance from each scheme Ai to the
positive ideal scheme A:

Di =

√√√√√
 m∑
j=1

(
yij − yjmax

)2 (21)

The greater the distance between scheme Ai and positive
ideal scheme A, the greater the change in the comprehensive
performance of the network after deleting node vi, that is,
the more important the node is.

IV. ALGORITHM PROCESS
A flight state network modeling method proposed in
this paper identifies the aircraft with key conflict nodes,
the method steps are shown in Fig.3:

In the key conflict node identification method based on
the complex network theory, the weight of each index is
preliminarily determined through AHP analysis, and the final
weight [51], [52] is obtained after the entropy weight method
is revised. The comprehensive performance of the network is
determined through multi-attribute decision-making, and the
key conflict node is determined by comparing the changes
after node deletion. There are mainly the following five steps:
• Step 1: A weighted network of flight states is con-
structed. With aircrafts as nodes, the aircrafts in ACAS
communication range from connected edges, and the
reciprocal of the distance between aircrafts is the edge
weight.

• Step 2: Calculate topological index. Select a complex
network topology index that can fully reflect the network
performance and evaluate the network.
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FIGURE 3. Algorithm process.

TABLE 3. The comparative results of the Index.

• Step 3: Determination of index weight. Based on AHP
method, the weight of each index is preliminarily ana-
lyzed and determined, and the entropy weight method is
used for correction.

• Step 4: Multi-attribute decision-making. Based on
TOPSIS multi-attribute decision making, the com-
prehensive performance of flight state network is
determined.

• step 5: Identification of key nodes. The comprehen-
sive performance changes of the network after different
nodes are deleted are compared to determine the key
nodes.

V. SIMULATION AND ANALYSIS
A. SOLVING INDEX WEIGHT
According to the analysis results of each index in section 3,
the original judgment matrix is established, as shown in
Tab.3:

So the judgment matrix is:

C =


1 1/5 1/4 1/3
5 1 3 3
4 1/3 1 2
3 1/3 1/2 1

 (22)

Weight vector is obtained from AHP: wi = (0.0708, 0.5141,
0.2514, 0.1637). Then, the final weight vector is obtained
through the entropy weight method: vi = (0.140, 0.420,
0.268, 0.172).

TABLE 4. Weight distribution of evaluation index.

FIGURE 4. Aircraft state network topology.

According to Eqs.(13), CR = 0.0333 < 0.1, which
satisfies the consistency check. So the weight values of each
index are shown in Tab.4.

B. IDENTIFICATION IN ARTIFICIAL NETWORK
In order to verify the effectiveness of the method, a sim-
ulated flight state network with 24 nodes is generated by
Matlab 2016a, as shown in Fig.4, and tested.

In the same way, the node deletion method is adopted.
First, the importance value of all nodes is calculated, and the
maximum value is selected as the key node. Then, the node is
deleted and the importance value of each node is recalculated.
By analogy, the importance ranking of all nodes is given. The
ranking results are shown in Tab.5. In this paper, we also
give the node importance ranking results obtained by: the
closeness, degree centrality, and the [53] method. Unlike the
proposed method, the reference [53] adopts a ‘return’ node
deletion approach: the deleted node is put back after calculat-
ing the node importance.

When nodes are removed from the network according to
the node importance ranking of the node deletion method and
the normal method, the change trends of the four evaluation
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TABLE 5. Node importance ranking.

FIGURE 5. Comparison of network structure before and after key node
deletion. (a) Original network structure. (b) The network structure after
key nodes are deleted.

indexes are shown in Fig.6(a) to 6(d). As can be seen from
the figure, as nodes are removed from the network one by
one, the robustness, efficiency, maximum connectivity sub-
graph and connection density of the simulated flight state
network continue to decline. Obviously, most curves of the
node deletion method are located below the normal method,
that is, when the same number of nodes is deleted, the node
deletion method has a greater impact on the network.

In order to show the advantages of this method over
other methods, nodes are removed according to the node
importance ranking of node deletion method, normal method,
closeness method and degree centrality method, and the
overall performance curve changes of four different meth-
ods are compared as shown in Fig.7. As the number of
deleted nodes increases, the overall network performance of
each method steadily decreases. However, when nodes are
removed according to the node deletion method, the overall
performance decreases significantly faster.

The aircraft impact the overall air traffic situation in dif-
ferent degrees. This also reflects the different importance
degrees among nodes, which is called a nonhomogeneous
network. Thus network structure entropy is introduced to
measure whether the influence degrees of aircraft on the

whole traffic situation are homogeneous. The network struc-
ture entropy is a macro-index measuring the topological
nature of a network and describes the homogeneity or not of
node degrees.

Es = −
n∑
i=1

Ii ln Ii (23)

Ii = ki

/
N∑
j=1

kj (24)

where Es is the structure entropy of an aircraft state network;
n is the number of aircraft; and Ii is the ratio of the node
degree(ki) of aircraft i to the sum of all node degrees.
The larger the structure entropy, the higher homogeneity

of node degrees. Fig.8 shows the structure entropy change of
after node removal when node importance are sorted accord-
ing in different methods.

As can be seen from the figure, when the first 10 nodes
are deleted, the network structure has little difference. Start-
ing from the 11th node deletion, the node deletion method
proposed in this paper shows its advantages, and the network
structure entropy decreases rapidly.

C. IDENTIFICATION IN ACTUAL NETWORKS
In the actual work of air traffic control, all flight situations in
the airspace under its jurisdiction are displayed on the radar
control screen, as shown in Fig. 9:

Using radar data to model the flight state network can
restore the current radar screen information. In order to fur-
ther verify the effectiveness and practicability of the aircraft
identification method for key conflict nodes in this paper,
we took the radar data of the terminal area of Kunming
Changshui airport as the sample for analysis. Radar data
in a random time period were selected and the flight state
network was modeled every 5 minutes. Key conflict aircraft
identification in each scenario is shown in Fig. 10 (a)-(f):

The bigger red dot in the figure is the key conflict aircraft.
Most of the five nodes are distributed on the approach routes
near the center of the sector. These nodes are located in
the center of the network and have many neighbor nodes,
which have strong ability to affect the network performance.
In Fig.9(a), even five nodes are distributed in the center.
In addition, although a small number of nodes are not located
closest to the center, they have a common characteristic: they
are separated from the adjacent aircrafts by a small distance,
i.e. the edge weights of the connected edges are very large.
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FIGURE 6. Changes in network indexes. (a) Robustness analysis.
(b) Efficiency analysis. (c) Network density analysis. (d) Largest
component analysis.

The characteristics of these nodes are well captured by the
network topology index, which reflects that the key con-
flict node identification method in this paper considers the

FIGURE 7. Change of network comprehensive performance.

FIGURE 8. Network structure entropy analysis.

FIGURE 9. Real-time scene of radar control.

macro-scale and individual micro-scale of the network com-
prehensively and verifies the effectiveness of this method.

Table 6 shows the comprehensive network performance
values after removing the first five key nodes after sort-
ing the nodes by various methods. Obviously, in each sce-
nario, the network performance obtained by the node deletion
method is the smallest.

Fig.10 shows the identification result of the key conflict
aircraft at 17 min 30 s, i.e. Fig.9(c). From Table 8, we can get
the scores of each evaluation index of the five key aircrafts.
The node degree of each aircraft exceeds 10, and the weighted
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FIGURE 10. Aircraft state networks at different times. (a) time 02 min 30 s. (b) time 07 min 30 s. (c) time 12 min 30 s. (d) time 17 min 30 s.
(e) time22 min 30 s. (f) time27 min 30 s.

TABLE 6. Comparison of network complexity before and after removal the key nodes.

clustering coefficient is 0.66 at the minimum and even 0.93 at
the maximum. It can be seen that the flight environment
around these five aircrafts is very complex, and the number

of aircrafts around the key conflict aircrafts is large and the
distance is very close. From the table, it can be seen that
the node degree of the aircraft ranked 3rd is less than that
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FIGURE 11. Identify the key aircraft nodes.

TABLE 7. Node index score.

FIGURE 12. Aircraft state network situation.

of the aircraft ranked 4th, but the node weight, weighted clus-
tering coefficient and node betweenness are larger. Therefore,
the aircraft is of higher importance. If we do not pay attention
to the monitoring and deployment of these key aircrafts, it is
easy to cause conflicts with other aircrafts around.

The current airspace flight situation at 27 min 30 s is given
according to the node importance, as shown in Fig.11. Red
indicates nodes with more complicated flight situations. If the
aircraft is not guided correctly, flight conflicts will easily
occur and the safety situation of the entire airspace will be
destroyed. From the figure, the controller can easily obtain the
current airspace situation information, each point represents
an aircraft, and different colors represent the importance of
nodes.

VI. CONCLUSION
In this paper, an aircraft state network model is established
based on complex networks, and a node deletion method is
proposed to identify key conflicting nodes in the network.
In order to verify the recognition effect of the proposed

method on key nodes, we compare the recognition effect with
other methods. The results show that the method has better
recognition effect on key conflict nodes. Identifying the key
aircraft that make up the aircraft state network can not only
help the air traffic management department to determine the
focus of Air Traffic Control (ATC) in its daily operation.
In addition, in emergency management, the controller can be
helped to finish the allocation of emergency resources in a
focused and targeted manner, so that the air traffic manage-
ment work can be carried out in an orderly manner.
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