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ABSTRACT The development of e-commerce has led to a surge in the number of online shopping
parcels. However, given the lack of scale effect, last mile delivery is inefficient, expensive, and produces a
considerable amount of carbon emissions, which has become an obstacle to the development of a sustainable
economy. This work proposes a traveling salesman problem with carbon emission reduction in last mile
delivery. The proposed problem aims to reduce the total costs and carbon emissions of last mile delivery
by deciding on the allocation of parcel lockers while scheduling delivery routes. In addition, we take the
customer self-collection intention into consideration and translate it into self-collection costs, which are
included in the objective. An iterated local search (ILS) algorithm is proposed, and four new local search
operators are designed to improve customer allocation. The proposed method is tested on a set of scattered
and clustered instances, including a real-world instance. The computational results show the superiority and
competitiveness of the proposed algorithm.

INDEX TERMS Sustainable economy, carbon emission, parcel lockers, customer pickup, last mile, ILS.

I. INTRODUCTION
The development of e-commerce, especially C2C e-
commerce (Taobao), has overcome geographical restrictions
on sales and realised a surge in online transaction volume.
According to the National Bureau of Statistics of China,
in 2017, the number of online shopping users in the country
reached 533 million, online retail sales reached 7.1 trillion
yuan and the number of parcels of online shopping reached
40.06 billion. In 2017, an average of more than 100 million
parcels per day flowed from merchants to customers.

Home delivery (HD), the process of delivering parcels
directly to customer homes, used to be common in last mile
delivery. Meanwhile, with the increase in parcel volume, last
mile delivery, which lacks ‘economic scale’ [1], has become
the most ineffective, expensive and carbon-emitting part of
e-commerce logistics [2]. It has also increased the pressure on
its actors [3] and become a bottleneck in the development of
e-commerce [4]. Research on improving the efficiency of last
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mile delivery and reducing its carbon emissions has become
a key issue for the sustainable economy.

Customer pickup (CP), which allows customers to self-
collect parcels from nearby parcel lockers (PLs) at their
convenience, has recently become popular in last mile deliv-
ery. CP has many benefits, including improved delivery effi-
ciency [5], reduced delivery costs [6], [7] and minimised
failed deliveries [8]. Moreover, PLs in last mile delivery
are close to customers, who are willing to walk to pick up
their parcels. CP can also considerably reduce the carbon
emissions of last mile delivery [9].

At present, most research works on CP focus on case
studies [1], [6], [9]; investigations of its routing problems are
scarce. This study proposes a novel travelling salesman prob-
lem (TSP) with carbon emission reduction (TSPCER) in last
mile delivery to address practical issues and fill the aforemen-
tioned research gap. The proposed problem aims to reduce
the total costs and carbon emissions of last mile delivery by
deciding on the allocation of PLs whilst scheduling delivery
routes. We translate the customer self-collection intention
into self-collection costs and incorporate it into the objective.
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Meanwhile, we propose an iterated local search (ILS) algo-
rithm to solve the problem.

The study is organized as follows. Section 2 includes
a review of related literature on last mile delivery.
Section 3 provides a detailed description and formulation of
TSPCER, and Section 4 presents the proposed ILS heuristic.
Section 5 displays the computational experiments and discus-
sions. Finally, Section 6 presents the conclusions and future
works.

II. LITERATURE REVIEW
TSP is a classical problem in the field of combinatorial
optimisation. Given a set of cities, the TSP aims to find a
minimum-length Hamiltonian cycle of the cities in which
each city has to be visited exactly once [10]. Many vari-
ations of the standard TSP, including TSP with time win-
dow [11], [12], TSP with pickup-and-delivery [13], [14],
asymmetric TSP [15], [16], family TSP [17], [18], the trav-
elling purchaser problem (TPP) [19], [20] and the covering
salesman problem (CSP) [21], [22], have been introduced in
the literature.

Amongst these studies, CSP research is the most closely
related to the current work. CSP is a generalisation of TSP
and aims to construct a minimum-length tour over a subset
of the given customers such that each customer not visited on
the tour is within the covering distance of at least one visited
customer [22]. Many papers have discussed the application
of this problem in the fields of emergency management and
disaster planning. Interested readers are referred to [23]–[25].

The proposed problem is similar to CSP, but some dif-
ferences exist. CSP has two kinds of nodes: the depot and
customers. The objective of CSP is to find a minimum-length
tour. In TSPCER, three types of nodes, namely, the depot,
customers and PLs, are available. The goal of TSPCER is to
find not only a minimum-length tour but also the best usage
of the PLs.

Another research topic related to this study is PLs.
Studies on PL focus on two areas, namely, case studies
and self-collection network optimisation. In case studies,
Punakivi et al. [6] and Kämäräinen [7] stated that allow-
ing customers to pick up parcels from PLs could reduce
the delivery costs of last mile delivery by more than 55%
and 42%, respectively. Edwards et al. [9] emphasised that
carbon emission could be reduced by 83% by having cus-
tomers collect parcels from PLs. In addition, Agatz et al. [5],
Chen et al. [26], Van Duin et al. [27] and Morganti et al. [28]
proposed that PLs play important roles in the improvement of
urban liveability and reduction of road congestion, demand
for curb-side parking and emissions of greenhouse gases.

In self-collection network optimisation, Park et al. [29]
proposed an optimisation methodology that analyses the
effects of logistics collaboration in the last mile network
in Seoul, South Korea. Deutsch and Golany [1] proposed a
location–allocation problem of PLs to build an efficient self-
collocation network in last mile delivery. Zhou et al. [2] and
Zhou et al. [30] introduced two location routing problems

FIGURE 1. Last mile delivery network with PLs.

with delivery options to minimise the total costs of last mile
delivery.

Some existing studies have found that the total delivery
costs and carbon emissions of last mile delivery could be evi-
dently reduced by using PLs. However, some studies [8], [31]
have shown that most consumers prefer to use PLs near their
homes; the farther the customers are from PLs, the lower their
self-collection intentions. Furthermore, we take the customer
self-collection intention into consideration and then translate
it into self-collection costs, which are incorporated into the
objective. We aim to find the minimum-length tour and best
usage of PLs to reduce the total delivery cost and carbon
emission of last mile delivery.

III. PROBLEM DESCRIPTION AND FORMULATION
A. PROBLEM DESCRIPTION
The problem is defined on a network G = (V ,A), where the
node set V is partitioned as V = VD ∪ VC ∪ VP. VD = {0}
represents the depot, VC = {1, 2, 3, . . . ,N } represents N
customers and VP = {N + 1,N + 2, . . . ,N +M} represents
M PLs. The arc set A is defined as A = A1 ∪ A2. A1 =
{〈m, n〉|m, n ∈ V } is a set of delivery arcs connecting each
pair of nodes in V , and each arc 〈m, n〉 is associated with a
delivery cost dmn. A2 = {〈i, p〉|i ∈ VC , p ∈ VP} represents a
set of pickup arcs from customer i to PL p, and each arc 〈i, p〉
is associated with a pickup cost cip. In addition, the unit open
cost, capacity and service radius of the PLs are u, v and R,
respectively.

In the network, a courier starts from the depot, delivers
parcels to N customers and then returns to the depot. Dur-
ing the delivery process, the courier can deliver each parcel
directly to the customer’s home or to a PL near the customer.
The aim of this process is to minimise the total costs, included
route, customer pickup and PL opening costs.

Figure 1 depicts an example of a last mile delivery system
with 1 depot, 3 PLs, and 21 customers.

B. FORMULATION
In this section, we provide a formal definition of the TSPCER,
and the decision variables of themodel are defined as follows.

Binary variable xmn

xmn =

{
1 if arc(m, n) is visited by the tour
0 otherwise
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Binary variable yip

yip =

{
1 if customer i is allocated to PL p
0 otherwise

1) GENERAL TSP FORMULATION
The model of the general TSP can be described as follows:

min
∑

i,j∈VD∪VC

dijxij, (1)

∑
j∈VD∪VC

xij = 1 ∀i ∈ VD ∪ VC , (2)

∑
i∈VD∪VC

xij = 1 ∀j ∈ VD ∪ VC , (3)

ui − uj ≤ N ∗ (1− xij)− 1 ∀i, j ∈ VD ∪ VC , (4)

ui = {1, 2, . . . ,N } ∀i ∈ VD ∪ VC . (5)

The objective function (1) minimises the route cost. Con-
straint (2) ensures that each customer is served only once.
Constraint (3) guarantees that if customer i is visited, then an
arc leaving it must be observed. Constraints (4) and (5) ensure
that the delivery route has only one closed loop.

2) TSPCER FORMULATION
Compared with general TSP, TSPCER in last mile delivery
increases PL allocation in the constraints and PL opening and
customer pickup costs in the objective, which can be stated as
follows:

min z =
∑
m,n∈V

dmnxmn +
∑

i∈VC ,p∈VP

cipyip +
∑

i∈VC ,p∈VP

uyip

(6)

subject to
∑
m∈V

x0m = 1, (7)∑
m∈V

xim +
∑
p∈VP

yip = 1 ∀i ∈ VC , (8)

∑
n∈V

xmn =
∑
h∈V

xhm ∀m ∈ V , (9)

yip ≤
∑
m∈V

xmp +
∑
m∈V

xpm ∀i ∈ VC , ∀p ∈ VP,

(10)∑
i∈VC

yip ≤ v ∀p ∈ VP, (11)

cipyip ≤ R ∀i ∈ VC , p ∈ VP, (12)

xmn = {0, 1} ∀m, n ∈ V , (13)

yip = {0, 1} ∀p ∈ VP,∀i ∈ VC . (14)

The objective function (6) minimises the route, customer
pickup and PL opening costs. Constraint (7) shows that the
tour starts from the depot. Constraint (8) ensures that each
customer is served only once by either tour or PL. Constraint
(9) guarantees that if a customer or PL is visited by the tour,
then the tour must leave from it. Constraint (10) ensures that
a customer i could be allocated to PL p only if PL p is visited

by the tour. Constraints (11) and (12) are the capacity and
server radius constraints for the PL, respectively. Constraints
(13) and (14) define all variables.

IV. ILS ALGORITHM
The popular ILS algorithm is a heuristic involving an LS
heuristic and a perturbation process. At each iteration, a new
initial solution, which is used by the local search (LS) heuris-
tic as a new starting point for improvement, is generated by
the perturbation. The ILS algorithm has been proven to be
a successful approach to solving combinatorial optimisation
problems [4], [32].

We propose the heuristic ILSTSPCER, which is based
on the widely known ILS, for TSPCER. In ILSTSPCER,
we improve the perturbation process, including add_PL,
drop_PL and shaking processes, to generate a new initial
solution. In addition, four new LS operators are proposed to
improve customer allocation.

In the following subsections, we comprehensively discuss
the proposed ILSTSPCER heuristic, including the general
procedure, solution representation, perturbation and LS.

A. STSPCER PROCEDURE
ILSTSPCER starts from a random initial solution S0. S rep-
resents the current best solution. At each iteration, a new
solution S’, which retains part of the structure of the current
best solution S, is generated by the perturbation process.
Then, LS is applied to the solution S’ to yield a new solution,
which is used to update the solution S’. If the new solution S’
is better than the current best solution S, then the current best
solution S is updated by the new solution S’, and the same
steps are repeated. Meanwhile, we add an intra-parameter
called iterLevel to enlarge the search space. The steps of
ILSTSPCER are presented in Algorithm 1.

Algorithm 1 Proposed Ilstspcer Procedure
Input: kMax, iterMax, S0
Output: S

1 k ← 1; iterLevel← 0;
2 S ← S0;
3 whilst k < kMax do
4 S ′← perturb(S,k);
5 S ′← VND(S′);
6 if obj(S′) < obj(S) then
7 S ← S ′; k ← 1;
8 else
9 if iterLevel > iterMax then
10 iterLevel← 0; k ← k + 1;
11 iterLevel← iterLevel + 1;
12 end

B. SOLUTION REPRESENTATION
In ILSTSPCER, a solution is represented by two strings of
numbers. Sallocation represents customer allocation. As shown
in Figure 1, Sallocation(1) = 10 illustrates that customer 1 is
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FIGURE 2. Example of solution representation.

allocated to PL 10; otherwise, Sallocation(3) = 0 emphasises
that customer 3 is served by a courier rather than a PL.
Sroute indicates the delivery route, which is a permutation
of 1 depot denoted by {0}, N customers denoted by the
set {1, 2, . . . ,N } and M potential PLs denoted by the set
{N + 1,N + 2, . . . ,N +M}. For example, the delivery route
in Figure 2 is 0-3-4-5-10-7-11-9-0.

C. PERTURBATION
A feature of ILSTSPCER is that we add two processes
(add_PL and drop_PL) to the perturbation to enlarge the
solution space. In the perturbation, add_PL is responsible for
adding a PL into the current best solution S, and the role of
drop_PLis to close the PL in the current best solution S. Addi-
tional details of the perturbation are shown in Algorithm 2.

Algorithm 2 Details of Perturbation
Input: S,k

1 r = rand(0,1);
2 if r < 0.3 then
3 S ′← add_PL(S, openNum);
4 elseif r < 0.6 then
5 S ′← drop_PL(S, closNum);
6 else
7 S ′← shaking(S,k);
8 end

1) ADD_PL PROCESS
The add_PL process produces a new solution by adding a PL
to the current best solution S. The process steps are as follows.
Step 1: Randomly select a PL. Select a closed PL from the

current best solution S.
Step 2: Allocate customers to the selected PL. In the allo-

cation method, when the customer is close to the selected PL,
the PL is allocated early until the termination condition ismet.
Step 3: Locate the PL in the route. Randomly select a

position in the route, and then, locate the PL to the selected
position.
Step 4: Repeat the preceding steps openNum times.

Notably, in openNum = random(0,L), L is the maximum
number of closed PLs in the current best solution S.

Step 2 has three kinds of termination conditions, namely,
maximum, minimum and random allocations. (i) The maxi-
mum allocation is that the customers meeting the PL capacity
and service distance constraints are all allocated to the PL.
(ii) The minimum allocation is that no customer is allocated

to the PL. (iii) The random allocation is that the number
of customers allocated to the PL is randomly generated but
between the minimum and the maximum.

2) DROP_PL PROCESS
The drop_PL process yields a new solution by dropping a
PL from the current best solution S. The process steps are
as follows.
Step 1: Select a PL. Randomly select an opened PL from

the current best solution S.
Step 2: Close the selected PL. Delete the selected PL from

the route, and re-insert the customers allocated to the selected
PL to the route. Similar to step 3 of the add_PL process, this
re-insertion is random.
Step 3: Repeat the aforementioned steps closNum times.

Notably, in closNum = random(0,H), H is the maximum
number of the opened PL in the current best solution S.

3) SHAKING PROCESS
The shaking process is responsible for generating a new
solution by perturbing the current best solution S. In this
study, the perturbation is performed by randomly exchanging
two nodes in the current best solution S.

The number of exchanged customers is the parameter that
defines the size of the perturbation. This number is a key
factor of the ILS algorithm in that it determines the portion
of the locally modified optimal solution. In this study, this
parameter is set to k, and the benefit of the setting is that the
best solution space expands with the increase in iteration.

Notably, the exchange must satisfy the service distance
constraints. In addition, the two nodes (a customer allocated
to a PL, and a PL) cannot be exchanged.

4) LOCAL SARCH
Variable neighbourhood descent (VND), as detailed in Algo-
rithm 3, is used as LS in the proposed ILSTSPCER algorithm
to improve the new solution generated by the perturbation
process.

The neighbourhood structure used in VND comprises
well-known operators [33], [34], namely, (i) intra- and inter-
route customer relocation and (ii) intra- and inter-route cus-
tomer exchange. Some improvements were made to solve the
proposed problem. Additional details are as follows.

Algorithm 3 VND Process
Input: S′; a set of neighbourhood structures Nl

1 l ← 1;
2 repeat
3 S ′′← find the best solution in Nl(S ′);
4 if obj(S′′) < obj(S′)
5 S ′← S ′′; l ← 1;
6 else
7 l ← l + 1;
8 until l < lmax
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FIGURE 3. Network of the real-world instance.

a: INTRA-ROUTE
N1− relocation_R2R: A customer i or an opened PL p in the
route is relocated to the best new position in the route.

N2− exchange_R2R: Two nodes (customer or PL) in the
route exchange their positions.

b: INTER-ROUTE
N3− relocation_R2P: A customer i in the route is relocated
to the best PL p. Notably, the relocation must follow the
PL capacity and service distance constraints; otherwise, the
relocation is not allowed.

N4− relocation_P2R: A customer i allocated to PL p is
relocated to the best new position in the route. Notably, PL p
must be deleted from the route if the capacity of PL p becomes
0 after the deletion.

N5− exchange_R2P: Two customers i and j (one in the
route and one allocated to a PL) exchange their positions.
Notably, the exchange must follow the distance constraints.

N6− exchange_P2P: Two customers i and j (both allocated
to PLs) exchange their positions. Notably, the exchange must
comply with the service distance constraints.

V. COMPUTATION EXPERIMENTS
We present a real-world example and propose two sets of
comparative experiments to verify the effectiveness and com-
petitiveness of the proposed method and algorithm. The pro-
posed algorithm is compiled with C++ and runs on a PCwith
an Intel i5-7500 CPU (3.40 GHz) and 8 GB memory.

A. REAL-WORD INSTANCE
This section presents a last mile delivery test based on a real-
world example of Shushan District in Hefei City. The area
is 1620 m × 810 m. The depot (No. 0) has subcontracted
the area to a courier, who is paid by piece to improve the
delivery efficiency and reduce the ‘finding cost’. Ten PLs
(No. 82–91) are distributed in the area, and 81 customers

TABLE 1. Result of PL locations and customer allocation.

TABLE 2. Result of delivery route.

(No. 1–81) must be served in half a day. The locations of the
depot, PLs and customers are shown in Figure 3. The distance
between every two nodes is set as a straight-line distance to
simplify the calculation.

The main parameters are as follows: cip = w × dip,
w = 0.2, u = 10, R = 500 m and v = 10. The best
solution is obtained by five runs. The results are shown in
Tables 1 and 2.

We use w = cip/dip to analyse the impact of customer
intention to use PLs on total cost, which is set from 0.0 to
1.0. w = 0.0 means that the customers are very likely to use
PLs; w = 0.2 means fairly likely; w = 0.4 means likely;
w = 0.5 means neither likely nor unlikely; w = 0.6 means
unlikely; w = 0.8 means fairly unlikely; w = 1.0 means
very unlikely. The other parameter settings are the same as
above. As shown in Table 3, the best solutions of the proposed
method (PM) are obtained by five runs, and the total costs of
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TABLE 3. Comparison of HD and PM.

TABLE 4. Comparisons of ILS and SA on clustered instances.

HD are obtained by CPLEX 12.7.1 within 3600 s. Notably,
GAP1 = (total costHD − route costPM − opening costPM) /
total costHD×100% andGAP2= (total costHD−total costPM)
/ total costHD × 100%.

GAP2 presents the total cost savings in last mile delivery.
The comparison clearly shows that total cost savings are
large when the customers’ intention to use PLs is strong. The
highest total cost savings reach 51.2%, which is basically
consistent with the 55% of Punakivi et al. [6] and 42%
of Kä mä rä inen [7]. GAP1 presents the carbon emission
reduction in last mile delivery. In reality, customers pre-
fer to walk to PLs within 500 m to pick up their parcels.
In areas where PLs are highly accepted (w = 0.0 − 0.4),
the carbon emission reduction of last mile delivery can reach
18.7%–51.2%.

B. COMPARISON WITH OTHER HEURISTICS
Given that no similar examples are presented in this section,
we design two sets of instances (scattered and clustered
instances) to test the proposed algorithm. Twenty instances,
divided into five groups, are available in each set of instances.
The data of the depot, PLs and customers in the instances
are generated as follows. (i) The location area is (0, 100) ×
(0, 100); (ii) the depot is located in (50, 50); (iii) the locations
of the PLs are randomly generated in the location area; (iv)
all the customers for the scattered instances are randomly
distributed in the location area; (v) N customers for the
clustered instances are equally divided intoM groups, which
are randomly distributed around M PLs.

For checking the competitiveness of the proposed ILS,
it is compared with simulated annealing (SA), which was
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TABLE 5. Comparisons of ILS and SA on scattered instances.

proposed by Yu et al. [35] and proven suitable for solving
location routing problems. The main parameters are set as
follows: cip = 0.2 × dip, u = 2.0, R = 30.0, v = 5.
kMaxILS = N , iterMaxILS = M ; TSA = N × N , and
alphaSA = 0.96. The results are shown in Tables 4 and 5.
Notably, N presents the number of customers,M is the num-
ber of PLs, GAP = (objSA − objILS) / objSA × 100 and the
best solutions of ILS and SA are obtained by 10 runs.

Tables 4 and 5 show that all the clustered and scattered
instances are solved by the proposed ILS with average results
of 446.37 and 628.14, respectively. The average gaps to SA
are 3.2% and 3.1%, respectively. In addition, the proposed
ILS effectively solves all 40 instances with average CPU
times of 53.69 and 54.52 s, respectively, which are suitable
for this daily problem.

VI. CONCLUSIONS
This research introduces TSPCER in last mile delivery. A fea-
ture of the problem is that the total delivery costs and carbon
emissions of last mile delivery can be considerably reduced
by using PLs. In addition, we incorporate the pickup costs,
which represent the self-service intention of customers, into
the objective. The results of a real-world instance show that
the total costs and carbon emissions of last mile delivery
can be reduced to 4.5%–51.2% and 18.7%–51.2%, respec-
tively, by using PLs in areas where they are highly accepted.
In addition, we propose an ILS algorithm for solving the
given problem; the algorithm is tested on scattered and clus-
tered instances. Computational results and comparisons show

that the proposed ILS algorithm performs well with quite a
reasonable computational time for the proposed problem,
which must be solved every day.
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