
SPECIAL SECTION ON MOBILE SERVICE COMPUTING WITH INTERNET OF THINGS

Received March 31, 2019, accepted May 4, 2019, date of publication May 8, 2019, date of current version May 21, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2915576

Secure Cloud Storage Service Using Bloom
Filters for the Internet of Things
JUNHO JEONG 1, JONG WHA J. JOO1, YANGSUN LEE2, AND YUNSIK SON 1
1Department of Computer Science and Engineering, Dongguk University, Seoul 04620, South Korea
2Department of Computer Engineering, Seokyeong University, Seoul 02713, South Korea

Corresponding author: Yunsik Son (sonbug@dongguk.edu)

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education (No. 2017R1D1A3B03029906), and this research was supported by the Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future
Planning (No. 2016R1A2B4008392), and this work was supported by the National Research Foundation of Korea (NRF) grant funded by
the Korea Government (MSIT) (No. 2018R1A5A7023490).

ABSTRACT Today, the Internet of Things (IoT) is used for convenience in everyday life in many areas.
Owing to the fact that the data collected from the IoT are generated in large quantities, cloud computing
is inevitably used to store and analyze the data. However, cloud storage is not owned by the user, so it is
unreliable. Verifying the integrity of data collected in an IoT environment and stored in a cloud has two
problems: a large amount of data needs to be verified, and the data verification should be done directly on
the IoT device. Many methods for data integrity verification use trusted third parties and devices that provide
sufficient resources. However, it is difficult to directly apply existing research to the IoT devices that have
limited resources. This paper proposes a secure cloud storage service for an IoT environment that is based on
a provable data possession model and uses Bloom filters. The experimental results showed that the proposed
method saves time and has no significant differences in the verification rate with existing methods, even
though the Bloom filter causes false positives. Therefore, the proposed service can effectively process a
large amount of data generated in an IoT environment.

INDEX TERMS Access control, computer security, cryptography, data security, data storage systems,
distributed computing, Internet of Things.

I. INTRODUCTION
The continuous development of information communications
technology (ICT) has led to an Internet of Things (IoT)
environment that targets Internet connections for all devices.
IoT technology enables diverse devices, including small sen-
sors in a network, to have access to the Internet. Most IoT
services collect data through sensor technology and trans-
mit data to a cloud server over the Internet. The server
analyzes the data by using artificial intelligence technology,
generates information, and provides various services based
on this information. Because IoT collects large amounts of
data, cloud computing is inevitably used to store and analyze
the data. As shown in Fig. 1, various smart services based
on IoT services have emerged in diverse industries, such as
healthcare, transportation, and home appliances [1], [2].

The basic operations of IoT-based services are as fol-
lows: Sensors are installed in objects to detect environmental

The associate editor coordinating the review of this manuscript and
approving it for publication was Shuiguang Deng.

information, and the detected data are sent through the Inter-
net to a server for analysis. The server receives and analyzes
the data to extract meaningful information, which is defined
as data necessary to provide a specific service. Information
can be acquired according to the data analysis method to
provide users with useful services. Fig. 2 illustrates the IoT
process, which consists of data collection and transmission,
communication, data analysis, and services. In other words,
IoT services are not only for detecting information but also a
communication service for data transmission, a cloud service
for storing and managing information generated from mas-
sive data, an artificial intelligence technology for data analy-
sis, and control technology to control object devices. In recent
years, various studies have been conducted on collecting data
via sensor technology for analysis and processing [3]–[5].

For a system to be user-friendly, correct data analysis is
needed. This requires the data collected from sensors to be
well-managed. Based on the collected data and information
generated through analysis, appropriate services can be pro-
vided to users. However, if this information disappears or

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

60897

https://orcid.org/0000-0003-4963-0057
https://orcid.org/0000-0002-2580-4393


J. Jeong et al.: Secure Cloud Storage Service Using Bloom Filters for the IoT

FIGURE 1. Various sample domains of internet of things service.

FIGURE 2. IoT services processes and key technologies.

is corrupted, providing users with the right services will be
difficult.

For example, the smart home system is a representative IoT
service. Home appliances connected to the Internet produce
information and transmit it to other objects and people in a
residential environment with an established wired/wireless
communication network. The smart home system aims to
improve the quality of life of residents by determining and
predicting their demand and 2making decisions with a certain
level of automation.

Smart homes involve various fields and have expanded
in application in recent years. Smart home solutions and
services (including cloud and big data on the backend) con-
nect and control multiple smart devices, including home

appliances, lighting, energy management, network, security,
HVAC (heating, ventilating, and air conditioning) and home
entertainment. In the future, smart homes will also include
home-use robots and virtual reality.

However, if the control of various devices in a smart home
refers to the wrong data, this may not only be inconvenient
to users but also life-threatening if the wrong service is
provided. For example, if incorrect data are recorded by an
HVAC system when the temperature is normal, the smart
system will attempt to reduce the temperature of the living
space, which can lead to false control.

Therefore, data collected from IoT services and the
extracted information should be managed securely. IoT ser-
vices generate very large amounts of data that must be stored

60898 VOLUME 7, 2019



J. Jeong et al.: Secure Cloud Storage Service Using Bloom Filters for the IoT

TABLE 1. Statistics of data corruption incidents.

in a cloud. However, cloud storage services are basically
untrusted storage. There is a risk that data stored in a cloud
may disappear or be tamperedwith. The service is not directly
managed by the user; the user only stores and retrieves data
from the cloud service provider. Therefore, the data in the
cloud storage may be corrupted or lost, or the server may
go down and the user will be unable to access the necessary
data. Wang et al. analyzed data corruption incidents in a
typical cloud storage system [6]. As indicated in Table 1,
the data from cloud storage were not reliable. In the table,
YARN stands for ‘‘yet another resource negotiator,’’ and
HDFS stands for ‘‘Hadoop distributed file system.’’

This paper proposes a secure cloud storage service for an
IoT environment that is based on an effective provable data
possession scheme using a Bloom filter, which is a time- and
space-efficient data structure that allows for some errors [7].

The Bloom filter is represented by an array of m bits for
set S = s1, . . . , sn of n elements. The bits of all arrays
are initialized to zero. The filter uses r independent hash
functions h1, . . . , hr . Each element s of set S is set to 1 in the
array where h1(s), . . . , hr (s) are located. The same position
may be repeatedly set to 1, but a position set to 1 cannot
be reset to 0. If element a belongs to set S, this can be
determined by checking whether or not every position bit of
h1(a), . . . , hr (a) is 1. If all of the position bits identified in
the array are 1, a belongs to set S. However, a Bloom filter
operates according to a hash function, so false positives may
occur due to a collision. This is an error saying that an element
belongs to a group even though it is not actually a member.
On the other hand, the Bloom filter has a feature that no false
negatives occur, where an element included in the group is not
a member. For this reason, the Bloom filter is a very effective
data structure for confirming that an element is a member of
a group if it treats only false positives well.

This paper is organized as follows. Section II provides
an overview of related provable data possession schemes
considered in this study. Section III introduces the proposed
scheme. Section IV presents an analysis of the experimental
results. Finally, Section V presents the conclusion.

II. RELATED WORKS
Cloud storage services are not only available to end users in a
similar format to online shared folders but also provide stor-
age in a variety of forms as needed. As presented in Table 2,
storage services are shared for reduced data traffic and storage
space efficiency, and data are stored unencrypted [8].

TABLE 2. Online storage service provider.

FIGURE 3. Preprocessing of PDP technique and data store method.

Services that provide storage other than online storage
encrypt and store data but do not provide information about
how data are stored internally. The problem is that it cannot
be known whether the data are shared internally or tampered.
For this reason, various studies have been conducted to verify
the possession of data in unreliable storage, such as in cloud
storage services [9], [10].

Li et al. proposed Secure Untrusted Data Repository
(SUNDR), which is a network file system that securely stores
data on untrusted servers [11]. SUNDR uses hash trees and
chains to prevent fork attacks and ensure that data are not cor-
rupted. It then verifies data stored in an untrusted third server
through indicators such as provable data possession (PDP)
and proof of retrievability (PoR) at the same time without
retransmission of the actual data.

Ateniese et al. proposed a PDP scheme [12] that consists
of two processes. The first is a preprocessing procedure,
as shown in Fig. 3.Metadatam are generated with RSA-based
homomorphic verifiable tags (HVTs) before the data are
stored, and the metadata F are added to the file F to be
stored in the server F ′ without any other operations being
performed. The metadata are kept by the user and used for
comparison in the next verification stage.

In the second process, the client verifies the actual own-
ership of the data stored in the server, as shown in Fig. 4.

VOLUME 7, 2019 60899



J. Jeong et al.: Secure Cloud Storage Service Using Bloom Filters for the IoT

FIGURE 4. Data possession verification of PDP.

FIGURE 5. POR system model.

If the ownership is verified, the client generates a random
number R and sends it to the server; the server sends the
random number P to the client with the attached metadata
for the file that received the verification request. The client
receiving the result from the server checks the final result
against the proof of ownership of the data by comparing it
with the previously stored metadata.

PDP can be used to prove probabilistic integrity rather than
a survey of all the data, as evidenced by the data ownership
verification test method. The client can prove ownership
of the data without storing the actual data. Ateniese et al.
proposed a PDP scheme that considers active storage [13].
However, it only supports basic block operations with limited
functionality and does not support block addition operations.

Erway et al. proposed dynamic provable data posses-
sion (DPDP), which is an expansion of PDP [14]. The pro-
posed technique provides an authenticated dictionary with an
RSA tree to help efficiently delete, modify, and add stored
data.

Fig. 5 shows the POR scheme proposed by Juels et al.,
which works similar to the PDP scheme [15]. However, it dif-
fers from PDP in that it does not store the metadata generated
from the file but encrypts it through data encoding, stores it
in the server, stores the key used for encoding, and uses the
key when the metadata are verified in the future.

The user can verify the integrity of data stored in the
server by using some requested information without down-
loading the entire data from the file. This is a very important
factor in evaluating the integrity of large amounts of data
or files. Bowers et al. used POR for deriving theoretical
implementation results [16]. However, POR does not support
the verification of highly variable data, and decoding opera-
tions performed during verification require a relatively large
amount of resources.

Shacham and Water presented an improved POR scheme
that can ensure complete security against attacks bymalicious
users [17]. Two types of techniques have been proposed. First,
the Boneh–Lynn–Shacham (BLS) signature uses a bilinear
map for verification and a signature as a group member of
an elliptic curve. It is a public verification method with a
short query and response [18]. Second is a private verifi-
cation technique that uses relatively long queries and short
responses. Both schemes aggregate queries and responses
based on homomorphic attributes but require complicated
computation.

Wang et al. proposed a security model that guarantees the
integrity of stored data through public verification in a cloud
environment. However, the external verifier does not guar-
antee the privacy of the user’s data. For example, there is a
potential threat that the user data reveal important information
to the verifier [19], [20].

HAIL is a widely available scheme that applies an integrity
layer to the cloud environment to extend the basic advantages
of the redundant array of inexpensive disks (RAID) [21]. This
scheme improves the message authentication code (MAC)
to an integrity-protected error correcting code (IP-ECC) for
increased security and efficiency and uses a verification
approach similar to the POR technique. This technique can be
applied to multiple server environments. However, the prob-
lem with RAID-based schemes is that one file must be con-
verted to one distinct segment and stored in one server.

Zhu et al. proposed a cooperative provable data posses-
sion (CPDP)model in which data are verified in amulti-cloud
storage environment, and a hierarchical hash index is applied
to the PDP [22]. This scheme is cost-effective regarding com-
putation and communication and has the advantage of being
able to respond to various security attacks through continuous
auditing. Yang and Jia proposed a cryptographic algorithm-
based audit protocol to solve the data privacy problem where
the auditor cannot recover the data block through an audit
and neither the information used in the verification nor the
contents of the original data are exposed [23]. Recently, var-
ious studies have been conducted to verify the data integrity
of a cloud environment with regard to IoT. Liu et al. pro-
posed a secure IoT data storage audit protocol based on
Yang and Jia’s technique and analyzed its performance [24].
They also conducted experiments to find the optimal values
and outperformed Yang and Jia’s technique. Sai et al. used
a third-party proxy computing platform with fully homomor-
phic encryption to verify data integrity [25]. However, most of
the existing proposed schemes generate metadata by using a

60900 VOLUME 7, 2019



J. Jeong et al.: Secure Cloud Storage Service Using Bloom Filters for the IoT

public key scheme such as RSA, pairing-based cryptography,
and homomorphic encryption. Thus, a relatively large amount
of resources is used for generating metadata and verifying
data possession.

Aditya et al. proposed using a Bloom filter for each block
of data stored in a server to verify data possession [26].
The advantage of this method is that using a Bloom fil-
ter allows more space for computation and metadata com-
pared to existing techniques. However, if a single file has
1000 blocks and the positive error rate of the Bloom fil-
ter is 0.0001, the reliability of the verification probability
for one file is positive for all blocks; if it is not found,
the reliability is only about 90%. In addition, during the
data ownership verification, the entire file is downloaded
from the server, and the encrypted Bloom filter has to be
decrypted.

Thus, a secure cloud storage service requires a technique
that can effectively verify a large amount of data generated
in an IoT environment and that does not cause data privacy
problems.Many existing studies have used a public key based
on a cryptographic algorithm to encrypt plaintext for check-
ing by a third party, which has relatively high computation
costs. To solve this problem, we propose a provable data
passion scheme that uses a Bloom filter instead of encrypting
plaintext as the public key for data verification.

III. CLOUD STORAGE SERVICE BASED ON PROVABLE
DATA POSSESSION USING BLOOM FILTERS
For proprietary verification techniques of data in unreliable
storage, the metadata are generated and recorded before the
data are stored. The user then performs a query to verify the
data stored in the server, which returns the corresponding
result. The user can compare the data returned from the server
and the metadata recorded when the data were stored to
determine whether the stored data were altered or lost.

The essential features of this system are the size of the
query used for verification, the time to generate the query,
the time to evaluate the response received from the server,
the time for the server to generate the query response, and the
size of the query response. The time required to generate
the metadata is relatively insignificant because it only occurs
when the initial data are stored.

Data in a cloud storage environment are divided into blocks
and stored in the server. These blocks may be physically
stored in the same server or in physically separate servers.
Therefore, some blocks constituting the data can run into
problems when the data are shifted, modulated, or lost.
Table 3 presents the notation used in the proposed data
possession scheme.

In the proposed method, to prove ownership of the server,
the data in cloud storage are divided logically into n blocks,
and each block is set as a group member of the Bloom
filter. Because the proof of data ownership based on PDP is
probabilistic, if the positive error rate of the Bloom filter is
set to the same level as 0.0001, it will not have a significant
influence on the verification of the data ownership.

TABLE 3. Notation for data possession scheme.

FIGURE 6. The pre-process for provable data possession using Bloom
filter.

The proposed method can be divided into preprocessing
and integrity verification. During preprocessing, the data
owner creates a trapdoor with the block and its public key
instead of keywords, such as a searchable encryption method
from the data, before the data are stored on the server. Then,
a code word is generated with a private key (e.g., a unique
identification of data only known to the owner or a trusted
third party), and a Bloom filter is set to generate a data
ownership verification index. This index is stored by the
owner or a trusted third party. Also, if the index is constructed
using multiple Bloom filters with high false positive, it will
be more effective in terms of security [27].

Fig. 6 illustrates the preprocessing of the proposed scheme.
The user storesM = {m0,m1, . . . ,mn−1} consisting of n data
blocks in the server for data ownership verification. When
the data are stored, the user calculates the number of blocks
of data M to be stored and generates a Bloom filter with the
number of blocks and positive error rate.

For each block of data, the trapdoor = {x1, x2, . . . , xr}
is generated with the public key Kpub. This is used to gen-
erate the Bloom filter for generating the data ownership

VOLUME 7, 2019 60901



J. Jeong et al.: Secure Cloud Storage Service Using Bloom Filters for the IoT

verification index (IntegrityVerifyIndex). The codeword =
{y1, y2, . . . , yr} is calculated from the trapdoor and its secret
key Kpriv, and the position corresponding to the codeword
result in the Bloom filter is set to 1. This operation is repeated
from block m0 to mn−1 to determine the data ownership
verification index from the Bloom filter.

The preprocessing is similar to creating an index of a
document in searchable encryption, where each block of data
acts as a keyword contained in the document. However, in a
searchable encryption scheme, the key used to generate the
trapdoor cannot be exposed because it is a secret. In the data
ownership authentication scheme, the key for generating the
trapdoor may be exposed to the outside as public. When a
user verifies future data, even if a malicious user creates a
trapdoor with a public key, it is impossible to create a trapdoor
corresponding to the blocks being verified if the original data
are not possessed.

The data possession verification process is as follows.
First, an auditor such as a data owner or trusted third party
randomly generates numbers of blocks of data for integrity
verification and sends them to the server. Second, the server
creates a trapdoor for each block requested by the auditor by
using the public key of the data owner, sets it in one Bloom
filter, and sends the Bloom filter to the auditor as a trapdoor
that responds to the query. Third, the auditor can calculate
the codeword by using the received trapdoor and obtains
the verification result by referring to the data possession
verification index.

FIGURE 7. The verification process for provable data possession using
Bloom filter.

Fig. 7 represents the verification process. The auditor sends
Challenge, which includes a proven file path and selected
random list of blocks Bn = {bn0, bn1, . . . , bnj−1}, to the
server. The server that receives Challenge from the auditor
generates the Bloom filter BF by using an already known
false positive rate and the public key. When all trapdoors
corresponding to Bn overlap and the trapdoor is generated,
it is transmitted to the auditor to verify possession of the data
through the Verify() operation. If the result is true, there is no
abnormality. If it is false, it indicates that the data have been
modified.

The Verify() operation computes the codeword y by using
a pseudo-random function made up of the private key Did ,
which is an integrated trapdoor {x0, x1, . . . , xrt } matched to
each block received from the server. The y-th position of the
calculated index is confirmed to be set to 1; if any is set to 0,
the evaluation result is returned as false. On the other hand,
when the corresponding position of the index is confirmed to
be set to 1 for all codewords calculated from the trapdoor,
there is determined to be no forgery or tempering, and a
positive value is returned.

TABLE 4. The influence of false positive rate on probability of data
corruption detection.

And the influence of false positive rate on probability of
data corruption detection is shown in Table 4. In generally,
the probability of data corruption detection is expressed as
1−(1−ρ)t in the provable data possession schemes. Pd is the
probability of detection according to this formula, and P′d is
the probability with the false positive rate in Table 4. It shows
that the closer the false positive rate to the corruption rate, the
lower the detection rate. However, as the false positive rate
is lower and the number of sampling is higher than the data
corruption rate, the false positive does not significantly affect
the data corruption detection.

60902 VOLUME 7, 2019



J. Jeong et al.: Secure Cloud Storage Service Using Bloom Filters for the IoT

TABLE 5. Comparison of POR/PDP schemes for one file consisting of N blocks.

The proposed scheme is relatively efficient compared to
the existing RSA-based data possession verification scheme.
This is because, the server does not perform any operations
when storing data but merely generates a Bloom filter for
blocks being queried during the data possession verification
process. In addition, even when the value of the trapdoor
transmitted from the server to the auditor is exposed, no infor-
mation can be inferred about the verification index or the data
stored by the data owner.

In other words, there is no way to deduce the value or key
of the data from this information, so it is safe from attack
by a malicious user. With regard to the communication time
between the server and auditor, it takes a fixed amount of
time to return the trapdoor made of the same size as the
Bloom filter, regardless of the number of data blocks being
sampled for the stored data. Finally, the auditor can use simple
hashing operations for verification, so the computation time
is relatively efficient.

Table 5 compares the performance of the proposed scheme
with that of the existing data ownership verification schemes
for a single file consisting of n blocks. t is the number of
blocks used for sampling during verification, and s is the
number of sectors in each block. ρ denotes the probability
of block corruption, and Pf denotes the false positive rate of
the Bloom filter when used.

The proposed method did not show much difference with
the existing techniques in terms of the operations of the cloud
service provider, client, and between the server and client.
The detection probability seemed to be lower because of false
positives. However, if the Bloomfilter is used for verification,
it has an advantage compared to existing methods in terms
of the time for the O(t) operation. As mentioned previously,
if the false positive rate is set to a very small value, it will not
have a large effect on the probabilistic model for possession
verification.

Finally, the additional consumption of cloud storage is not
required in the proposed scheme. In the case of the POR
scheme, which is an early study, about 2% of the original
data was required for verification. However, recent researches
such as the proposed method generate the metadata required
for verification by using the data stored in the server when the
query for the verification is received. Therefore, no additional
storage space is required in the server, and there is only a
problem managing the key to generate verification data. The
key management is not considered as a separate issue in the
study.

IV. EXPERIMENTAL AND SECURITY ANALYSIS
The proposed data possession verification schemewas imple-
mented in a cloud environment based on the Hadoop file
system. For the experiment, a cloud environment was con-
structed by connecting twelve data nodes with the same
specifications as one name node. The false positive rate of the
Bloom filter for the data ownership verification index used in
the proposed method was set to 0.0001. The target data were
stored in a file size of 1.4 GB, and each block was set to a
size of 1 MB. The purpose of the experiment was to analyze
the influence of the false positive rate on the verification
probability and to evaluate the temporal efficiency of the
proposed method.

A. EFFICIENCY OF DATA CORRUPTION DETECTION
The data ownership verification index with the Bloom filter
and false positive was used to measure how the verification
probability is affected by data corruption. The corruption
rate of the file stored in the server was increased in increments
of 1% from 1% to 10%. For each corruption rate, the number
of blocks constituting the entire file was increased in incre-
ments of 10% from 10% to 50%. The sampling process of

VOLUME 7, 2019 60903



J. Jeong et al.: Secure Cloud Storage Service Using Bloom Filters for the IoT

querying the corresponding blocks was repeated 100 times
after arbitrary blocks were selected.

The execution time was measured to evaluate the effective-
ness of the proposed data ownership verification technique.
The storage server compared the time taken to establish the
Bloom filter by accessing the block according to the block
list received from the data auditor, the sampling time, and the
time to obtain trapdoor. The trapdoor obtained by the auditor
in response to the query from the data possession verification
index was used to determine the required verification time.

FIGURE 8. The probability of data corruption detection by sampling rate.

Fig. 8 shows the experimental results on how many blocks
should be checked for data possession according to vari-
ous corruption ratios of the original data. In other words,
it indicates the detection rate of data corruption at differ-
ent sampling rates. The x-axis represents the sampling rate,
and the y-axis represents the probability that data corruption
is detected. Legends 1–10 show the corruption rate of the
original data.

Blocks were randomly selected from 1% to 10% for
corruption. The sampling rate was increased in increments
of 10% from 10% of the total block for data to 50%, while the
corruption rate was increased in increments of 1%. In total,
100 validation queries were performed. The results showed
that corruption was detected at a rate of 99% or more with a
sampling rate of only 10% except at corruption rates of 1%
and 2%.

Using the Bloomfilter for verification is a similar approach
to some existing techniques. However, because the proposed
method generates a Bloom filter for each block, a positive
error in the data of each block may not make it suitable for
use. On the other hand, while the proposed scheme has a false
positive rate, it is set to a small value for one file. Therefore,
the false positive rate does not have a significant influence on
the evaluation of PDP.

In addition, even if the corruption rate of the data is 2%,
the detection rate is 99% or more at a sampling rate of 20%,
and data corruption can be verified at a corruption rate
is 1%. Therefore, the results in Fig. 8 show that the proposed
scheme performs well compared to existing techniques even

FIGURE 9. The sampling time by sampling rate.

FIGURE 10. Verify time by sampling rate.

when a Bloom filter with a false positive rate is used for data
possession verification.

In order to verify possession in the PDP scheme, the time
required for the verification query on the server side needs
to be evaluated. Fig. 9 shows the time at which the server
sampled the list of blocks that received a validation query
from the user. The x-axis represents the sampling rate, and the
y-axis represents the sampling time. The experimental results
showed that the sampling time increased linearly with the
sampling rate, and the time required by human beings was
the result of the second unit.

When we created a trapdoor for 10% of 1.4 GB of data,
it took 4 s to read 140MBof data with a hashing-based Bloom
filter, while an RSA-based operation would take insert time.
Sampling also took place on the server regardless of the envi-
ronment of the user performing the verification. This means
that the user did not consume many resources. Therefore,
the time to verify all of the data can be verified.

Fig. 10 shows the measured time spent by the auditor to
evaluate the data verification. The time required for sampling
was relatively short compared to the time required for creat-
ing the trapdoor to respond to the verification request made
by the server. The x-axis represents the sampling rate used
to verify data possession, and the y-axis represents the time
spent to verify the data possession. Legends 1–10 represent
the probability of data corruption.

60904 VOLUME 7, 2019



J. Jeong et al.: Secure Cloud Storage Service Using Bloom Filters for the IoT

The experimental results showed that, because of the char-
acteristics of the Bloom filter used to verify data possession,
the detection time decreased as the sampling rate increases.
This is because the probability that a corrupted block was
selected increases with the sampling rate. The trapdoor value
for the corruption block was effectively detected when con-
verted to a codeword and compared with the data verification
index.

The results of the detection probability of data corruption
according to the sampling rate showed that the false positive
of the Bloom filter did not affect the performance. Rather,
when the corruption rate increased because of the characteris-
tics of the Bloom filter, the corruption could be detected with
only a small sample. In addition, although the detection time
increased linearly with the sampling rate, the Bloom filter
based on the hash function was evaluated to be more effective
in terms of the execution speed and required resources than
public key-based methods such as RSA, pairing-based cryp-
tography, and homomorphic encryption. Therefore, if an IoT
device with limited resources wants to evaluate the corrup-
tion of its own data, the proposed technique would be more
effective.

FIGURE 11. The comparison of server resource efficiency by the methods.

Recent studies have generally used dynamic provable pos-
session when verifying data. In other words, metadata is
not stored in the server but generated when queries are
received from user. Nevertheless, the size of the metadata
that must be generated for verification can have a significant
impact on the memory of the server. Fig. 11 compares the
total capacity required by the total number of blocks of the
proposed method with a similar method using the Bloom
filter. Aitya16 requires 16-bit metadata for one block, and
Aditya24 requires 24-bit metadata. The proposed scheme
uses about 14 bits per block when constructing a Bloom filter
with positive error of 0.0001. As another method, SHA-1 or
SHA-2 requires more than 10 times as much as 160 bits
and 256 bits per block, and methods such as RSA based or
HVT require the same size as the block size. Therefore, the
proposed method is effective in terms of resource efficiency
of the server.

B. SECURITY OF PROPOSED SCHEME
Communication between the user and the remote repository
occurs to prove possession of remotely stored data. The origi-
nal data should not be inferred through queries and responses
in the communication. It can be assumed that the communi-
cation channel is not secure. In other words, the data that is
sent and received by the user and audit system server can be
assumed to be obtainable by an attacker. In this environment,
the attack model of malicious attacker was introduced by
J. Baek et al.AsGame 1 and Game 2 [28]. Game 1 is a case in
which the server can not be trusted, and Game 2 is an attack
by an external attacker. Therefore, the audit system should be
able to cope both when the server is unreliable and when it is
attacked by an external attacker.

The proposed system with false positive is difficult to
analyze the key used for encryption based on the collected
trapdoor in the security of Game 1. It is also difficult to
analyze the key of the encryption scheme by comparing
the trapdoors that is generated using random keys based
on known encryption scheme and is collected from public
channels by attacker in the security of Game 2. Even in the
proposed method, the system constituting multi-indices will
increase the time to generate the trapdoor, which will be a
disadvantage for the attacker [27].

V. CONCLUSION AND FUTURE WORK
Because IoT services generate massive amounts of data,
a cloud computing environment is highly effective for storage
and data analysis. However, because cloud storage is not
owned by the user, it is untrustworthy. Therefore, the user
must verify that the stored data are not corrupted. In addition,
a highly effective verificationmethod is required to handle the
large amount of data. This paper proposes a secure cloud stor-
age service based on a PDP scheme that uses a Bloom filter
for an IoT environment. The proposed scheme is not based on
a public key like RSA, bilinear mapping, or homomorphism.
However, it can effectively prove data possession with the
Bloomfilter. The advantages of the proposed scheme in terms
of space and speed for storing computation and metadata are
competitive with those of existing techniques.

The experimental results showed that the proposed method
saves time and has no significant differences in the verifica-
tion rate with existing methods, even though the Bloom filter
causes false positives. Therefore, the proposed service can
effectively process a large amount of data generated in an IoT
environment, such as smart homes. Future work will involve
adjusting the level of data possession verification according
to the services provided to users based on specific scenarios.

The proposed method was not applied to transferring data
from a specific IoT device to cloud storage and verifying the
stored data. There aremany types of IoT devices, and auditing
data considering the characteristics of each device takes a
long time. Therefore, future work will involve analyzing the
performance of the proposed scheme in a virtual machine for
supporting various IoT devices and cloud storage [5].

VOLUME 7, 2019 60905



J. Jeong et al.: Secure Cloud Storage Service Using Bloom Filters for the IoT

APPENDIX
The Bloom filter is a time- and space-efficient data structure
that allows for some errors. The Bloom filter is represented
by an array of m bits for the set S = s1, . . . , sn of n elements.
The bits of all arrays are initialized to zero. The filter uses
r independent hash functions h1, . . . , hr . Each element s of
the set S is set to 1 in the array where h1 (s), . . . , hr (s) are
located. The same position may be repeatedly set to 1, but
the value of a position set to 1 cannot be reset to 0. If the
element a belongs to the set S, this can be determined by
checkingwhether every position bit of h1(a), . . . , hr (a) is 1 or
not. If all position bits identified in the array are 1, a belongs
to the set S. However, Bloom filters operate based on a hash
function, so false positives occur because of collisions. False
positives are an error that says an element belongs to a group
even though it is not actually a member. On the other hand,
the Bloom filter is featured by no false negatives, where the
element included in a group is not a member.

A false positive error in a search system would require
another search, which would reduce the efficiency of the
system. Setting the false positive rate to a small value would
be sufficient. However, this requires increasing the size of
the Bloom filter. A fixed-size Bloom filter changes the false
positive rate depending on the number of elements stored.
Therefore, a Bloom filter is needed with a false positive rate
that can be effectively used in a system. If the false positive
rate required by the system and the word count n of the
document are determined by the characteristics of the Bloom
filter, the size of the Bloom filter can be determined in m bits
by the following method.

First, the false positive rate Pf required by the system
is determined. Pf is the probability of a positive outcome
from a search that should return a negative result. Second,
the number r of keys used for the pseudo-random function
from Pf is calculated. In the Bloom filter, Pf is given by (1).
This rate should be minimized to satisfy (2).

Pf =
(
1− (1− 1/m)nr

)r
≈

(
1− e−rn/m

)′
(1)

r = (ln 2)(m/n) (2)

Pf =
(
1− e− ln 2mn ×

n
m )

r
)
=

(
1−

1
2

)r

= (1/2)′ (3)

When the system has the number of keys used in the
pseudo-random function as given by (2), Pf can be calculated
with (3). By converting the number of keys used in the
required pseudo-random function to the expression for Pf ,
the following is obtained:

r = − log2
(
Pf

)
(4)

Finally, if the number of words contained in all the docu-
ments and the number of pseudo-random function keys are
determined, the size of the Bloom filter can be calculated as
follows:

m = nr/ ln 2 (5)

Thus, the Pf required for a system using a Bloom filter is
determined in general. This value decreases as the number of

pseudo-random function keys increases. Therefore, the size
of the Bloom filter is increased to reduce Pf . However,
infinitely increasing the Bloom filter has an adverse effect on
the search efficiency. Therefore, it is necessary to understand
the characteristics of the system using the Bloom filter and to
determine the parameters that optimize the Bloom filter for
the system.

ACKNOWLEDGMENT
(Junho Jeong and Jong Wha J. Joo contributed equally to this
work.)

REFERENCES
[1] L. Atzori, A. Iera, and G. Morabito, ‘‘The Internet of Things: A survey,’’

Comput. Netw., vol. 54, no. 15, pp. 2787–2805, Oct. 2010.
[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, ‘‘Internet of

Things (IoT): A vision, architectural elements, and future directions,’’
Future Generat. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, 2013.

[3] W. Joe, M. Jiang, and K. Jeong, ‘‘An M2M/IoT based smart data logger
for environmental sensor networks,’’ J. KIISE, Comput. Practices Lett.,
vol. 20, no. 1, pp. 1–5, 2014.

[4] S. Kim, J.-H. Kim, J. Yun, and S. H. Lee, ‘‘Machine learning-based temper-
ature control for smart home environment,’’ in Proc. EEECS, Dubrovnik,
Croatia, 2017, pp. 35–39.

[5] Y. Lee, J. Jeong, and Y. Son, ‘‘Design and implementation of the secure
compiler and virtual machine for developing secure IoT services,’’ Future
Gener. Comput. Syst., vol. 76, pp. 350–357, Nov. 2017.

[6] P. Wang, D. J. Dean, and X. Gu, ‘‘Understanding real world data cor-
ruptions in cloud systems,’’ in Proc. IEEE Int. Conf. Cloud Eng., Tempe,
AZ, USA, Mar. 2015, pp. 116–125.

[7] B. H. Bloom, ‘‘Space/time trade-offs in hash coding with allowable
errors,’’ Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[8] M. Mulazzani, S. Schrittwieser, M. Leithner, M. Huber, and E. Weippl,
‘‘Dark clouds on the horizon: Using cloud storage as attack vector and
online slack space,’’ in Proc. 20th USENIX Conf. Secur., San Francisco,
CA, USA, 2011, p. 5.

[9] T. Shuang, C. Zhi-Kun, and Z. Jian-Feng, ‘‘Data blocks’ signature in cloud
computing,’’ in Proc. Int. Symp. Comput. Bus. Intell., New Delhi, India,
Aug. 2013, pp. 49–55.

[10] T. Shuang, T. Lin, L. Xiaoling, and J. Yan, ‘‘An efficient method for
checking the integrity of data in the cloud,’’China Commun., vol. 11, no. 9,
pp. 68–81, Sep. 2014.

[11] J. Li, M. N. Krohn, D. Mazieres, and D. E. Shasha, ‘‘Secure untrusted data
repository (SUNDR),’’ in Proc. OSDI, San Francisco, CA, USA, 2004,
pp. 121–136.

[12] G. Ateniese et al., ‘‘Provable data possession at untrusted stores,’’
in Proc. CCS, Alexandria, VA, USA, 2007, pp. 598–609.

[13] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik, ‘‘Scalable and
efficient provable data possession,’’ in Proc. 4th Int. Conf. Secur. Privacy
Commun. Netw., 2008, Art. no. 9.

[14] C. C. Erway, A. Küpçü, C. Papamanthou, and B. Tamassia, ‘‘Dynamic
provable data possession,’’ in Proc. CCS, Chicago, IL, USA, 2009,
pp. 213–222.

[15] A. Juels and B. S. Kaliski, Jr., ‘‘PORs: Proofs of retrievability for large
files,’’ in Proc. CCS, Alexandria, VA, USA, 2007, pp. 584–597.

[16] K. D. Bowers, A. Juels, and A. Oprea, ‘‘Proofs of retrievability: The-
ory and implementation,’’ in Proc. CCSW, Chicago, IL, USA, 2009,
pp. 43–54.

[17] H. Shacham and B. Waters, ‘‘Compact proofs of retrievability,’’
in Advances in Cryptology—ASIACRYPT. Berlin, Germany: Springer,
2008, pp. 90–107.

[18] D. Boneh, B. Lynn, and H. Shacham, ‘‘Short signatures from the Weil
pairing,’’ J. Cryptol., vol. 17, no. 4, pp. 297–319, 2004.

[19] C.Wang, Q.Wang, K. Ren, andW. Lou, ‘‘Ensuring data storage security in
cloud computing,’’ in Proc. 17th Int. Workshop Qual. Service, Charleston,
SC, USA, Jul. 2009, pp. 1–9.

60906 VOLUME 7, 2019



J. Jeong et al.: Secure Cloud Storage Service Using Bloom Filters for the IoT

[20] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, ‘‘Enabling public ver-
ifiability and data dynamics for storage security in cloud computing,’’
in Proc. ESORICS, Saint Malo, France, 2009, pp. 355–370.

[21] K. D. Bowers, A. Juels, and A. Oprea, ‘‘HAIL: A high-availability and
integrity layer for cloud storage,’’ in Proc. CCS, Chicago, IL, USA, 2009,
pp. 187–198.

[22] Y. Zhu, H. Hu, G.-J. Ahn, and M. Yu, ‘‘Cooperative provable data posses-
sion for integrity verification in multicloud storage,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 23, no. 12, pp. 2231–2244, Dec. 2012.

[23] K. Yang and X. Jia, ‘‘An efficient and secure dynamic auditing protocol
for data storage in cloud computing,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 24, no. 9, pp. 1717–1726, Sep. 2013.

[24] M. Liu, X. Wang, C. Yang, Z. L. Jiang, and Y. Li, ‘‘An efficient secure
Internet of Things data storage auditing protocol with adjustable parameter
in cloud computing,’’ Int. J. Distrib. Sensor Netw., vol. 13, no. 1, pp. 1–11,
2017.

[25] W. Sai, X. Zhang, C. Xie, H. Li, and H. Zhang, ‘‘The application of cloud
data integrity verification scheme in Internet of Things security,’’ in Proc.
14th Int. Comput. Conf.Wavelet Act.Media Technol. Inf. Process., Sichuan,
China, Dec. 2017, pp. 268–273.

[26] T. Aditya, P. K. Baruah, and R. Mukkamla, ‘‘Space-efficient bloom filters
for enforcing integrity of outsourced data in cloud environments,’’ in Proc.
IEEE 4th Int. Conf. Cloud Comput., Washington, DC, USA, Jul. 2011,
pp. 292–299.

[27] J. Jeong and Y. S. Hong, ‘‘Efficient multi-indices scheme for searchable
encryption system against brute force attack in cloud computing environ-
ments,’’ J. KISS, Inf. Netw., vol. 40, no. 5, pp. 286–293, 2013.

[28] J. Baek, R. Safavi-Naini, and W. Susilo, ‘‘Public key encryption with
keyword search revisited,’’ in Proc. Int. Conf. Comput. Sci. Appl., Perugia,
Italy, 2008, pp. 1249–1259.

JUNHO JEONG received the B.S. degree from
the Department of Computer Science and Engi-
neering, Dongguk University, Seoul, South Korea,
in 2007, and the M.S. and Ph.D. degrees from the
Department of Computer Science and Engineer-
ing, Dongguk University, Seoul, in 2009 and 2015,
respectively, where he is currently a Research
Professor with the Department of Computer Sci-
ence and Engineering. His research areas include
computer security, privacy-preserving, distributed
systems, network security, and secure software.

JONG WHA J. JOO received the B.S. degree
in computer science and engineering from Seoul
National University, Seoul, South Korea, in 2005,
the M.S. degree in computer science from Brown
University, Providence, RI, USA, in 2007, and
the Ph.D. degree in bioinformatics from the Uni-
versity of California, Los Angeles, CA, USA,
in 2016. She is currently an Assistant Profes-
sor with the Department of Computer Science
and Engineering, Dongguk University, Seoul. Her

research interests include developing efficient computational methodologies
and algorithms for genome-wide association studies and expression quanti-
tative trait loci studies.

YANGSUN LEE received the B.S. degree from
the Department of Computer Science, Dongguk
University, Seoul, South Korea, in 1985, and the
M.S. and Ph.D. degrees from Department of Com-
puter Engineering, Dongguk University, in 1987
and 2003, respectively. He was the Manager of
the Computer Center, Seokyeong University, from
1996 to 2000, the Director of the Korea Multi-
media Society, from 2004 to 2018, the General
Director of the Korea Multimedia Society, from

2005 to 2006, the Vice President of the Korea Multimedia Society, in 2009,
and the Senior Vice President of the Korea Multimedia Society, in 2015.
Also, he was the Director of the Korea Information Processing Society, from
2006 to 2014, and the President of the Society for the Study of Game at
Korea Information Processing Society, from 2006 to 2010. Moreover, he was
the Director of HSST, from 2014 to 2018. He is currently a Professor with
the Department of Computer Engineering, Seokyeong University, Seoul. His
research areas include smart system solutions, programming languages, and
embedded systems.

YUNSIK SON received the B.S. degree from
the Department of Computer Science and Engi-
neering, Dongguk University, Seoul, South Korea,
in 2004, and the M.S. and Ph.D. degrees from
the Department of Computer Science and Engi-
neering, Dongguk University, in 2006 and 2009,
respectively. He was a Research Professor with
the Department of Brain and Cognitive Engineer-
ing, Korea University, Seoul, South Korea, from
2015 to 2016. He is currently an Assistant Profes-

sor with the Department of Computer Science and Engineering, Dongguk
University. Also, his research areas include secure software, programming
languages, compiler construction, and mobile/embedded systems.

VOLUME 7, 2019 60907


	INTRODUCTION
	RELATED WORKS
	CLOUD STORAGE SERVICE BASED ON PROVABLE DATA POSSESSION USING BLOOM FILTERS
	EXPERIMENTAL AND SECURITY ANALYSIS
	EFFICIENCY OF DATA CORRUPTION DETECTION
	SECURITY OF PROPOSED SCHEME

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	JUNHO JEONG
	JONG WHA J. JOO
	YANGSUN LEE
	YUNSIK SON


