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ABSTRACT Since the membrane algorithm was proposed, it has been used for many optimization
problems such as, traveling salesman problem, the knapsack problem, and so on. In membrane algorithms,
the membranes have two functions: container and comparator. As a container, each membrane contains
one evolutionary algorithm like genetic algorithm and ant colony algorithm. These algorithms are called
sub-algorithms and used to evolve individuals. As a comparator, the membrane will compare the results
of sub-algorithms, and select the best as the base of the next evolvement. This paper proposes a novel
evolutionary algorithm called membrane evolutionary algorithm framework (MEAF). Unlike the presented
membrane algorithms, the membranes in MEAF will be evolved to solve problems by using four operators
that are abstracted from the life cycle of living cells. Based on MEAF, a membrane evolutionary algorithm
called MEAMVC is proposed to solve the minimum vertex cover (MVC) problem. The experimental results
show the advantages of MEAMVCwhenMEAMVC is compared with two state-of-the-art MVC algorithms
proposed in recent years.

INDEX TERMS Evolutionary algorithm, membrane computing, membrane evolutionary algorithm frame-
work, minimum vertex cover problem.

I. INTRODUCTION
Membrance Computing is a fast-growing branch of natural
computing, which abstracts the distributed parallel comput-
ing models from the architecture and functioning of the living
cells. The computing systems, which are built based on mem-
brane computing models for solving problems, are called P
systems. Since membrane computing was introduced, many
P systems have been proposed [1]–[6]. These P systems
can be classified into three kinds: cell-like, tissue-like and
neural-like P systems. In the compartments of them, objects
evolve according to given rules in a synchronized, non-
deterministic, maximally parallel manner. It has been proven
that most of the P systems have the same ability with Tur-
ing Machine [1]–[3]. By using P systems, many NP-hard
problems can be solved in polynomial time in theoreti-
cal level, such as knapsack problem [7], [8], Hamiltonian
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cycle problem [9], maximum clique problem [10], All-SAT
problem [11], and so on. In addition, P systems have many
real-life applications, such as image processing [12] and fault
propagation paths modeling [13].

In 2006, a membrane algorithm combined with a cell-like
P-system structure and two approximate algorithms was pro-
posed in [14]. In this membrane algorithm, each inner mem-
brane runs a different evolutionary algorithm to obtain or
improve solutions of the optimization problem. Through this
kind of combinations, the travelling salesman problem [14]
and min storage problem [15] have been solved and yielded
a better result when compared with applying the approximate
algorithms alone.

Various variants of the membrane algorithm have been
proposed so far. In [16], [17], Zhang et al. combined the
hierarchical structure with the quantum-inspired evolution-
ary algorithms (QIEAs) to solve the knapsack problem and
analyse the radar emitter signals. Combining the hierarchical
structure and a local search algorithm, Cheng et al. proposed
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a novel membrane algorithm based on differential evolution
for numerical optimization in [18]. Another novel membrane
algorithm based on the hierarchical structure and particle
swarm optimization (PSO) solved the broadcasting problems
in [19]. In [20], an adaptive membrane algorithm combining
the hierarchical structure and local search was proposed to
solve the travelling salesman problem.

The netted structure of tissue-like P systems has also been
used as a part of membrane algorithms. In [21], the netted
structurewas combinedwith differential evolution algorithms
to solve constrained manufacturing parameter optimization
problems. In [22], the netted structure was combined with
a quantum-inspired evolutionary algorithm to solve the
distribution network reconfiguration problem. In [23], the
netted structure was combined with a particle swarm opti-
mization local search algorithm to solve constrained opti-
mization problems.

Membrane algorithms combine membrane structure with
other algorithms like QIEAs, PSO, and local search. Their
core computing is performed by other algorithms, the mem-
brane acts as a container and compares the computational
results, without participating in the evolution process of
objects. This paper proposes a novel evolutionary algorithm
framework calledMembrane Evolutionary Algorithm Frame-
work (MEAF for short). MEAF abstracts four characteris-
tics from the life cycle of living cells which forms its core
operators: division, fusion, cytolysis, and selection. Each
membrane operator allows the membranes to evolve their
multisets. In MEAF, the membranes evolve iteratively for a
number of times, and the best one in the ending configuration
is the solution to the solving problem. Based on MEAF,
this paper also proposes a membrane evolutionary algorithm
called MEAMVC in solving the minimum vertex cover prob-
lem. Meanwhile, the results of MEAMVC are compared with
FastVC [24] and FastVC2 [25] which are two of the state-of-
art algorithms proposed in recent years.

The rest of this paper is organized as follows. In section II,
some related works about membrane algorithms and the min-
imum vertex cover problem are introduced. Then, MEAF is
introduced in section III, including its operators and algo-
rithm framework. Base on MEAF, MEAMVC is designed
to solve the minimum vertex cover problem in section IV.
Section V gives the experiment results on large real-world
graph data set. Finally, some conclusions are given in
section VI.

II. RELATED WORKS
Firstly, we briefly introduce the membrane algorithm and its
application proposed. After that, we review the studies of the
MVC problem in order to compare the results of this paper.

A. MEMBRANE ALGORITHMS
Membrane algorithms provide a natural framework for
approximate algorithms. Moreover, the paradigm of P sys-
tems can bring to the approximate algorithms area ‘‘space’’
and ‘‘time’’ varying strategies.

FIGURE 1. One kind of membrane structure of membrane algorithms.

As shown in Fig. 1, the membrane structure of the mem-
brane algorithm [14] consists of a set of layered membranes.
For the regions separated by nested membranes, each of them
contains a subalgorithm and a few tentative solutions. And
for two adjacent regions, they will exchange solutions for
communication.

Algorithm 1Membrane Algorithms

1 Initialization;
2 repeat
3 for each region do
4 Update the tentative solutions by using the

associated subalgorithm;
5 Send the best and worst solutions to the adjacent

inner and outer regions, respectively;
6 Select the next population from the solutions in

the region by using the associated subalgorithm;

7 until the terminate conditions are satisfied ;
8 return the best solution in the innermost region;

In membrane algorithms, the algorithm associated with
each region might be identical or different algorithms. For
example, in [14], when to solve the travelling salesman prob-
lem, the innermost region uses a tabu search, and the other
regions use an algorithm which resembles genetic algorithm.
In each iteration, the solutions in each regionwill be improved
by the associated subalgorithm, and the best solution will
be sent to the inner adjacent region, and the worst solution
will be sent to the outer adjacent region. In [15], when to
solve the min storage problem, all the regions use the same
local search algorithm called LocalSearch4MS. And in each
iteration, the best and the worst solution will be sent to the
inner adjacent and outer adjacent region, respectively.

B. MINIMUM VERTEX COVER PROBLEM
The MVC problem is a classic combinatorial optimization
problem. It has many important applications in scheduling,
VLSI design, industrial machine assignment, and network
security. Given an undirected graphG(V ,E), the target of the
MVC problem is to find a minimum sized subset V ′ ⊆ V ,
so that for every edge e ∈ E at least one endpoint of e belongs
to V ′. It’s been proved that the MVC problem is NP-hard to
approximate within a factor of 1.3606 [26].
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Many exact algorithms and approximate algorithms have
been proposed to solve the MVC problem. Branching algo-
rithms are the main exact algorithms in solving MVC, such
as branch-and-bound methods and LP-based branch-and-cut
methods [27]–[29]. For many large instances, exact algo-
rithms cannot get a solution in a reasonable time. So, approx-
imate algorithms play an important role in solving large
instances, including ant colony algorithms [30], [31] (for
weighted vertex cover), genetic algorithms [32], [33], local
search algorithms [24], [25], [34], memetic algorithms [39]
(for partial vertex cover), rough set based algorithms [38]
(for hypergraphs) and so on. Among these algorithms, local
search algorithms are superior to other approximation algo-
rithms. For large instances, the state-of-art local search algo-
rithms mainly include FastVC [24] and FastVC2 [25]. This
paper compares the results with FastVC and FastVC2.

Algorithm 2 is the algorithm framework of FastVC and
FastVC2. FastVC and FastVC2 solve MVC by iteratively
exchanging vertices in the tentative solution, and try to find
a vertex cover near the tentative solution. The difference
between FastVC and FastVC2 is that FastVC2 use three
construction algorithms to construct the initial solution, while
FastVC only use one construction algorithm.

Algorithm 2 Framework of FastVC and FastVC2
Input: graph G = (V ,E), the cutoff time
Output: vertex cover of G

1 C = a constructed vertex cover;
2 while elapsed time< cutoff do
3 if C covers all edges then
4 Update the current optimal C∗ to C ;
5 Remove a vertex from C ;
6 else
7 Choose and remove a vertex u from C ;
8 Choose and add a vertex v to C ;

9 return C∗;

The construction algorithm used in FastVC is called Edge-
GreedyVC. Starting with an empty set C , for each uncovered
edge e, add one endpoint v of e with higher degree to C .
When all the edges are covered, remove all the redundant
vertexes in C . When removed these vertexes, C remains
a cover. FastVC2 use EdgeGreedyVC and two other con-
struction algorithm called GreedyVC and MatchVC. When
constructing a cover, GreedyVC iteratively adds the vertex
to C which has the most adjacent uncovered edges. When
constructing a cover, MatchVC iteratively chooses one of the
uncovered edges and adds the two endpoints of the chosen
edge to C .

III. MEMBRANE EVOLUTION ALGORITHM FRAMEWORK
Being inspired from the characteristics of biological individ-
uals and groups is the basis of biological computing models
or frameworks. For example, genetic algorithms are inspired

from the genetic evolution of organisms, which forms a
framework with three operators: crossover, mutation and
selection. In this paper, the proposed membrane evolution
algorithm framework is a framework of evolutionary algo-
rithm, which consists of four evolution operators: fusion,
division, cytolysis and selection.

A. EVOLUTION OPERATORS
1) FUSION
In biological systems, the merging process of cells is called
cell fusion. The computing process of merging the objects
of two membranes into one new membrane is called fusion
operator as shown in Fig. 2.

FIGURE 2. Fusion operator.

2) DIVISION
The process of dividing one cell into at least two cells is called
cell division. The computing process of splitting objects of
one membrane into two new membranes using certain rules
is called division operator. The process is shown in Fig. 3.

FIGURE 3. Division operator.

3) CYTOLYSIS
In nature, when the membrane of a cell loses its biological
functions, the substanceswill scatter or dissolve inwater. This
phenomenon is called cytolysis. Correspondingly, the process
of consuming all the objects in one membrane and deleting
the membrane is called cytolysis operator.

4) SELECTION
The cells that adapt to the environment will have more
chances to be selected to multiply themselves in biologi-
cal systems. The multiplying process of highly adaptable
membranes is called selection operator. Selection operator
will multiply the highly adaptable membranes, which have
high fitness. The multiplied membranes will enter the next
generation.

B. ALGORITHM FRAMEWORK
According to the four evolution operators, the framework of
MEAF is shown as Algorithm 3.
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Algorithm 3 Membrane Evolutionary Algorithm Frame-
work (MEAF)
Input: The description of question, conditions for the

solutions, end conditions
Output: Solutions

1 (1) Initialization create membrane structure and
construct the initial population ;

2 repeat
3 (2) Evolve membranes in parallel:
4 1) Fusion operator: merge membranes which are

selected by the correlation between membranes
or randomly;

5 2) Division operator: divide membranes which
are selected by their fitness or randomly. The
objects of a membrane can be divided into two
new membranes randomly or according the
correlation between objects;

6 3) Cytolysis operator: dissolve membranes
randomly or according to their fitness;

7 4) Selection operator: multiply the membranes
with high fitness;

8 (3) Repair the population:
9 1) Keep stability and variety of the population;
10 2) Repair membranes to satisfy the needs of

questions;

11 until the end conditions are satisfied ;
12 (4) return solutions;

FIGURE 4. The initial membrane structure of a membrane evolution
algorithm.

Fig. 4 shows the initial membrane structure of MEAF. The
membranes labeled 1 to n constitute the population of MEAF
which is denoted as P = {M1, . . . . . . ,Mn}, where n is the
size of the population, and the membrane labeled best is a
duplicate of the current best membrane in P. ∀Mi ∈ P is one
of the individuals in the population, and the objects in Mi
form a feasible solution to the problem being solved. In each
iteration, MEAF will evolve the population in parallel and
produce the next generation population, where the size and
diversity of the population will be maintained.

In the evolution process, the calculation of individual’s fit-
ness (membrane’s fitness) is related to the solving problems.
For example, for MVC problem, an individual’s fitness is
calculated according to how close this individual to a smaller

vertex cover. And the end conditions are also related to the
problem to be solved.

For one specific problem, four operators can be used alone
or in combination. For example, we can combine the selection
operator with cytolysis operator, or combine the division
operator with the fusion operator. In section IV, we imple-
ment the membrane evolution algorithm framework to solve
the MVC problem.

When to compare MEAF with membrane algorithms and
other evolutionary algorithms, we can see the differences are:

(1) Differences from membrane algorithms (see subsec-
tion II-A): first, the membranes M1, . . . ,Mn in MEAF form
the population, and the whole population evolve through iter-
ations. Hence, MEAF itself is an evolution framework rather
than just using membranes as containers. Second, solutions
of the target problem can be obtained by evolving mem-
branes and their inner objects through the four operators. The
individuals can be created by fusion, division and selection.
And each membrane can be fused, divided, and dissolved.
The objects inside membranes (or sub-membranes) will be
reallocated through the evolvement of membranes.

(2) Differences from genetic algorithms: MEAF needn’t to
encode individuals. When we use the operators of MEAF,
the fitness of individuals can be computed, compared and
improved. Besides, we can also improve the efficiency of
evolvement by averaging the fitness of objects or object set.

(3) Differences from ant colony algorithms: the mem-
branes and the objects in MEAF both carry heuristic infor-
mation. These heuristic information is much more abundant
than the heuristic information carried by the path (the path
will be chosen by ants), which leads to a faster speed and a
better solution of the problem to be solved.

Section IV describes the algorithm MEAMVC which is
an application of MEAF. Section V gives the results of
MEAMVC, and compares and analyzes the results with other
MVC algorithms.

IV. SOLVING MVC BASED ON MEAF
In this section, we propose a membrane evolution algorithm
to solve MVC, which is named MEAMVC (membrane evo-
lution algorithm for MVC problem).

A. DEFINITIONS AND NOTATION
In MEAMVC, the membrane structure is shown in Fig. 4.
Each object o inMi (1≤ i≤ n) represents one vertex in graph
G = (V ,E). That vertex o is in Mi is denoted as o ∈ Mi,
and the size of Mi is denoted as |Mi|. Obviously, the object
set of Mi is one tentative solution of MVC. In the rest of
the paper, we use CE(Mi) to represent the set of edges of G
which are covered by the objects inMi, and we use |CE(Mi)|
to represent the size ofCE(Mi).Mi−o denotes the membrane
formed by the remaining objects after removing the object o
from the membraneMi, andMi+o denotes the membrane by
adding the object o into the membraneMi.
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We use (1) to evaluate the fitness of object o to membrane
Mi, which is denoted as fit(o,Mi).

fit(o,Mi) =

{
|CE(Mi)| − |CE(Mi − o)|, o ∈ Mi

|CE(Mi + o)| − |CE(Mi)|, o /∈ Mi
(1)

From (1), the fitness of object o with respect to Mi is the
size of the new uncovered edges after removing object o
from Mi (for o ∈ Mi) or the size of the new covered edges
after adding object o to Mi (for o /∈ Mi). For u, v ∈ V ,
if fit(u,Mi) > fit(v,Mi), then u is more suitable for staying
in Mi. Moreover, the state change of object o, in Mi or not in
Mi, will affect the fitness value of its neighbors which have
an edge with o in graph G. Therefore, when the state of the
neighbor is changed, the vertex fitness should be dynamically
updated.

For twomembranesMi andMj in the population, the fitness
of Mi to Mj is defined as (2).

fit(Mi,Mj) =
∑

o∈Mi and o/∈Mj

fit(o,Mj) (2)

The fitness value fit(Mi,Mj) shows the improvements of
Mj if we fuse Mi and Mj. The improvements of Mi is
represented by fit(Mj,Mi), which might be different with
fit(Mi,Mj).

Equation (1) and (2) are used by division and fusion oper-
ators respectively, which focus much more on the fitness
between membranes and objects. For cytolysis and selection
operators, they focus much on the fitness of the membrane
itself. For a membrane Mi, the fitness of Mi is denoted as
fit(Mi), which is defined as (3). And in (3), we use UE(Mi)
to represent the set of edges in G which is not covered byMi.
Fit(Mi) is related to the worst case ofMi to become a cover of
G by adding one endpoint of each uncovered edge. Obviously,
the membrane with larger fitness value is more adaptive to the
environment.

fit(Mi) = −1× (|Mi| + |UE(Mi)|) (3)

B. MEAMVC ALGORITHM
This section introduces the algorithm of MEAMVC for solv-
ing the MVC problem. MEAMVC solves the MVC prob-
lem by iteratively performing fusion, division, cytolysis, and
selection operators. In each iteration, MEAMVC will contin-
uously solve the problem that if there exists a little smaller
cover than the current best.

The algorithm of MEAMVC is described in Algorithm 4.
At the beginning, the initial population is constructed by the
ConstructPopulation function (see Algorithm 5). After that,
the smallest membrane in the population is chosen as the
currently optimal (called best in the rest of the paper). The
fitness of each object in each membrane is automatically
updated when their states or the states of their neighbors are
changed. Until the maximum runtime (MRT for short) being
reached, MEAMVCwill iteratively try to find a smaller cover
for graph G.

Algorithm 4MEAMVC
Input: graph G = (V ,E), population size PS,

the maximum runtimeMRT , cytolysis and se
lection period CSP

Output: a cover of G
1 (1) Initialization
2 P = ConstructPopulation(PS); // see IV-C
3 Construct two membranes by using MatchVC and

EdgeGreedyVC ; // see II-B
4 Add the two membranes to P;
5 Remove the worst two membranes in P;
6 best = the smallest membrane in P;

7 repeat
8 (2) Evolve membranes in parallel:
9 division(P); // see IV-D
10 fusion(P); // see IV-E
11 if the elapsed time from last update of best >

CSP then
12 CytolysisAndSelection(P); // see IV-F

13 (3) Repair the population:
14 for ∀ M ∈ P do
15 while M uncovers G and |M|<|best|-1 do
16 add one object o /∈ M to M with

maximal fitness value
17 while |M| ≥ |best| do
18 remove one object fromM with minimal

fitness value;

19 if M covers G then
20 best = M ;
21 remove one object fromM with

minimum fitness value;

22 until elapsed time >= MRT ;
23 (4) return best;

At the start of each iteration, the size of each membrane
will be kept under |best| by removing the objects with lower
fitness values (note that the objects with higher fitness values
are more suitable to stay in a membrane). If the size of
membrane is not under |best|, we will have less possibility to
find a better solution than best , and have more chances to find
a solution which is of equal or bad quality when compared to
the best . After that, we can update the best if these exists one
membrane which is a cover of G.

After the initializing of each iteration, the four opera-
tors will be performed on the population, which will be
described in the following subsections. Note that we perform
the selection and cytolysis operators periodically, which are
used to avoid the local optimal. The period is a param-
eter called CSP in MEAMVC. After the four operations,
some of the membranes might haven’t performed the fusion
operator. Therefore, we need to add some objects to them
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FIGURE 5. An example of the environment definition.

(lines 14-17), so that they can keep their size to |best| − 1.
This process is simple. If one membrane isn’t a cover of G
and its size is under |best| − 1, we will continually add one
endpoint with greater fitness value of a randomly selected
uncovered edge of this membrane. If two endpoints of the
selected edge have the same fitness value, the vertex with
larger time distance from now to the last time its state changed
will be selected.

We use the graph in Fig. 5 (denoted as G) to illustrate the
procedure ofMEAMVC. Fig. 6 shows howMEAMVCworks
in one loop (Algorithm 4, line 7-22) based on G with param-
eter NS = 2(see subsection IV-D) and parameter N = 1(see
subsection IV-F). At the beginning of this loop, we assume the
initial states of the population P and the membrane best are
as shown in 6(a). In the following, we use Mx(y) to represent
the membrane x in subfigure y.

1) DIVISION
MEAMVC will firstly perform the division operator on P.
According to equation (1), the fitness values of the objects in
M1(a) are 3, 1, 1, and 1 respectively, and in M2(a), the fitness
values are 2, 0, 0, and 0 respectively. For eachmembrane in P,
division operator will separate the two objects (for NS = 2)
with lowest fitness values and the rest objects. ForM1(a),there
are three objects which have a lowest fitness value 1. Conse-
quently, there are totally three division situations. Because of
the randomness in the algorithm, these three situations can be
true. Here, we assume that M1(a) is divided to M1(b) = {2, 5}
and M1′(b) = {7, 8}. For the same reason, we can assume
that M2(a) is divided to M2(b) = {4, 7} and M2′(b) = {6, 8}.
According to (4), T(M1(b)) = 2, T(M2(b)) = 2. We use P′ to
represent the population formed by membrane 1′ and 2′.

2) FUSION
Each membrane in P will randomly choose one mem-
brane in P′, and try to fuse the chosen membrane. Because
of the randomness, we assume M1(b) chooses M2′(b) and
M2(b) chooses M1′(b). M1(b) will successfully fuse M2′(b) for
fit(M2′(b),M1(b)) = 4 > T (M1(b)). M2(b) will fail to fuse
M1′(b) for fit(M1′(b),M2(b)) = 1 ≤ T (M2(b)). After fusion is
finished, P′ will be deleted.

3) REPAIR THE POPULATION
After fusion, if the time interval between the current time
and the time when last update the best is not greater than the
given parameter CSP, MEAMVC will repair the population.

M2(c) doesn’t coverG, therefore it will be repaired toM2(d) =

{4, 7, 2}.M1(c) is a cover ofG and smaller than best, therefore
Mbest(d) = M1(c), andM1(c) will becomeM1(d) = {2, 5, 6} by
removing one object.

4) CYTOLYSIS AND SELECTION
If the time interval between the current time and the time
when last update the best is greater than the given parameter
CSP, MEAMVC will perform cytolysis and selection before
repairing the population. In this step, all the objects in M2(c)
will be replaced by |best| − 1 objects selected from best
randomly. We can assume after the replacement, M2(c) →

M2(e) = {2, 6, 7, 8}. After cytolysis and selection,MEAMVC
will also repair the population.

This loop is ended after MEAMVC finishing repairing the
population. The next loop will also start from division.

C. INITIALIZATION
The quality of the initial population has great impact on the
solution quality of the MVC problem, especially in large
instances. MEAMVC uses three construction algorithms,
MatchVC, EdgeGreedyVC (see subsection II-B), and Con-
structPopulation. After all the membranes are constructed,
remove two worst from P, and select the smallest membrane
as best . ConstructPopulation is a new construction algorithm
described in Algorithm 5. The main idea of ConstructPopu-
lation is trying to construct membrane by iteratively adding
vertex not belongs to the membrane with highest fitness
value. If two vertices have the same fitness value, the vertex
with fewer occurrences in the constructed membranes will
have the priority to be considered.

Algorithm 5 ConstructPopulation
Input: graph G = (V ,E), population size PS
Output: the membrane population (P for short)

1 for each vertex v in G do
2 count[v] = 0;

3 for i = 1 to PS do
4 M = an empty membrane;
5 while M isn’t a cover of G do
6 add the vertex v /∈ M with maximal fit(v,M ),

breaking ties in favor of the vertex with smaller
count value;

7 count[v] = count[v] + 1;

8 remove the vertices fromM whose fitness values
equal to 0;

9 update the count value of the removed vertices;
10 add M to P;

11 return P;

At the beginning of ConstructPopulation, the occurrence
counting value of each vertex is initialized to 0. In each
iteration of constructing a newmembraneM , ConstructPopu-
lation will iteratively add the vertex v /∈ M which has greater
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FIGURE 6. An example of the procedure of MEAMVC. (a) Initial state. (b) After division. (c) After fusion. (d) After repairing the
population. (e) After cytolysis and selection.

fitness value and smaller counting value until M covers the
graph G. Before finishing constructing M , M will be shrunk
by removing vertices whose fitness values equal to 0. During
the process, the occurrence counting values will be automat-
ically updated.

The complexity of ConstructPopulation: the direct imple-
mentation of ConstructPopulation is O(PS×|V |2), because of
the two nested loops for the construction of each membrane
(lines 5-7). The direct implementation is too time-consuming
for large instances. A smarter implementation is to use a pri-
ority tree to manage the vertices not belongs to the membrane
under construction. The vertices in the tree are in the order
of their fitness values and counting values, where the fitness
value is the first key, and the counting value is the second key.
By doing this, the complexity of ConstructPopulation can be
reduced to O(PS × |V | × log|V |).

D. DIVISION
The division operator will select some objects with lower
fitness values in each membrane to form new membranes.
The size of the new membranes is a user defined parameter
called NS. In order to selecting objects quickly, we use the
idea of BMS strategy [24] that has a time complexity of O(1).

The detailed implementation is proposed in Algorithm 6.
For each membrane, NS sized objects with lower fitness
values will be selected and removed from them by using the
BMS strategy with a parameter k (lines 5-7). The removed
objects of each membrane will form a new small membrane
which will be stored in P′. And P′ will be used for the fusion
operator.

For two membranes M and M ′, which were divided from
the same membrane, the fusion threshold of M is defined as
T (M ), which is defined in (4).

T (M ) =
∑
o∈M ′

fit(o,M ) (4)

Algorithm 6 Division
Input: graph G = (V ,E), the size of the new

membranes NS
1 for ∀M ∈ P do
2 create a new membraneM ′;
3 for j = 1 to NS do
4 bestv = randomly selected vertex ∈ M ;
5 for m = 1 to k do // BMS strategy
6 randv = randomly selected vertex ∈ M if

fit(bestv, M) > fit(randv, M) then
7 bestv = randv;

8 remove bestv from M ;
9 add bestv to M ′;

10 add M ′ to P′;

E. FUSION
For each membrane M in the population, a membrane M ′ in
P′ will be selected according to fit(M ′,M ). The two mem-
branes will be fused according to fit(M ′,M ) and T (M ).
If fit(M ′,M ) > T (M ), membrane M will fuse membrane

M ′. After fusing, M = M ∪ M ′, and membrane M ′ will
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not change and can be fused again by other membranes.
If fit(M ′,M ) ≤ T (M ), membrane M will not fuse M ′, and
no other membranes will be selected forM in this iteration.

Algorithm 7 Fusion
Input: graph G = (V ,E), the thresholds of each

membrane
Output: the updated population P

1 for ∀M ∈ P do
2 Select a membrane M′ ∈ P′:
3 if fit(M′, M) > T(M) then
4 M =M ∪M′;

5 return P;

F. CYTOLYSIS AND SELECTION
As introduced in section III, the selection operator will
multiply some best membranes, and the cytolysis opera-
tor will dissolve some worst membranes. In MEAMVC,
the two operators are implemented in CytolysisAndSelection
(Algorithm 8).
In the implementation, we firstly find the worst membrane

M , which has the smallest fit(M ). After that, the vertices
in M will be replaced by |best| − N randomly selected
vertices of the best membrane, where N is a parameter in our
experiments.

V. EXPERIMENTAL RESULTS
To demonstrate the effectiveness of MEAF, this section com-
pares the experimental results ofMEAMVCwith FastVC and
FastVC2 (see subsection II-B Algorithm 2). FastVC [24] is
one of the methods which can quickly and effectively solve
MVC on large instances in recent years. FastVC2 [25] has
replaced the construction algorithm in FastVC with three
different algorithms.

A. THE BENCHMARKS AND EXPERIMENTAL
ENVIRONMENT
In our experiments, we downloaded 102 instances from
the Network Data Repository online [35]. We exclude four
extremely large ones, therefore, here remains 98 instances,
which are used for evaluating the algorithms in our experi-
ments. Many of these 98 giant real-world graphs have mil-
lions of vertices and dozens of millions of edges.

In our comparisons, we use the results of FastVC and
FastVC2 from [25]. In [25], both FastVC and FastVC2 are
implemented in C++, and compiled by g++ (version 4.4.5)
with the ‘−O3’ option. And all the experiments of [25] are
carried out on a workstation under Ubuntu Linux (version
14.04), using 2 cores of an Intel i7-4800MQ 2.5 GHz CPU
and 32 G Byte RAM. MEAMVC is also implemented in
C++, and has been compiled by g++ (version 6.3.0) with
the ‘‘−O3’’ option for our experiments. All experiments of
MEAMVC are carried out on a server under Ubuntu Linux

Algorithm 8 CytolysisAndSelection
Input: graph G = (V ,E), N the size of vertexes that

won’t be copied to worst (N � |best|)
1 Select the membrane with the smallest fitness value as
worst;

2 Replace all the vertices of worst with |best| − N
randomly selected vertices of best ;

(version 16.04), using 12 cores of an Intel Xeon(Skylake)
Platinum 8163 2.5 GHz CPU and 48 G Byte RAM.

B. RESULTS AND ANALYSIS
We runMEAMVC ten times on each instancewith a time lim-
itation of 1000 seconds for each run (the same time limitation
with FastVC and FastVC2). For the other parameters PS and
NS of MEAMVC, we set PS to 5 and NS to 6, which is based
on preliminary experiments. For PS, we test PS ∈ [5, 20]
with an increment step of 5. We find MEAMVC with a PS
of 5 performs best. The short time limitation and the giant
tested graph might be the reason why smaller population has
the best performance. For NS, we test NS ∈ [2, 12] with an
increment step of 2. In addition, we find MEAMVC with
NS = 2 finds fewer best solutions than others. For other
NS values, the best solutions they found are pretty close, but
NS = 6 use less time than others, so we choose NS = 6. For
other parameters,CSP is set to 10, andN is set to 20 according
to preliminary experiments, and k is set to 50 as the same
as [24].

As shown in Table. 1, we compared the solution quality
of FastVC, FastVC2 and MEAMVC. For each algorithm on
each instance, we report the minimum size (min) and the
averaged size (avg) of vertex covers found by the algorithm.
For two algorithms A and B on one instance, we say A is
better than B if A found a smaller minimum size, or if A and B
found the sameminimum size but A found a smaller averaged
size. To make the comparisons clearer, the best results of each
instance are in bold, and the worst results of each instance are
in italic.

Table. 2 shows the best, medium, and worst instance
numbers of each algorithm. From Table. 2, we can observe
that MEAMVC and FastVC2 have the most best instance
numbers, but MEAMVC slightly precedes FastVC2 on the
medium instance numbers; as for FastVC, it has the most
worst instance numbers, and the fewest best instance num-
bers. Furthermore, for 8 instances, MEAMVC found smaller
vertex covers which haven’t been found by FastVC and
FastVC2.

For further performance evaluation, we divide all the
instances into two categories. The first category contains the
instances whose minimum vertex cover found by the three
algorithms is no more than 500,000 vertexes. The second
category contains the instances whose minimum vertex cover
of being found is more than 500,000 vertexes.
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TABLE 1. Experimental results on large real-world graphs. TABLE 2. The best, medium, and worst instance numbers for each
algorithm.

TABLE 3. The self-deviation of each algorithm.

Table. 3 shows the stability of MEAMVC, FastVC and
FastVC2. The stability evaluates the ability that if one algo-
rithm can obtain stable results in several independent runs.
For example, the stability of MEAMVC of the first cat-
egory is 1.2, which means the average deviation between
avg(MEAMVC, i) and min(MEAMVC, i) is no more than
1.2 vertexes. The stability of algorithm A is measured by
self-deviation(A) in (5).

self-deviation(A) =
n∑

i=m

avg(A, i)− min(A, i)
n− m

(5)

where avg(A, i) denotes the averaged size of the covers of A
on instance i, and min(A, i) denotes the minimum size of the
covers of A on instance i, and (m, n) is range of instances.

Obviously, the algorithm with smaller self-deviation is
more stable than other algorithms. Therefore, as shown
in Table. 3, MEAMVC is more stable than FastVC in both
categories. When compared to FastVC2, FastVC2 is more
stable in the first category, but MEAMVC is more stable
in the second category. For FastVC and FastVC2, they are
local search methods that means they can search deeper on
a specific tentative solution. So, FastVC2 is more stable in
small instances, but in large instances, it’s harder for local
searchmethods to escape from the local optimums in different
independent runs. Therefore, the self-deviation of FastVC2 is
smaller in small instances but larger in large instances.

Table. 4 shows the comparisons of the ability of
MEAMVC, FastVC and FastVC2 to find the best solu-
tion. For example, the global-deviation of MEAMVC of the
first category is 1.120879, which means the average devia-
tion between min(MEAMVC, i) and best(i) is no more than
1.120879 vertexes. For algorithm A, the ability of A to find
the best solution is measured by global-deviation(A) in (6),
where best(i) denotes the size of the smallest cover of all the
compared algorithms on instance i.

global-deviation(A) =
n∑

i=m

min(A, i)− best(i)
n− m

(6)

The algorithm with a smaller global-deviation have more
ability to found a smaller vertex cover. From Table. 4,
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TABLE 4. The global-deviation of each algorithm.

MEAMVC and FastVC2 is more capable than FastVC
in both category. For MEAMVC and FastVC2 in the
91 instances of the first category, the difference of global-
deviation(MEAMVC) and global-deviation(FastVC2) is at
least 0.5. That means MEAMVC precedes FastVC2 at
least 0.5 vertexes in average for the 91 instances of the
first category. But, for the 7 instances in second cate-
gory, FastVC2 precedes MEAMVC at least 24 vertexes in
average. In fact, for small instances, 1000s is enough for
MEAMVC to find a good enough solution (a solution better
than the solutions found by FastVC and FastVC2), so the
global-deviation of MEAMVC is smaller than FastVC2. But
for large instances, 1000s is not enough for MEAMVC
to find a good enough solution, because MEAMVC is
a width-based search method. Consequently, the global-
deviation of MEAMVC in large instances is bigger than
FastVC2. As for FastVC, the global-deviation of FastVC is
always larger than FastVC2 and MEAMVC in both cate-
gories, so the intrinsic flaws of FastVC algorithm might be
the reason.

To sum up, from the perspective of best and worst instance
numbers, MEAMVC outperforms FastVC and slightly out-
performs FastVC2. Moreover, from the perspective of sta-
bility and ability, MEAMVC outperforms FastVC, and
MEAMVC is comparable to FastVC2.

Although, in the later researches, FastVC have been
improved a little bit by using random walk [36], k-swap [37]
on some instances (some other instances got a worse result),
we here still use FastVC and its successor FastVC2 to rep-
resent the state of art. In our comparisons, all the algorithms
didn’t use the data preprocessing technology, although better
results can be achieved by preprocessing the data [25].

VI. CONCLUSIONS AND FUTURE WORK
In this work, we introduce a new Membrane Evolutionary
Algorithm Framework (MEAF) which is inspired from the
structure and functioning of living cells. MEAF is totally
different from membrane algorithms in many aspects. The
membrane algorithms focus mostly on how to combine dif-
ferent independent heuristic algorithms together. But, MEAF
is a heuristic algorithm. It has its own evolution operators.
And better results can be obtained by using these operators to
evolve membranes and the objects inside membranes.

By implementing MEAF, we devolop a solver named
MEAMVC to solve the MVC problem. According to the
experimental results, MEAMVC has a largest best instance
number and a smallest worst instance number. In more detail,
for over 3/4 of the benchmarks, MEAMVC found the best
sized vertex cover. That shows the effectiveness of MEAF

and MEAMVC. Besides, MEAMVC has many other char-
acteristics, such as conceptual simplicity and ease of variable
adjustment.

This work takes a first step towards membrane evolution-
ary algorithm in solving optimization problems, and provides
key insights about how to use membrane evolutionary algo-
rithm to solve problems. In the future, we would like to
improve membrane evolutionary algorithm framework and
apply membrane evolutionary algorithm framework to other
problems.
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