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ABSTRACT Many practical problems involve the recovery of a binary matrix from partial information,
so the binary matrix completion (BMC) technique has increasingly been of interest in machine learning.
In particular, we consider a special case of the BMC problems, in which only a subset of positive elements
can be observed. In recent years, convex regularization-based methods are the mainstream approaches for
this task. However, applications of nonconvex surrogates in standard matrix completion have demonstrated
better empirical performance. Accordingly, we propose a novel BMCmodel with nonconvex regularizers and
provide the recovery guarantee for the model. Furthermore, to solve the resultant nonconvex optimization
problem, we improve the popular proximal algorithm with acceleration strategies. It can be guaranteed that
the convergence rate of the algorithm is on the order of 1/T , where T is the number of iterations. The
extensive experiments conducted on both synthetic and real-world data sets demonstrate the superiority of
the proposed approach over other competing methods.

INDEX TERMS Binary matrix completion, link prediction, nonconvex regularizers, topology inference.

I. INTRODUCTION
The matrix completion problem attempts to recover a low-
rank or an approximate low-rank matrix by observing only
partial elements [1]. In recent years, many strong theoreti-
cal analyses have been developed on the matrix completion
problem [2]–[7], which has been performed and applied in
a wide variety of practical applications, such as background
modeling [8], [9], recommender systems [10], sensor local-
ization [11], [12], image and video processing [13], [14],
and link prediction [15]. In particular, all these results are
based on a potential assumption that the observed entries are
continuous-valued. However, in many practical applications,
the observations are not only incomplete but also are often
highly quantized to a single bit [16]. Therefore, there is
a conspicuous gap between those existing approaches and
practical situations, which promotes the rapid development
of 1-bit matrix completion [16].

Instead of observing a subset of full entries, a more
common situation in practice is to observe only the subset
of positive elements. Thus, the observations are not only
binary but also nonnegative. For instance, consider the link
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prediction problem in social networks, where only positive
relationships, such as ‘‘friendships’’, can be observed, while
no ‘‘non-friendships’’ are observed. The goal here is to
recover the whole social network from the observed friend-
ships (positive entries). In the context of binary classifi-
cation, the problems learned from positive and unlabeled
examples are called positive and unlabeled learning (PU
learning for short) [17]. Consequently, the unobserved entries
are regarded as unlabeled samples, and then PU learning is
applied to matrix completion [18].

The existing methods of PU matrix completion [18], [19]
are all based on the convex regularizers such as nuclear
norm and max-norm. However, many works [9], [13],
[14], [20] state that the (convex) nuclear norm might not be a
good enough approximation of the rank function. In contrast,
better recovery performance can be achieved by nonconvex
surrogates [21]–[23]. Accordingly, we attempt to introduce
the nonconvex regularizers into PU matrix completion.

In this paper, we propose a novel model of PUmatrix com-
pletion with nonconvex regularizers and provide the recovery
guarantee for the model. To cope with the challenges of the
resulting nonconvex optimization problem, we improve the
proximal algorithm with two acceleration schemes: i) Instead
of full singular value decomposition (SVD), only a few
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leading singular values are needed to generate the next iter-
ation. ii) We replace a large matrix by its projection on
leading subspace, and then the reduction of matrix size makes
the calculation of proximal operator more efficient. More-
over, we show that further acceleration is available by taking
advantage of the sparse structure. Subsequently, the resultant
algorithm, named ‘‘PU matrix completion with nonconvex
regularizers (PUMC_N),’’ is analyzed in detail from the
aspects of convergence and time complexity, respectively.

The primary contributions of our work can be summarized
as follows:
• By employing the nonconvex regularization, we propose
a novel PU matrix completion model and provide a
strong guarantee for matrix recovery; i.e., the error in
recovering an m × n 0-1 matrix is O

(
1

δ2
√
mn

)
, where δ

denotes the sampling rate of positive entries.
• We develop an accelerated version of the proximal algo-
rithm for solving the resultant nonconvex optimization
model. It can be guaranteed that the proposed algorithm
has a convergence rate ofO

(
1
/
T
)
, where T denotes the

number of iterations.
• We implement and analyze the proposed algorithm on
both synthetic and real-world data sets. The experimen-
tal results demonstrate the superiority of the resultant
algorithm to state-of-the-art methods; that is, in general,
for the same observation matrix, the proposed method
can obtain a more accurate recovery matrix in less time.

FIGURE 1. The overview of the proposed framework. The left is an
observation matrix and the right is the recovery binary matrix, where the
PU matrix completion model with nonconvex regularizers is proposed in
Section III, and the resulting PUMC_N algorithm is introduced in
Section IV.

The paper is organized as follows (Fig. 1). The following
section is a brief overview of the related work. In Section III,
we propose the model and provide its recovery guarantee.
A fast and efficient algorithm is proposed in Section IV,
followed by the convergence and time complexity analysis.
Experimental results on both synthetic and real-world data
sets are presented in Section V. Finally, the conclusion is
summarized in Section VI.
Notation: In this paper, vectors andmatrices are denoted by

lowercase and uppercase boldface, respectively. For a matrix
X, X> denotes its transpose, Xk = X (:, 1 : k) is its leading
k columns, ‖X‖F =

√∑
i,j X

2
ij is the Frobenius norm of X,

and ‖X‖∗ =
∑

i σi (X) is the nuclear norm, where σi (X) is

the i-th largest singular value of X. For a set �, |�| is its
cardinal number. In addition, we use ∇f for the gradient of a
differentiable function f .

II. RELATED WORK
In the last decade, based on the remarkable results of low-
rankmatrix completion [1], a tremendous amount of work has
focused on the problem, which resulted in a burst of progress
concerning thematrix completion theory. A strong theoretical
basis for matrix completion [2], [3], [5], including the case
of approximate low-rank matrices and noisy observations
[1], [4], [9], [11], has been established.

However, all these results are based on the underlying
assumption that the observed entries are continuous-valued.
In practice, many applications, such as the popular Netflix1

and MovieLens [16] among recommender systems, have a
rating matrix whose entries are discrete and quantized rather
than continuous. Consequently, there is a conspicuous gap
between standard matrix completion theory and practice,
revealing the inadequacy of the corresponding methods in
dealing with the above case.

Motivated by the above challenge, 1-bit matrix completion
was advocated for the first time in [16] to deal with the binary
(1-bit) observations. Theoretical guarantees were provided
to show the efficiency of the method. In addition, a suite
of experiments on both synthetic and real-world data sets
illustrated some practical applications and demonstrated the
superiority of 1-bit matrix completion. Then, [24] considered
a general nonuniform sampling distribution concerning the
1-bit matrix completion problem followed by corresponding
theoretical guarantees. Moreover, the noisy version was stud-
ied in [25] under the same sampling scheme as [24]. Instead
of the nuclear norm, [25] used the max-norm as a convex
relaxation for the rank function. Similarly, [26] addressed
the problem of social trust prediction with a 1-bit max-norm
constrained formulation. In addition, under constraints on
infinity norm and exact rank, the noisy 1-bit matrix com-
pletion problem was explored in [27] and [28]. Furthermore,
though an analysis on PAC-Bayesian bounds, [29] evaluated
the performance of 1-bit matrix completion.

Relative to the settings of 1-bit matrix completion, there
is a more common situation in practice. Consider the link
prediction problem in social networks: instead of observing
a subset of full entries, we can only observe a subset of the
positive relationships, which is ‘‘one-sided’’ sampling in [18].
A similar situation also occurs in network topology inference
problem [48]. In response to such a case, [18] proposed PU
matrix completion. This method introduced the idea of PU
(positive and unlabeled) learning [17], [30], i.e., learning only
in the presence of positive and unlabeled examples.Motivated
by the development of semi-supervised classification [31] in
recent years, [19] proposed a modified version of PU matrix
completion.

1https://netflixprize.com/index.html.
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In particular, the PU matrix completion was considered
under the constraints on the nuclear norm. As the tightest con-
vex lower bound of thematrix rank function, the nuclear norm
is the most popular convex regularizer. Many algorithms
based on the nuclear norm, such as the accelerated inex-
act soft-impute algorithm (AIS-Impute) [32], singular value
thresholding (SVT) [33], and inexact augmented Lagrange
multipliers (IALM) [34], can solve the corresponding convex
optimization problem effectively. While the nuclear norm is
applied successfully and makes low-rank optimization eas-
ier, numerous attempts have recently been made to regard
nonconvex regularizers as the better approximation of the
matrix rank. For instance, nonconvex surrogates such as the
truncated nuclear norm (TNN) [9], [35], log-sum penalty
(LSP) [22], [36], and capped `1 penalty [21] have been suc-
cessfully applied in many fields and exhibit better empirical
performance than nuclear norm regularizers.

III. PROBLEM FORMULATION
Matrix completion is the problem of recovering the under-
lying target matrix given its partial information [1]. Follow-
ing the ‘‘basic setting’’ of [18], let the target matrix M ∈

{0, 1}m×n be a binary matrix that consists only of ones and
zeros, and �1 =

{
(i, j)|Mij = 1

}
denotes the index set of all

positive elements in M. Equivalently, the observation matrix
is denoted, herein, byA ∈ {0, 1}m×n, and� denotes the index
set of observation elements. According to the ‘‘one-sided’’
sampling in [18], only a subset of positive entries of M can
be observed, that is,� ⊆ �1.We suppose that the observation
process follows the uniform sampling distribution, which is a
popular choice for the majority of works; i.e., � is sampled
randomly from �1. For the observation matrix A, Aij = 1
if (i, j) ∈ �, and Aij = 0 otherwise. Here, our goal is to
recover the underlying target matrix M from the observation
matrix A.
According to the above description, the relationship

between M and A can be expressed in the following condi-
tional probability.

P
(
Aij = 0

∣∣Mij = 1
)
= 1− δ

P
(
Aij = 1

∣∣Mij = 0
)
= 0 (1)

where δ = |�|
/
|�1| denotes the sampling rate. We consider

the problem of positive and unlabeled matrix completion
(PU matrix completion) with nonconvex regularizers in the
following form.

min
X∈{0,1}m×n

F (X) ≡ ` (X)+ λrn (X) . (2)

where λ is a regularization parameter, ` is a smooth loss func-
tion, and rn is a nonconvex regularizer in Table 1. In addition,
(2) has the following characteristics.

• ` is differentiable with a β-Lipschitz continuous gra-
dient; that is, it follows ‖∇` (X1)−∇` (X2)‖F ≤

β‖X1 − X2‖F , β > 0. Moreover, ` is bounded from
below, i.e., inf ` > −∞.

TABLE 1. The functions r and thresholds θ for nonconvex regularizers
where µ > 0, η =

λ
ρ . For the TNN regularizer, µ is an integer denoting the

number of leading singular values that are not penalized.

• rn (X) =
∑m

i=1 r (σi (X)) is a nonconvex and nonsmooth
function, where r is a nondecreasing concave function
and r (0) = 0.

• rn can be formulated as the difference of two convex
functions [47], i.e., rn (X) =

_
r n (X)−

^
r n (X) , where

_
r n

and
^
r n are convex. (The corresponding convex functions

of the nonconvex regularizers mentioned in Section II are
provided in Appendix A.)

To accurately quantify the error in recovering the underly-
ing binary matrix, we propose to adopt theω-weighted square
loss [37], [38] as the loss function. The ω-weighted square
loss is defined as

`ω (x, a) = ωIa=a1` (x, a1)+ (1− ω) Ia=a2` (x, a2) . (3)

where ` (x, a) = (x − a)2 is the square loss, and Ia=a1 and
Ia=a2 are indicator functions, i.e., Ia=a1 is 1 if a = a1 is true
and 0 otherwise.

Consequently, (2) can be further formulated as follows.

min
X,A∈{0,1}m×n

F (X) ≡ λrn (X)+
∑

i,j
`ω
(
Xij,Aij

)
. (4)

where X and A are the recovery matrix and observation
matrix of the underlying target matrix M, respectively, and
`ω
(
Xij,Aij

)
= ωIAij=1`

(
Xij, 1

)
+ (1− ω) IAij=0`

(
Xij, 0

)
.

Recovery Error of (4): Following the definition of the
recovery error in [16], [18], here the recovery error can be
formulated as

R (X) =
1
mn
‖X−M‖2F . (5)

where M,X ∈ Rm×n are the underlying target matrix and its
recovery matrix, respectively.

In [38], the label-dependent loss is defined as U (x, a) =
Ix=1Ia=0 + Ix=0Ia=1 . Similar to (3), we define the weighted
version of the label-dependent loss as

Uω (x, a) = (1− ω) Ix=1Ia=0 + ωIx=0Ia=1. (6)

Therefore, the corresponding ω-weighted expected error
can be written as

Rω (X) = E
[∑

i,j
Uω

(
Xij,Aij

)]
. (7)

According to the class-conditional random noise model
in [39], (1) can be written correspondingly as

P
(
Aij = 0

∣∣Mij = 1
)
= 1− δ = ρ+1

P
(
Aij = 1

∣∣Mij = 0
)
= 0 = ρ−1 (8)
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Theorem 1: For the choices ω̂ = 1−ρ+1
2 and κ = 1−ρ+1

2 ,
there exists a constant c that is dependent of X ∈ Rm×n such
that, for any matrix X, we have Rω̂ (X) = κR (X)+ c.
The above theorem (Theorem 1) is a special case of The-

orem 9 in [39]. At this juncture, the linear mapping between
the recovery error R (X) and the ω-weighted expected error
Rω̂ (X) indicates that minimizing R (X) is equivalent to min-
imizing Rω̂ (X) on the partial information.
Theorem 2 (Main Result 1): Let X̂ ∈ Rm×n be the solution

to (4); then, with a probability of at least 1− α,

1
mn

∥∥∥X̂−M
∥∥∥2
F
≤

C
δ2

√ log
(
2
/
α
)

mn
+ b

. (9)

where C is an absolute constant, δ denotes the sampling rate,
b =

√
m+
√
n+ 4√

|�1|
mn , and �1 is the index set of all positive

elements inM. The proof can be found in Appendix C.
According to Theorem 2, for example, the error in recover-

ing an m×m 0-1 matrix isO
(

1
mδ2

)
for the proposed method

compared to O
(

1
√
mδ

)
, where δ denotes the sampling rate of

positive entries.

IV. ALGORITHM
In this section, we will show that the nonconvex model can
be solved much more quickly. First, Subsection A shows
the basic algorithm for nonconvex regularizers, followed by
acceleration schemes in Subsection B. Subsection C sum-
marizes the whole algorithm and Subsection D analyzes the
resultant algorithm from the aspects of convergence and time
complexity.

A. BASIC ALGORITHM
Let Lω (X,A) =

∑
i,j `ω

(
Xij,Aij

)
, and in line with the defini-

tion of the Frobenius norm, we have the following derivation.

Lω (X,A)

= (1− ω)
∑
Aij=0

(
Xij − Aij

)2
+ω

∑
Aij=1

(
Xij − Aij

)2
= (1− ω) ‖X− A‖2F+(2ω − 1) ‖P� (X− A)‖2F (10)

where [P� (X− A)]ij = (X− A)ij if (i, j) ∈ � and 0 other-
wise. In recent years, the proximal algorithm [32] has been
regarded as an efficient method for solving the optimization
problem min

X
f1 (X) + f2 (X), when f1 and f2 are convex.

The following theorem shows that the convergence of the
proximal algorithm.
Theorem 3 [40]: Let f1, f2 be lower semicontinuous, and f1

is differentiable with β-Lipschitz continuous gradient. If f1+
f2 is coercive and strictly convex, the solution of the problem
takes on uniqueness. For an arbitrary initial matrix X, ∀ρ >
β, the iterative sequence generated by the following statement
can converge to the unique solution of the problem.

Xt+1 = prox λ
ρ
f2

(
Xt −

1
ρ
∇f1 (Xt)

)
. (11)

where prox λ
ρ
f2
(Z) = argmin

X,Z∈Rm×n

{
1
2 ‖X− Z‖2F +

λ
ρ
f2 (X)

}
denotes the proximal operator.

When f2 is the nuclear norm, the following theorem shows
that the proximal operator of the nuclear norm has a closed
form solution.
Theorem 4 [33]: For an arbitrary matrix Z ∈ Rm×n,
∀τ > 0, the proximal operator of the nuclear norm of matrix
X is

proxτ‖X‖∗ (Z) = U(6 − τ I)+V
>. (12)

where I denotes the identity matrix, SVD (Z) = U6V>, and
[M+]ij = max

(
Mij, 0

)
.

For solving (4), we extend the proximal operator to
nonconvex problem, similar to Theorem 3, at t-iteration,
it products the iterative sequence as follows.

Xt+1 = prox λ
ρ
rn

(
Xt −

1
ρ
∇Lω (Xt ,A)

)
. (13)

where the learning rate, herein, denoted by ρ is a fixed value,
and ∇Lω (X,A) denotes the gradient of the ω-weighted loss
function, which can be computed efficiently as

1
2∇Lω (X,A) = (1− ω) (X− A)+ (2ω − 1)P� (X− A) .

(14)

Recently, due to the successful application on convex opti-
mization problem, the proximal algorithm has been extended
to nonconvex situation [9], [13], [14], [20]. Similar to the
nuclear norm (Theorem 4), the generalized singular value
thresholding [20] was proposed to handle the nonconvex
surrogates.
Theorem 5: Generalized singular value thresholding

(GSVT) [20]. For an arbitrary matrix Z ∈ Rm×n, let rn
be a function that satisfies the characteristics in (2), then
the proximal operator of rn has the following closed form
solution.

prox λ
ρ
rn
(Z) = Udiag

(
ŝ
)
V>. (15)

where U6V> is the SVD of Z, and ŝ =
{
ŝi
}
with

ŝi ∈ argmin
si≥0

1
2 (si − σi (Z))

2
+

λ
ρ
r (si) . (16)

Similar to Theorem 4, the above theorem indicates that
the closed-form solutions of the nonconvex regularizers
in Table 1 do exist. In addition, we generalize the above
procedure as the Basic Algorithm shown in Algorithm 1.

B. ACCELERATION
However, the basic algorithm involves a full SVD (step 3)
with time complexityO

(
mn2

)
. Next, we will use the follow-

ing two schemes to make the basic algorithm much faster.
S1: The first consideration is to use partial SVD. However,

ŝi in (16) actually becomes zero when the singular value
σi (Z) is not larger than a threshold θ , which is automatic
thresholding in [41]. This means that only the leading few
singular values, instead of all singular values, are needed to
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Algorithm 1 Basic Algorithm

Input: A ∈ Rm×n, ρ > β, the sampling set �, and the
regularization parameter λ.

1 initialize X1 = 0;
2 for t = 1, 2, ...,T do
3 Xig = Xt −

1
ρ
∇Lω (Xt ,A) ;

4 [U, 6,V] = SVD
(
Xig
)
;

5 for i = 1, 2, ...,m do
6 ŝi ∈ argmin

si≥0
1
2 (si −6ii)

2
+

λ
ρ
r (si) ;

7 end
8 Xt+1 = Udiag

({
ŝi
})

V>;
9 end
Result: XT+1

compute the proximal operator in Theorem 5. The thresh-
olds θ for the mentioned nonconvex regularizers are shown
in Table 1.
S2: The second scheme is to reduce the size of the SVD.

The following theorem shows that the proximal operator on a
large matrix can be replaced by the counterpart on a smaller
one. The proof can be found in Appendix D.
Theorem 6: For an arbitrary matrix Z ∈ Rm×n, let k be

the number of singular values of Z that are not less than θ ;
its rank-k SVD is Uk6kV>k , andW ∈ Rm×k is an orthogonal
matrix. If span (Uk) ⊆ span (W), then the following equation
holds.

prox λ
ρ
rn
(Z) =Wprox λ

ρ
rn

(
W>Z

)
. (17)

According to Theorem 6, a large matrix is replaced by
its projection on leading subspace. How does one obtain
such a W in Theorem 6? Two approaches are available to
find the W exactly in the same time complexity. The first
method, the PROPACK package [42], is widely applied to
partial SVD. And the second is the power method, which
has a good approximation guarantee [43]. Compared with the
former method, the latter one can benefit particularly from
warm-start, taking full advantage of the iterative nature of the
proximal algorithm. Hence, we use the power method to get
the W, and the details are shown in Algorithm 2.

Algorithm 2 power Method

Input: Let Z ∈ Rm×n, Y ∈ Rn×k , and the number of
iterations H .

1 R1 = ZY;
2 for h = 1, 2, ...,H do
3 Wh = QR (Rh) ; //only turning the Q matrix
4 Rh+1 = Z

(
Z>Wh

)
;

5 end
Result:WH

Let Xig = Xt −
1
ρ
∇Lω (Xt ,A), through the implemen-

tation of the above two acceleration measures, (13) can be

rewritten as

Xt+1 =WUadiag(ŝ)V>a . (18)

where Ua6aV>a is the rank-a SVD ofW>Xig, a is an integer
denoting the number of singular values that are greater than
the threshold θ , and ŝ can be obtained from (16).

Algorithm 3 Positive and Unlabeled Matrix Completion
With Nonconvex Regularizers (PUMC_N)

Input: Let λ0 > λ, ρ > β, υ, A ∈ Rm×n, and the
sampling set �.

1 Initialize X0 = X1 = 0, α0 = α1 = 1, and
V0,V1 ∈ Rn×1 as random Gaussian matrices;

2 for t = 1, 2, ...,T do
3 Zt = Xt +

αt−1−1
αt

(Xt − Xt−1) ;

4 Zig = Zt − 1
ρ
∇Lω (Zt ,A) ;

5 Yt = QR ([Vt ,Vt−1]) ;
6 W = powermethod

(
Zig,Yt

)
;

7 [U, 6,V] = SVD
(
W>Zig

)
;

8 λt = (λt−1 − λ) υ
t
+ λ;

9 for i = 1, 2, ..., k do
10 ŝi ∈ argmin

si≥0
1
2 (si −6ii)

2
+

λt
ρ
r (si) ;

11 end
12 Xt+1 =WUkdiag

({
ŝi
})

V>k ;
13 Vt+1 = V;

14 αt+1 =
1
2

(√
4α2t + 1+ 1

)
;

15 end
Result: XT+1

C. THE WHOLE ALGORITHM
We summarize the whole procedure for solving (4) in
Algorithm 3 and name it PUMC_N (Positive and Unlabeled
Matrix Completion with Nonconvex regularizers). In step 3,
similar to the nmAPG algorithm [44], a linear combination
of Xt−1 and Xt is used to accelerate the algorithm. The
column spaces of the current iteration (Vt ) and previous
iteration (Vt−1) are used to accomplish the warm start in
step 5, as in [32]. Steps 6 and 7 perform S2, and in step 8,
a continuation strategy is introduced to speed up the algo-
rithm further. Specifically, λ is dynamic and, as the iteration
proceeds, gradually decreases from a large value. In addition,
steps 9− 11 perform S1.

D. ALGORITHM ANALYSIS
1) CONVERGENCE ANALYSIS
First, we present a lemma that provides the basic support
for the convergence analysis of the proposed algorithm. The
following lemma shows that the objective function F is non-
increasing as the iterations proceed.
Lemma 1 [45]: Let {Xt } be the iterative sequence produced

by (13), for the optimization problem (2), we have F (Xt+1)≤

F (Xt)−
ρ−β
2 ‖Xt+1−Xt‖

2
F , where ρ>β.
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The following theorem shows that the proposed algorithm
generates a bounded iterative sequence. Moreover, the proof
can be found in Appendix E.
Theorem 7: Let {Xt } be the iterative sequence produced

by (13), we say {Xt } is a bounded iterative sequence,
i.e.,

∑
∞

t=1 ‖Xt+1 − Xt‖
2
F <∞.

For the convex optimization problem in Theorem 3,
the proximal mapping in [45] is denoted by G 1

ρ
f2
(Xt) =

prox 1
ρ
f2

(
Xt −

1
ρ
∇f1 (Xt)

)
− Xt . In particular, when f2 is

convex,
∥∥∥G 1

ρ
f2
(Xt)

∥∥∥2
2
can be used to conduct the convergence

analysis. In contrast, if f2 is nonconvex, it is no longer appli-

cable. Hence, we use
∥∥∥G 1

ρ
f2
(Xt)

∥∥∥2
F
=‖Xt+1 − Xt‖

2
F instead

to perform convergence analysis of the proposed algorithm.
The convergence of Algorithm 3 is shown in the following
theorem, and the proof can be found in Appendix F.
Theorem 8 (Main Result 2): Let {Xt } be the iterative

sequence in Algorithm 3. For the consecutive elementsXt and
Xt+1, we have

min
t=1,··· ,T

‖Xt+1−Xt‖
2
F ≤

2
(ρ−β)T (F (X1)−infF) . (19)

2) TIME COMPLEXITY
Assume that Yt in step 5 of Algorithm 3 has kt columns at
the current iteration. Consequently, step 5 takesO

(
nk2t

)
time.

Next, step 3 shows thatZt is a linear combination ofXt−1 and
Xt . Let ct = (αt−1 − 1)

/
αt . By combining step 3 and step 4,

we have

Zig = {c1Xt + c2Xt−1 + c3A} + c4P� (Zt − A) . (20)

where c1 = (1+ ct) (1− c3), c2 = ct (c3 − 1), c3 =
2(1−ω)
ρ

, and c4 =
2(1−2ω)

ρ
. The first three terms involve

low-rank matrices, whereas the last term involves a spar-
sity structure. The combined structure in (20) was studied
specifically in [42]. Consider the multiplication of Zig and a
vector b ∈ Rn. For the low-rank part, the multiplication costs
O ((m+ n) kt) time, whereas the sparse part cost O (‖�‖1)
time. Hence, the cost is O ((m+ n) kt + ‖�‖1) per vector
multiplication. Step 7 performs a rank-kt SVD of W>Zig,
and it takes O

(
(m+ n) k2t + ‖�‖1kt

)
time. In summary,

the order of the time complexity at the current iteration is
O
(
(m+ n) k2t + ‖�‖1kt

)
,where ‖�‖1 < mn and kt < n.

Therefore, the time complexity of PUMC_N is much cheaper
than the O

(
mn2

)
complexity of GPG in [20] and the O (mn)

complexity of BiasMC in [18].

V. EXPERIMENTS
In this section, we perform experiments on synthetic and
real-world data sets and demonstrate the effectiveness of the
proposed algorithm in practical applications, including link
prediction, topology inference, and recommender system. All
experiments are implemented in Matlab on Windows 10 with
Intel Xeon CPU (2.8GHz) and 128GB memory.

A. SYNTHETIC DATA
Data Sets: As in [18], [41], we assume the matrixQ ∈ Rm×m

is generated by Q = M1M2, where the elements of
M1 ∈ Rm×k andM2 ∈ Rk×m are obtained from the Gaussian
distributionN (0, 1). Therefore, the underlying binarymatrix
M ∈ Rm×m can be generated byMij = IQij≥q, without loss of
generality, we assume that q = 0.5. We fix k = 5 and very m
in {50, 100, 500, 1000, 2000}.

FIGURE 2. Performance analysis of the proposed PUMC_N algorithm on
synthetic datasets. (a) MSE vs sampling rate on synthetic datasets. (b) The
sampling rate is fixed at 0.5, MSE vs time (in seconds) on synthetic data
sets.

For each scenario, the mean square error MSE =∥∥P�̄ (X−M)
∥∥2
F

/∥∥P�̄ (M)∥∥2F is used for performance eval-
uation, where X is the recovery matrix for underlying matrix
M, and �̄ is the index set of unobserved elements. Each
experiment is repeated ten times with the sampling rate (δ)
varying from 0.3 to 0.9, and the average results are reported.
From Theorem 1, if the sampling rate δ = 0.3 (only 30% 1’s
in M are observed), ω = 0.15 is chosen. Results are shown
in Fig. 2. Only TNN regularizer (with µ in Table 1 set to 5) is
used in synthetic experiments, similar results can be obtained
from other nonconvex regularizers in Table 1. Fig. 2(a) shows
the testing MSE at different sampling rates. Notice that for
an increasing sampling rate we see a monotonous decrease in
testing MSE until it is close to zero. This is reasonable since
a larger number of observations give rise to more accurate
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FIGURE 3. Performance comparison of the link prediction methods. (a) Testing MSE vs sampling rate on the Jazz data set. (b) Testing MSE vs
sampling rate on the USAir data set. (c) Testing MSE vs sampling rate on the PB data set.

TABLE 2. Link prediction results on three data sets. Testing MSE is rounded to four decimal places and time is in seconds. The best results are highlighted.

information of the underlying matrix. In addition, there is
also a negative correlation between MSE and the matrix
size, which is particularly evident at a smaller sampling rate.
In particular, if the underlying matrix M is large enough,
it can be recovered accurately at a much small sampling
rate (that is small number of observations). In Fig. 2(b),
we follow the settings in [41] and fix the sampling rate at
0.5 (from Theorem 1, ω = 0.25). It can be seen that the MSE
drops sharply and precipitously at the beginning. Moreover,
the larger the matrix, the more time the algorithm takes, and
the smaller the MSE.

B. LINK PREDICTION
1) DATA SETS
Consider the link prediction problem in undirected and
unweighted social networks. The corresponding adjacency
matrix is regarded as the underlying targetmatrixM ∈ Rm×m,
where m is the number of nodes. Thus, we suppose that if
there is a link between the node i and j, then Mij = 1.
Otherwise, Mij = 0. We perform the experiments of
link prediction on three data sets: Jazz2 [15], [48], USAir3

[15], [49], and PB [49]. A summary of these three data sets is
reported in Table 3.

2) METHODS
We compare three link prediction methods, including
i) similarity-based methods [50] Common Neighbors (CN)
and Katz (with β = 0.01), ii) PU matrix completion based

2http://konect.uni-koblenz.de/networks/arenas-jazz.
3http://snap.stanford.edu/data/.

TABLE 3. Summary of data sets in link prediction and topology inference
experiments.

method BiasMC [18], iii) the proposed PUMC_N algorithm
with the nonconvex regularizers in Table 1, we fix µ = 5 for
TNN regularizer, µ=

√
λ for LSP regularizer, and µ= 2λ for

capped `1.
Afterwards, we also use the mean square error MSE =∥∥P�̄ (X−M)

∥∥
F

/∥∥P�̄ (M)∥∥F for performance evaluation,
where X is the recovery matrix for underlying matrixM, and
�̄ is the index set of unobserved elements. Each experiment
is repeated ten times, and the average results are reported.

Fig. 3 shows the testing MSE under varying sampling
rate from 0.3 to 0.9 on the three data sets. As can be seen,
the performance improvement is universal for an increasing
sampling rate. In general, the performance of matrix comple-
tion based methods (BiasMC and PUMC_N) is superior to
similarity-based methods. Furthermore, nonconvex regular-
izers, including TNN, LSP, and capped `1, lead to a lower
testing MSE than other methods. More precisely, PUMC_N
clearly outperforms the other three on Jazz and USAir, and
when the sampling rate is not less than 0.5, PUMC_N is
superior over others on PB.
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FIGURE 4. Performance comparison of the topology inference methods. (a) Testing MSE vs sampling rate on the as4 data set. (b) Testing MSE
vs sampling rate on the contact data set. (c) Testing MSE vs sampling rate on the Wikivote data set.

TABLE 4. Topology inference results on three data sets and time is in seconds.

In addition, we follow the settings in [41], 50% of the
observations are used for training and the rest for testing.
Table 2 shows the testing MSE and time of each method.
It can be seen that PUMC_N leads to the lowest testing MSE.
In particular, the testing MSE of PUMC_N is about three
times smaller than similarity-based methods. However, it is
not the fastest solver, especially if the matrix size is large.
Moreover, the MSE vs time of the proposed method on these
three data sets is provided in Appendix B.

C. TOPOLOGY INFERENCE
1) DATA SETS
We follow the setup in link prediction, and our goal
here is recovering the complete adjacency matrix from the
incomplete observations. Another three data sets (Table 3)
are used for the topology inference experiments, includ-
ing i) as44 [46], which describes different types of inter-
actions among the students, ii) contact5 [15], [51], which
represents contacts between people measured by carried
wireless devices, iii) Wikivote6 [52], which contains the
Wikipedia voting data from its inception till January 2008.

2) METHODS
Wecompare the performance of the proposed PUMC_N algo-
rithm with BiasMC method [18] as well as recent GSP-based
method SpecTemp [46]. It is worth noting that the sampling
rate in SpecTemp is the percentage of eigenvectors (spectral
templates) available. Each experiment is repeated ten times

4http://vladowiki.fmf.uni-lj.si/doku.phpid=pajek:data:pajek:students.
5http://konect.uni-koblenz.de/networks/contact.
6http://networkrepository.com/soc-wiki-Vote.php.

with the sampling rate varying from 0.3 to 0.9, and the
average results are reported.

Results are shown in Fig. 4. As can be seen from Fig. 4(a),
PUMC_N is not superior to other topology inferencemethods
when the underlying matrix is small, especially at a low
sampling rate. More precisely, testing MSEs of PUMC_N are
larger than the counterpart of SpecTemp. However, it also
can be seen from Fig. 4 that for an increasing matrix size,
the superiority of PUMC_N to others is obvious.

Similarly, Table 4 shows the testing MSE and time of each
method when the sampling rate δ = 0.5. It can be seen that
the testing MSE of PUMC_N is about two times smaller
than competitors on contact and Wikivote. And it is worth
noting that PUMC_N is the fastest algorithm among the three
methods. Moreover, the MSE vs time on these three data sets
is provided in Appendix B.

TABLE 5. Summary of Recommender system data sets.

D. RECOMMENDER SYSTEM
1) DATA SETS
In this practical setting, the popular data sets (Table 5),
including MovieLens (100K)7 [16], FlimTrust8 [53], and

7http://vladowiki.fmf.uni-lj.si/doku.phpid=pajek:data:pajek:students.
8https://www.librec.net/datasets.html.
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FIGURE 5. Performance comparison of the recommender system methods. (a) Testing MSE vs sampling rate on the MovieLens data set.
(b) Testing MSE vs sampling rate on the FlimTrust data set. (c) Testing MSE vs sampling rate on the Douban data set.

TABLE 6. Recommender system results on three data sets and time is in seconds.

Douban9 [54], are used to evaluate the performance of our
algorithm.We follow the setup in [16], [19] and convert these
ratings in each data set to binary observations by comparing
each rating to the average value (which is ∼3, considering
three data sets together) of whole data sets.

2) METHODS
We compare with the nuclear norm based algorithm
AIS-Impute [32], as well as 1-bit matrix completion in [19].
In particular, the AIS-Impute can be considered as an accel-
erated and inexact version of the proximal algorithm, and the
1-bit matrix completion is constrained by infinity norm and
nuclear norm.

Results are shown in Fig. 5. Each point in the figure is the
average across ten replicate experiments. Moreover, Table 6
shows the performance of the mentioned methods on three
data sets. From the above experiments, LSP regularizer usu-
ally has better or comparable performance than the other two
regularizers, thus we only use LSP regularizer here. It can be
seen that in the three recommended algorithms, as long as
the sampling rate is not less than 0.4, PUMC_N will result
in the lowest MSE in the least time. In addition, when the
sampling rate is low, the performance of PUMC_N needs to
be improved. Moreover, the MSE vs time on the above three
data sets is provided in Appendix B.

VI. CONCLUSION
In this paper, we addressed the problem of binary matrix
completion with nonconvex regularizers, where the observa-
tions consist only of positive entries. We proposed a novel
PU matrix completion model (4) for tackling the task based

9https://github.com/fmonti/mgcnn.

on the commonly used nonconvex regularizers and the ω-
weighted loss. In particular, the error bound for themodel was
derived to show that the underlying matrix M ∈ {0, 1}m×n

can be recovered accurately. Accordingly, we improved the
proximal algorithm with two main acceleration strategies in
nonconvex settings for solving (4), and the convergence can
also be guaranteed. The experiments on both synthetic and
real-world data sets have verified the effectiveness of the
proposed approach and validated the superiority over the
state-of-the-art methods.

There still remain several directions for further work. From
the experimental results, it can be seen that there is still room
for further performance improvements at a low sampling rate.
Additionally, as in [24], [25], a general nonuniform sampling
distribution will be considered. In addition, to further acceler-
ate the proposed algorithm and apply it to massive data sets,
we will focus on its distributed version.

APPENDIX
A. THE CORRESPONDING CONVEX FUNCTIONS
Table 7 presents the corresponding convex functions of non-
convex regularizers mentioned in Table 1, where

_
r n (X) =∑m

i=1
_r (X) and

^
r n (X) =

∑m
i=1

^r (X). In Table 7, it can
be seen that the nonconvex functions r can be represented
by two convex functions

_
r and

^
r , which satisfy the third

characteristic of (2).

B. TESTING MSE VS TIME ON REAL-WORLD DATA SETS
Fig. 6 shows the MSE vs time of the proposed PUMC_N
algorithm on real-world data sets. We follow the settings
in [41] and fix the sampling rate at 0.5 (from Theorem 1,
ω = 0.25). Similar to Fig. 2(b), the testingMSE drops sharply
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TABLE 7. The corresponding convex functions
_
r and

^
r of the nonconvex regularizers mentioned in Section II, where µ > 0. For the TNN regularizer, µ is

the number of leading singular values that are not penalized, A = Uµ, B = Vµ, where U6V> is the SVD of X.

FIGURE 6. Performance comparison. (a) Testing MSE vs time on the link prediction data sets. (b) Testing MSE vs time on the topology inference
data sets. (c) Testing MSE vs time on the recommender system data sets.

and precipitously at the beginning. Moreover, the larger the
matrix, the more time the PUMC_N algorithm takes.

C. PROOF OF THEOREM 2
On the one hand, we find that min

X
R (X) = 0, when. From

Theorem 1, we have

Rω̂ (X)−min
X
Rω̂ (X)

= (κR (X)+ c)−min
X
(κR (X)+ c)

= κ

(
R (X)−min

X
R (X)

)
= κR (X) (A1)

On the other hand, similar to the Theorem 1 in [18],
we have the upper bound of ω-weighted expected error.

Rω̂ (X)−min
X
Rω̂ (X)

≤
C1

δ

√ log
(
2
/
α
)

mn
+

√
m+
√
n+ 4
√
|�1|

mn

. (A2)

Consequently, combining (A1) and (A2), we have

1
mn

∥∥∥X̂−M
∥∥∥2
F

≤
2
δ

C1

δ

√ log
(
2
/
α
)

mn
+

√
m+
√
n+ 4
√
|�1|

mn


≤

C
δ2

√ log
(
2
/
α
)

mn
+

√
m+
√
n+ 4
√
|�1|

mn

. (A3)

where X̂ is the solution of (4), and C = 2C1 is absolute
constant. This completes the proof of Theorem 2.

D. PROOF OF THEOREM 6
According to the conditions in Theorem 6, we have

WW> =W>W = I, span (Uk) ⊆ span (W) . (A4)

And then let W =
[
W‖;W⊥

]
, where W⊥Uk = 0, and

span (Uk) = span
(
W‖

)
, and we must have

UkU>k =W‖W>‖ . (A5)

Hence, W>Z =
[
W‖;W⊥

]>Z and its rank-k SVD is[
W‖; 0

]>Uk6kV>k .
According to Theorem 5, (15) can be rewritten as

prox λ
ρ
rn

(
W>Z

)
=

[
W>
‖

0

]
Uk6̂kV>k . (A6)

where 6̂k is the set of solution in (16). And then,

Wprox λ
ρ
rn

(
W>Z

)
=
[
W‖;W⊥

] [W>
‖

0

]
Uk6̂kV>k

= W‖W>‖ Uk6̂kV>k (A7)

Combining (A5) and (A7), we have

Wprox λ
ρ
rn

(
W>Z

)
= W‖W>‖ Uk6̂kV>k

= Uk

(
U>k Uk

)
6̂kV>k

= Uk6̂kV>k
= proxrn (Z) (A8)

This completes the proof the Theorem 6.
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E. PROOF OF THEOREM 7
From Lemma 1, we have

F (Xt+1) ≤ F (Xt)−
ρ − β

2
‖Xt+1 − Xt‖

2
F . (A9)

Let t ∈ [1,T ], and sum the formula (2) of every iteration,
we have

F (XT+1) ≤ F (X1)−
ρ−β

2

∑T

t=1
‖Xt+1−Xt‖

2
F . (A10)

That is,∑T

t=1
‖Xt+1 − Xt‖

2
F ≤

2
ρ − β

(F (X1)− F (XT+1)) .

(A11)

Let T → +∞, and from the characteristics in (2), F (X) is
bounded from below, we have

F (X1)− F (XT+1) <∞. (A12)

That is,∑T

t=1
‖Xt+1−Xt‖

2
F ≤

2
ρ−β

(F (X1)−F (XT+1)) <∞.

(A13)

This completes the proof the Theorem 7. And we must have
lim
t→∞
‖Xt+1 − Xt‖

2
F = 0. Hence, the iteration sequence has

limit point.

F. PROOF OF THEOREM 8
From the proof of Theorem 7 (Appendix E), we have

min
t=1,2,··· ,T

‖Xt+1 − Xt‖
2
F

≤
1
T

∑T

t=1
‖Xt+1 − Xt‖

2
F

≤
2

T (ρ − β)
(F (X1)− F (XT+1)) . (A14)

And then,

min
t=1,2,··· ,T

‖Xt+1 − Xt‖
2
F

≤
2

T (ρ − β)
(F (X1)− F (XT+1))

≤
2

T (ρ − β)
(F (X1)− infF) . (A15)

This completes the proof the Theorem 8.
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