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ABSTRACT Many actual NoSQL systems are schemaless, that is, the structure of the data is not defined
beforehand in any schema, but it is implicit in the data itself. This characteristic is very convenient when the
data structure suffers frequent changes. However, the agility and flexibility achieved is at the cost of losing
some important benefits, such as 1) assuring that the data stored and retrieved fits the database schema;
2) some database utilities require to know the schema, and; 3) schema visualization helps developers to write
better code. In previous work, we proposed a model-based reverse engineering approach to infer schema
models from NoSQL data. Model-driven engineering (MDE) techniques can be used to take advantage
of extracted models with different purposes, such as schema visualization or automatic code generation.
Here, in this paper, we present an MDE solution to automate the usage of Object-NoSQL mappers when the
database already exists.Wewill focus onmappers that are available for document systems (Object-Document
mappers, ODMs), but the proposed approach is mapper-independent. Thesemappers are emerging to provide
similar functionality to Object-Relational mappers: they are in charge of the mapping of objects into NoSQL
data (documents in the case of ODMs) for object-oriented applications. We show how schemas and other
artifacts (e.g. validators and indexes) for ODMs can be automatically generated from inferred schemas. The
solution consists of a two-step model transformation chain, where an intermediate model is generated to
ease the code generation. We have applied our approach for two popular ODMs: Mongoose and Morphia
and validated it with the StackOverflow dataset.

INDEX TERMS Object-document mappers, NoSQL databases, Mongoose, Morphia, code generation,
model-driven engineering, model-based solution, NoSQL data engineering.

I. INTRODUCTION
NoSQL (Not only SQL) database systems emerged to tackle
the data challenges posed by moderns applications (e.g., Big
Data, social media, and mobile apps). These applications
evidenced the limitations of relational systems to meet their
scalability, availability, and performance requirements. Over
the last decade, about two hundred NoSQL systems have
appeared [1]. NoSQL databases are used in well-known
applications (e.g. Bigtable in Google applications, Cassandra
in Facebook, and Dynamo in Amazon applications), and are
part of popular software architectures (e.g. the MEAN stack
includes MongoDB). Although relational systems are still
predominant in the database market, interest in NoSQL is
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continuously growing, and some reports predict the adoption
will considerably rise in next years [2], [3].

NoSQL systems are usually classified into four categories:
document, wide column, key-value stores, and graph-based
databases. Document databases are the most widely used
NoSQL systems. In particular MongoDB appears as the fifth
in the most popular database ranking [4]. The absence of
an explicit database schema is one of the most attractive
characteristics of NoSQL systems. Being schemaless, a great
flexibility is achieved in the data management. A data schema
(e.g. a relational schema) imposes restrictions on the structure
of the data to be stored. Instead, in schemaless databases,
data stored for an entity or type can have different structure.
This facilitates managing data variation (e.g. non-uniform
types or optional fields), and tackling new data require-
ments (e.g. migrations are easier) [5]. However, this greater
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flexibility entails losing the benefits of using data schemas in
coding database applications. Schemas allow a static check-
ing that assures that only data that fits the schema can be
manipulated in application code. When the schema is only in
the mind of developers, they must guarantee a correct access
to data, and code is then more prone to errors. In addition,
a schema is often convenient, because database applications
require knowing the data organization in order tomanage data
efficiently.

The convenience of alleviating problems caused by the
lack of schema is noted in a Dataversity report [2]. This
report draws attention to the need for NoSQL tools just as
they exist for relational databases. Model visualization and
code generation are identified as two needed capabilities for
NoSQL modeling tools, which require the extraction of the
database schema. In [6], we presented an approach to extract
NoSQL schemas, and here we show how the inferred schemas
can be used to generate code of database applications. More
specifically, software artifacts of NoSQL mappers, such as
schema definitions, indexes, and data validators.

Aswith relational systems,mappers have become available
to facilitate the storage of objects intoNoSQLdatabaseswhen
developers create object-oriented applications. Although
these mappers have been developed for the four categories of
NoSQL systems [7], mappers for document stores (Object-
document mappers, ODMs) are the most widely used, in
particular those created for MongoDB, such as Mongoose [8]
and Morphia [9]. When mappers are used, the database
schema must be declared, and developers are freed from
checking whether the stored data conforms to the schema.

Data schemas are models, and operations on them can
be implemented using model transformations [10]. There-
fore, Model-Driven Engineering (MDE) techniques [11], are
appropriate in data engineering as illustrated in [12]. In this
paper, we present an MDE-based solution to automate the
usage of ODMs when the database already exists. We have
devised a transformational approach that generates the main
artifacts involved in any ODM from a NoSQL schema model
extracted by applying the strategy described in [6]. For each
database entity, a schema declaration, indexes, and data val-
idators, among other artifacts, can be automatically generated
from the inferred schema. These artifacts are not directly
generated, but an intermediate step is introduced to tackle
the complexity imposed by the existence of more than one
variation for data entities. This step facilitates the generation
of mapper code. The approach proposed has been validated
for a database populated from a StackOverflow dataset.

The main research contributions of our work are the fol-
lowing. First, we present a novel approach to automate the
use of NoSQL mappers for existing databases. As far as
we know, our solution is the first work published with that
purpose. Second, our solution shows how schemas inferred
from NoSQL systems may be used to generate code. This is
one of the three main objectives to be pursued by NoSQL
tools, as noted in the Dataversity report [2]. Third, usage
scenarios of mappers for existing databases are analyzed

and some benefits are exposed. Fourth, the approach illus-
trates some of the advantages of using MDE techniques in
database engineering, which are discussed in [12]. Metamod-
els have allowed us to represent schemas at a higher level
of abstraction, and take advantage of model transformations
to automate the solution. Finally, we have explored the use
of the YAML [13] language to configure the model-to-text
transformation that generates mapper code.

A preliminary version of our approach was presented in the
Modelsward conference [14]. That previous work has been
extended as follows:
• We have considered a Java ODM in addition to
Mongoose. In particular, we have generated code for
Morphia, an annotation-based Java mapper.

• We have changed the mechanism to configure the
model-to-text transformation. Instead of a metamodel-
based textual language, a YAML notation has been
created to ease the extensibility.

• We have defined a validation process which has been
applied to aMongoDB database populated from a Stack-
overflow dataset.

• A union type has been defined for Mongoose in order
to deal with properties of the same name (and different
type) in an entity. In the case of Morphia, a strategy has
been devised to manage unions.

In this paper, we will discuss all the issues mentioned
above. Moreover, we added a motivation which analyzes the
usage scenarios in which the approach could be useful, and a
background section.

This article has been organized as follows: The next
section provides the background required to understand
the approach presented. Then, we motivate our work and
present an overview of our solution. The three following
sections describe the model-driven solution implemented:
Section IV explains how NoSQL schema models are trans-
formed into Entity Differentiation intermediate models;
Sections V and VI describe, respectively, the generation of
Mongoose and Morphia schemas; and Section VII describes
the generation of additional artifacts such as indexes and
validators. Then, the validation process is explained. Finally,
related work is discussed, some conclusions are drawn, and
further work is outlined.

II. BACKGROUND
This section introduces some basic concepts which will help
to understand this paper. In particular, we will define the
notion of aggregation-oriented data model, describe some
essential ideas behindODMs, and introduce someMDE basic
concepts. A running example of a document database is also
presented.

A. AGGREGATION-ORIENTED DATA MODEL
The NoSQL term refers to the wide variety of database
systems built to manage semi-structured and unstructured
data in modern applications, where high availability, scala-
bility, and fault tolerance are demanded. The existing NoSQL
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FIGURE 1. NoSQL schema metamodel.

systems have different features, although most of them share
a few common properties, namely: they are schemaless, SQL
language is not used, the execution on clusters is the main
factor that determines its design, and they are developed as
open-source initiatives.

Data are always stored following the structure that deter-
mines a schema previously devised, which can be either
formally specified or kept into the mind of the developers.
Therefore, not requiring the definition of the schema does
not mean that there is no database schema: It is implicit in
the data and in the application code. The form of a schema
is determined by the database paradigm (i.e. the data model.)
We will focus here on the aggregation-oriented data model.

NoSQL systems are classified into four main categories
according to the underlying data model: document, wide col-
umn, key-value stores, and graph-based databases. The three
former are categorized as ‘‘aggregation-oriented databases,’’
as they tend to favor aggregation over reference in the
database entity representation, unlike graph databases [15].
These three aggregation-oriented datamodels represent infor-
mation as semi-structured data: i.e. objects formed by a set
of key-value pairs [16]. The form of keys and values dif-
ferentiates each of the three paradigms. Most of the key-
value systems do not assume any structure on the values, and
treat them as blobs of information. Instead, the value takes
the form of a structured document (normally a JSON-like
document) in a document system. In addition, a document
database is usually organized into a set of collections, and
each collection contains the documents stored for a kind
of database entity (e.g. artist or album). Then queries can
be issued on collections. Finally, wide column systems are
organized as a collection of rows, each of them consisting
of a row key and a potentially different set of columns, each
identified by its name.

In aggregation-oriented databases, complex objects are
formed by embedding objects. An object structure consists
of a root object that recursively embeds other objects, so that
an aggregation hierarchy is formed. The use of references
among objects should be very limited. Like joins in relational
databases, references are explicitly managed by developers.

As previously indicated, objects of the same entity can
be stored with different structure in a schemaless database.
These structural variations can arise due to the need of having
different variants of an entity (i.e. non-uniform types) or due
to changes made during the database evolution to satisfy new
requirements. The notion of NoSQL schema must take into
consideration such a variation. In [6], we proposed a defi-
nition of NoSQL schema for aggregation-oriented systems,
and described a schema inference strategy. Compared with
other proposals [17], [18], the main novelty of our approach
is discovering all the variations of the inferred entities and
their relationships (i.e. aggregations and references). More-
over, we defined the NoSQL Schema metamodel shown in
Figure 1 to represent the schemas inferred from stored data.
The EMF/Ecore framework [19] was used to implement our
metamodel. Representing schemas as Ecore models, we can
take advantage of model-driven technology to build NoSQL
database utilities.

In our metamodel, an Entity labels all the stored
objects that refer to the same physical or conceptual thing
(e.g. artist or album). An Entity Variation denotes each of
the sets of objects that, sharing the same entity label, have
a different structure. Each entity will have one or more entity
variations. Each entity variation has one or more named
Properties. Properties can be of three kinds: Attributes, and
either Aggregation or Reference relationships (i.e. associa-
tions) among variation entities. These properties represent the
key-value pairs of a entity variation, where the values can be:
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FIGURE 2. JSON documents in the database example.

• Attribute: primitive values (i.e. atomic values of types
such as Number, String, Char, or Boolean), or
some kind of collection (tuple).

• Aggregation: An object.
• Reference: A String or Number value that references
another object.

Entities (and therefore Entity Variations) can be either root
or nested, depending on whether they are obtained as first
level objects from the database or they are embedded into
other objects. Note that an entity is characterized by a set of
properties that can be either common to all entity variations
(i.e. they are part of the all objects of the entity), or specific
to one or more entity variations.

B. DATABASE EXAMPLE
JSON [20] is a standard human-readable text format widely
used to represent semi-structured data. In the majority of
aggregate-oriented systems, data are stored and retrieved as

JSON objects. Here, we introduce a set of JSON objects that
will be used throughout this article as a running example of a
document database.

Figure 2 shows the JSON documents of the Songs database
example. The database has a collection for each type of
root entity: Artist, Album, and Track. Artist has a couple of
variations because lyricsTracks only appears in one of them.
Three variations are identified for the Album entity, which
are motivated by: (i) the existence of prizes and reviews
fields, and (ii) changes applied on this entity due to database
evolution: the genre field was replaced by the genres field and
the type of the availability field was changed from string to
tuple of strings. The Track entity two variations depending
on whether the ratings field is present. In addition to the
root entities that correspond to the three collections, four
embedded entities can be identified: Rating, Prize, Review,
and Media. These entities are involved in four aggregation
relationships: Album aggregates Review and Prize, Track
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FIGURE 3. Visualization of the database schema for the running example.

aggregates Rating, and Review aggregates Media. Regarding
to reference relationships, Artist refers to Track (lyricsTracks
and composedTracks fields), Album refers to Track (track
field), and Track refers to Artist (artist_id field).
Figure 3 shows the database schema diagram for the run-

ning example. This diagram has been automatically generated
using the visualization tool that we presented in [21]. In that
paper, we proposed several kinds of schemas for aggregation-
oriented NoSQL data models, and a notation for each of
them. This tool visualizes schemas inferred by applying the
process defined in [6], which represents the inferred schema
as an instance of the metamodel shown in Figure 1. The
diagram shown in Figure 3 represents a global schema with
all the elements (entities, attributes, and relationships) of the
database. Each entity is represented as a rectangle with two
compartments: the left one shows the names of the common
properties, and the right one encloses the entity variations;
each entity variation is represented by a rectangle that shows
the non-common properties.

C. OBJECT-DOCUMENT MAPPERS
Object-relational mappers (ORMs) are essential to build
object-oriented applications whose persistence is based on
a relational database. They provide transparent persistence
by freeing developers from converting objects into tuples.
For this, they use the relational database schema to establish
the mapping between persistent objects and tables. Mappers
are a typical tool for relational databases that are also useful
for NoSQL systems. In fact, several NoSQL mappers have
appeared in the previous years, as interest in NoSQL systems
has been growing [7]. Some of them have been specifically

developed for some particular NoSQL system [8], [9], but
some widely used ORM mappers have also been extended
to support NOSQL databases [22]. Since document systems
are the most widespread NoSQL systems (in particular Mon-
goDB) most of the available NoSQL mappers are oriented
towards object-documentmapping (ODM) [8], [9], [23], [24].
In this paper, we focus onMongoDBODMs, but the proposed
approach is applicable to other mappers for any aggregation-
oriented system.

When using NoSQL mappers, developers must define a
data schema, e.g. by using JSON [8], Java classes with
annotations [9], or a domain-specific language [24]. These
mappers can take advantage of the defined schema to stat-
ically check that data are correctly manipulated in applica-
tion code, and mistakes made by developers are spotted as
early as possible. This is a significant benefit provided by
NoSQLmappers, which frees developers of assuring that data
are accessed in a correct way. Data validation is an error-
prone task when variations are added into the mix. However,
the need to define a schema is conflicting with the schemaless
nature of NoSQL systems, and the use of NoSQL mappers
could only be justified when changes to the schema are not
frequent.

Developers have therefore two alternatives in building
NoSQL database applications. They canwork in a schemaless
way, or use an ODM, by deciding on the trade-offs between
flexibility and safety: they could prefer not having the restric-
tions posed by schemas or either avoid the data validation.

Next, we will briefly introduce the two ODMs consid-
ered in our work: Mongoose and Morphia. Mongoose is
the most used ODM for MongoDB when writing Javascript
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applications [8]. In addition to transparent persistence, it pro-
vides support for data validation, query building, and business
logic code writing. With Mongoose, database schemas are
defined as Javascript JSON objects, and then applications
‘‘can interact with MongoDB data in a structured and repeat-
able way’’ [25]. A Mongoose schema defines the structure
of stored data into a MongoDB collection. In document
databases, such as MongoDB, there is a collection for each
root entity. AMongoose schema is defined for each collection
and also for each non-root entity. Such schemas are the key
element of Mongoose, and other mechanisms are defined
based on them, like validators, indexes, and other collection
options. We will show some examples of schema definitions
in Section V for the database example.

Morphia is an ODM for using MongoDB from Java appli-
cations [9]. It is built upon the Java driver for MongoDB. In a
Morphia database schema, each database entity is declared
as a POJO (Plain old Java object) class whose properties are
annotated with different tags. POJO classes include a field for
each property of the entity, with a given visibility and type.
POJO objects are easily serialized by the Morphia library to
be stored into the database. Morphia provides tags to define
references, aggregates, or attributes, among other informa-
tion required in a schema. Annotations will be explained in
more detail in Section VI, where we will show some POJO
classes for the running database example.

D. BASIS OF MODEL-DRIVEN ENGINEERING
Model-Driven Engineering (MDE) is the Software Engineer-
ing field that provides concepts, methods, and techniques
for the use of models with the purpose of automating tasks
related to the creation and evolution of software. Database
schemas are models, and transformational approaches have
traditionally been applied to automate data engineering
tasks (e.g. schema conversion and schema integration),
as explained in detail in [10]. However, data engineering
community has paid little attention to the application ofMDE,
as noted in [12].

Metamodeling and model transformations are the core
elements of MDE. A metamodel describes the concepts and
relationships of a certain domain. Metamodels are normally
expressed as object-oriented conceptual models by means of
metamodeling languages such as Ecore [19]. Concepts and
their properties are represented as classes with attributes, rela-
tionships between concepts as references, and generalization
of concepts as inheritance. Models are instances of metamod-
els. The ‘‘conforms to’’ term is also used to refer the relation
between a model and their metamodel. Two kinds of model
transformations are normally used: model-to-model (m2m)
and model-to-text (m2t). The former transforms a source
model into a target model, and the latter generates text (usu-
ally code) from a source model. There are languages tailored
to write each kind of transformations. M2m transformation
languages facilitate to express the mapping between the
source and target metamodels (e.g. ATL [26]). M2t transfor-
mation languages are template languages tailored to specify

an output text with holes to be filled by elements of the
input model (e.g. Acceleo [27]). We have preferred to use
the Xtend language [28], which is a general-purpose lan-
guage (GPL) that offers a template mechanism aimed to write
m2t transformations.

An MDE solution consists of a model transformation
chain. It is usually designed with the purpose of generating
some kind of code (e.g., XML, SQL, and GPL code.) Given
an initial model, code is generated in one or more steps.When
the code generation is simple, a model-to-text transforma-
tion is usually enough. However, one or more intermediate
m2m transformations can be required when the genera-
tive process is complex. These intermediate steps require
the definition of intermediate metamodels that reduce the
semantic gap.

Another key element of MDE are domain-specific model-
ing languages, or simply domain-specific languages (DSLs).
These languages are created to express models. They consist
of three elements: a metamodel that represents the concepts
and relationships of the language (abstract syntax), a notation
defined for the metamodel (concrete syntax), and a model
transformation chain that generates some kind of software
artifact as GPL code (semantics). The initial model that acts
as input of a model transformation chain could be created
with a DSL (forward engineering approach), or injected from
existing artifacts (e.g. legacy code or a database). There are
available tools that automate the creation of DSLs (DSL
definition workbench). The most popular workbenches are
Xtext [28] and MPS [29] for textual DSLs, and Metaedit [30]
and Sirius [31] for graphical DSLs.

The approach presented here is based on a two-step chain
as shown in Section III. We have therefore defined an inter-
mediate model that will be described in Section IV. In our
case, the initial model is obtained from a schema inference
process [6]. A DSL was required to parameterize the m2t
transformation, but we decided not to use MDE technology,
as explained in Section VII.

III. MOTIVATION AND OVERVIEW OF
THE PROPOSED APPROACH
In this Section, we will motivate our work and present an
overview of the proposed approach.

Our work is aimed at software developments that make use
of an existingNoSQLdatabase. In this context, the developers
could take advantage of a tool able of automatically gener-
ating schemas (and other information) required by Object-
Document mappers, saving a considerable coding effort. We
identified some scenarios in which such a generation could
be applicable.
• New applications. When creating new applications,
developers could make the decision to use a mapper
instead of using the database API. Applying the pro-
posed inference and automatically generating the map-
per code wouldmake the application less prone to errors,
as it is now based on the data model provided by the
mapper.
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• Database evolution. When databases evolve, the struc-
ture of the stored entities in the database may change.
The database then has to be migrated to the new schema.
Migrating implies (i) reading all the affected objects
in the database, (ii) transforming the properties of the
read objects as needed, and (iii) writing the modified
objects. In general, there are two options for performing
this migration: offline or lazy. Offline migration implies
stopping the applications accessing the database and
performing the change. The generated mapper code can
help in the first part of the migration (reading the data),
as the documents of the database are read semantically
using the mapper generated classes. Conversely, lazy
migration happens while the applications are running.
In this case, the generated mapper code can be modified
according to the new data model, and ‘‘pre-load’’ and
‘‘pre-save’’ methods can be added to adapt the data on
the database as it is processed by applications.

• Application evolution. When applications evolve,
the new code can be written against the generated map-
per code. Also, mapper code can be used to remove
database-specific queries from the application code,
rewriting the data logic code to use the mapper entities,
shielding the code against changes in the database.

FIGURE 4. Overview of the proposed MDE solution.

We have developed a tool aimed to automate the usage of
mappers for aggregation-oriented databases. This tool gener-
ates mapper code from database schemas inferred with the
strategy we presented in [6]. As indicated in the previous
section, the inferred schemas are represented as instances of
the Ecore metamodel shown in Figure 1. We have devised
a model-driven solution to implement our tool, which con-
sists of a two-step model transformation chain, as shown in
Figure 4.

In the first step, a m2m transformation converts a NoSQL
schema model into an intermediate model that represents
the properties of entity variations in a way that eases the
code generation, e.g. common and specific properties (for
each variation) are separated for each entity. The intermediate
model obtained conforms to the Entity Differentiation meta-
model which will be explained in Section IV. It should be
noted that the definition of intermediatemodels to decompose
a complex code generation process into several simpler steps
is a recommended practice in MDE [32].

In the second step, a m2t transformation generates software
artifacts for a target mapper. In addition to database schemas,
other artifacts can be generated depending on the target map-
per, e.g. data validators and indexes. Two MongoDB ODMs
are currently supported, Moongoose and Morphia, but the
solution can be applied to any existing ODM. A YAML file
is used to parameterize m2t transformations. These config-
uration files provide the information required to generate
code for a particular target mapper. It should also be noted
that the approach is platform independent with regard to the
source database as the NoSQL Schema metamodel allows us
to represent schemas for any aggregation-oriented database.

Each step of our solution is described in the four following
sections, and a validation is presented in Section VIII. The
code that implements the solution forMongoose andMorphia
is publicly available in a GitHub repository.1

IV. GENERATING ENTITY DIFFERENTIATION MODELS
Entity variations must be taken into account when generating
mapper artifacts. Frequently, it is necessary to differentiate
between two kinds of entity properties: common to all the
entity variations, and specific to a certain number of entity
variations. For example, in database schema declarations,
Object-Document mappers allow to annotate whether a par-
ticular property is present in all the instances of the entity
or not. As NoSQL Schema models register the properties of
each entity variation, to differentiate between common and
specific properties may seem a trivial task. However, three
properties of the inference process described in [6] made it
easier to separate this differentiation from the mapper code
generation process, namely:

1) The inference process is complete, that is, all the
entity variations are identified and recorded, and each
database object belongs exactly to one entity variation.

2) As shown in NoSQL Schema metamodel, each entity
has one or more entity variations that are characterized
by a set of properties (name and type).

3) For a given entity, two entity variations only differ in
specific properties.

Therefore, we have introduced the Entity Differentia-
tion metamodel (shown in Figure 5) in our approach. This
metamodel explicitly allows to represent common and spe-
cific properties for each entity. Entity Differentiation mod-
els are derived from NoSQL Schema models through a

1https://github.com/catedrasaes-umu/NoSQLDataEngineering.
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FIGURE 5. Entity differentiation metamodel.

model-to-model transformation that performs the task of
identifying common and specific properties.

As seen in Figure 5, the Entity Differentiation metamodel
is formed by four elements (i.e. metaclasses), which have
references to the elements of the NoSQL schema metamodel.
An entity differentiation specification (EntityDifferentiation
metaclass) aggregates a set of entity differentiations (Entity-
Diff), and references a NoSQL schema model. An EntityDiff
holds a set of common properties (commonProps relation-
ship) that are present, with the same name and type, in all
the entity variations, and a set of entity variation differentia-
tions (entityVariationDiffs relationship). These specifications
(EntityVariationDiff metaclass) hold the set of properties for
each entity variation. Also, the EntityDiff includes another set
of properties (notProps relationship): those present in other
variations of the same entity but not in this one. Note that the
union of these two sets is the same set for all the variations of
a given entity.

Properties in a NoSQL schema model are linked to an
Entity Differentiation model through the PropertySpecmeta-
class. Each PropertySpec instance references to a Property,
and includes the needsTypeCheck attribute to signal when
a property name is associated to more than one type. This
means that given an object and entity variation having a
property with that name, checking if such an object belongs to
the entity variation requires to perform a type check. There-
fore, the needsTypeCheck attribute is set for the properties
that appear in any other entity variation with the same name
but with different type. EntityDiff and EntityVariationDiff
reference to Entity and EntityVariation, respectively, in the
NoSQL schema metamododel.

As shown in Figure 4, a m2m transformation obtains an
Entity Differentiation model from a NoSQL schema input
model. This transformation works as follows. An EntityDiff
element is generated for each Entity element in the input
model. For each entity, its variations are traversed, and an
EntityVariationDiff is generated for each. Then, the set of all
properties in all variations is considered. For each property
that appears in all variations, a PropertySpec is created ref-
erencing that Property, and added to the commonProps of

FIGURE 6. Entity differentiation model for the Album entity.

the Entity. Then, each EntityVariation is considered, and its
specific properties are added to the propertySpecs list. In an
additional step, for each EntityVariation, PropertySpecs are
added to its notProps list. This list collects the properties
present in other EntityVariations, but not in the considered
one. Finally, for each PropertySpec created, the needsType-
Check attribute is set if the current property appears in some
other EntityVariation with the same name but with different
type. Figure 6 shows an excerpt of themodel generated for the
database example, in particular it shows the EntityDiff for the
Album entity of our running example. On that diagram some
common properties are shared among all variations (common-
Props relationship) such as name or releaseYear, while some
properties are specific to certain variations, such as genres on
variation 1, or reviews on variations 2, 3 and 4 (propertySpec
relationship). For each property a tooltip shows if a type
checking is required, defined by the needsTypeCheckBoolean
property in our metamodel.

V. GENERATING MONGOOSE SCHEMAS
This section describes the process of generating Mongoose
schemas from Entity Differentiation models. As shown in
Figure 4, this generation is achieved by means of a m2t
transformation. The example database is used to illustrate
the process. As seen in Figure 3, three root entities (one
for each collection: Album, Artist, and Track) and four non-
root entities (Prize, Rating, Review, and Movie) are included
in the database example. Therefore, a Mongoose schema
should be generated for each of these seven entities. Figure 7
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FIGURE 7. Generated Mongoose schema for album and review entities.

shows the generated schemas for the Album and Review
entities.

A Mongoose schema is declared by specifying the name
and type of each entity property. In addition to the property
type, several options can also be used to provide information
on the property, e.g. if an index should be created for it, if it
is a reference, or whether a validation must be performed.
We will present here the most commonly used options.
The types may be primitives or schemas previously defined.
Tuples of these types may also be defined by enclosing
the type name between brackets. The String, Number,
Date, and Boolean types are included. For example, in the
Album schema, the genre property is of type String,
releaseYear is of type Number, and formats is a tuple
of Strings. An aggregation may be expressed as a nested
schema or either declaring a external schema (i.e. a type) for
the nested entity. The latter is more convenient to improve
the legibility of the schema: an aggregation is declared by
merely indicating the name given to the external schema. The
ref option is used to express references. When a property
is a reference, it is required to specify the primitive type
used to express references and the name of the schema of the
referenced objects. In the Album schema, the prizes prop-
erty is a tuple of Prize type, that is, an Album document
aggregates zero or more Prize objects; and the tracks
property is a tuple of strings that are references to Track
objects. Note that a model is a compiled version of a schema,
which is used to create, read, save, and delete documents of
the corresponding schema.

When automatically generating schemas, we had to con-
sider the existence of entity variations. For this, we have
used the required Boolean option that acts as a validator.
This option states that a value for a particular field must
always be given to save documents of that kind of entity.
Therefore, the declaration of a common property should set
the required validator to true. When reading documents

from the database, the schema has to be able to describe all
of them. The schemas, then, include all the properties in all
the variations, with their corresponding types.

The m2t transformation works as follows. EntityDiff ele-
ments in a Entity Differentiation model are traversed, and
a schema is generated for each EntityDiff , that in turns
corresponds to each entity, both root and aggregated. For
each of them, all its properties are added to the generated
schema, adding the required option only for common
properties. Each aggregate and reference property is declared
with the corresponding schema that it refers to, and each
reference property is also declared with the ref option.
Some additional options may also be added to generated
schemas. For instance, the collection name for root enti-
ties (collection: Album in case of the Album entity),
a versionKey: false option if document versioning
should be disabled and the _id option is set to false for
non-root entities in order to avoid the generation of the _id
property for each object stored in the database.

As indicated in the previous Section, an entity can have
properties with the same name but different type. This should
be specified in Mongoose schemas by using the Mixed
predefined type, as there is not a notion of a ‘‘union’’ type.
When a property is declared of Mixed type, a value of
any type can be assigned to it (equivalent to declaring the
property of type Object.) Therefore, the property cannot
be validated, limiting the schema effectiveness. To deal with
properties with the same name in an entity, we have created
the Union type: the value of a property can belong to one
among a list of specified types. This type has been defined as
an auxiliary Mongoose schema type contained in a separate
file (UnionType.js), which is imported in each schema
being generated. This method combines the types of the
union in a single new type, which is added to the Mongoose
type hierarchy. It also validates that the value assigned to a
property is of one of the types specified in the union type.
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FIGURE 8. Generated Morphia schema for the Album entity.

Using the Union type requires to specify the name
and the list of types, as illustrated in the properties
availability of the Album schema and media of the
Review schema in Figure 7. The former is a union named
U_String_[String] of String and tuples of strings,
and the latter is a union named U_[Media]_String of
Media and String.

VI. GENERATING MORPHIA SCHEMAS
This section describes code generation process for Morphia.
As commented in Section II, Morphia uses annotations to
declare entity schemas, instead of special fields (i.e. options)
as Mongoose. With annotations, the developer is able to
define the semantics of each field in a class, as well as
validations and certain processing to be applied when seri-
alizing/deserializing a field to/from the database.

Morphia annotations may be classified into two groups
depending on whether they are used to define the database
schema (native annotations) or validation mechanisms (Javax
annotations). Themost commonly used native annotations are
the following:
• @Entity applied on a class to indicate that it is a root
entity.

• @Embedded can be applied on classes and fields to
indicate that a class represents a non-root entity or that
a field stores an embedded object.

• @Id, a field is an identifier of the class, and so it will
hold a unique value for each instance of the class.

• @Property, a field holds a primitive type value.
• @Reference a field holds one or more references to
objects of another collection.

Native annotations to declare indexes and Javax annota-
tions will be explained in Section VII.
Each annotation includes parameters to give additional

information. For example,@Reference(lazy = true)
declares that references will be lazily solved, and
@Entity(value = ’album’) explicitly indicates the
name of the MongoDB collection in which instances of this
class will be stored.

Figures 8 and 9 show how the annotations are used to
declare Morphia POJO classes for the Album root entity and
the Review embedded entity, respectively. This code has
been generated with the m2t transformation we implemented
for Morphia. The transformation works as follows.
EntityDiff elements in a Entity Differentiation model

are traversed, and a POJO class is generated for each of
them. These classes will be marked with the @Entity or
@Embedded tag depending on whether the EntityDiff ele-
ment is connected to a root or embedded entity, respectively.
Then, a private field and its corresponding getter and setter
methods are generated for each existing PropertySpec ele-
ment in the model. As seen in Figure 8, these fields will be
annotated with @Property (such as genre), @Reference
(as in tracks), or @Embedded (reviews), depending
on whether the Property referenced by the PropertySpec
element is an Attribute, Reference, or Aggregate, respectively.
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FIGURE 9. Generated Morphia schema for the embedded Review entity.

Other annotations can also be generated for each field:
@NotNull if the property is not optional (as in the
formats property), or @Id if the property is the identifier
field (by default, the property should be named ‘‘_id’’.) As
explained in Section VII, indexes and validation tags are also
generated on this step.

Types Property, Reference, and Aggregate are of the same
type as the original type in PropertySpec, and thus they are
created by a direct mapping when processing the EntityDif-
ferentiation model.
In Morphia, properties having the same name but different

type in an entity could be represented by using the Object
Java type. This solution is similar to using the Mixed
type in Mongoose. Validations, then, could not be applied.
In addition, we encountered problems when Morphia tried to
serialize/deserialize Objects before storing or after reading
values from the database. To overcome these problems and
allow validating these properties, we devised the follow-
ing mechanism that simulates a union type for POJO Java
classes.
• Given an entity that has n properties with the same name
prop and m different types t1, t2, . . . , tm, the following
private fields are generated in the corresponding POJO
class: a field named prop, which may be annotated if
necessary to provide some validation, and a field named
propi, i = 1,m for each different type.

• A setter method will be generated, which will receive
an Object as argument value, and will store it on the
suitable propi field depending on the argument type.
This method will ensure that, at any given moment, only
one of the m propi fields has a value.

• A getter method will be generated to return the value of
the propi field that has a valid value.

• A method annotated with the @Preload tag is gener-
ated, which is in charge of deserializing the prop prop-
erty value stored into the database and assigning it to
the corresponding property propi in the POJO class. This
method is named preLoad followed by the list of types
of the union separated by the underscore symbol. It will
be called when reading the property.

• Finally, a method annotated with a @PreSave tag is
generated, which is in charge of serializing the prop
property before storing it into the database. These
methods are named like preLoad methods.

This approach works correctly except when the union
type includes the String type, and references expressed as
strings, e.g. the media property in the Review entity. In this
case, the reference cannot be resolved automatically when
loading data from a database, as it is not possible to dis-
tinguish between the String type and the Reference
type when reading a database object. The user is in charge
of obtaining the referenced object using a suitable query.
An example of this Union mechanism may be seen on
Figure 8, on the availability field, which may be a
String or a List<String>.

VII. GENERATING ADDITIONAL ARTIFACTS
Additionally to the schema definition, MongoDB ODMs
provide more capabilities to facilitate the development of
database applications, such as index specifications, valida-
tors, and reference management. In this section, we will
explain how our m2t transformations generate code related
to these ODM facilities.

To generate ODM code for artifacts that are not entity
schemas, it is necessary to provide additional information to
that inferred in our schema extraction process, e.g. the types
of indexes to be added (if any) and the type of validation
to be applied. We have therefore defined a textual notation
that allows developers to create configuration files with such
information. This configuration file is an optional input to our
m2t transformations for Mongoose and Morphia, in addition
to an EntityDifferentiationmodel. In a previous version of our
work, this notation was defined for Mongoose as a simple
domain-specific language (DSL) [14]. This DSL was built
by using Xtext, a well-know textual DSL definition work-
bench [33]. Generating artifacts for more ODMs entails to
change this DSL, as configuration data is different for each of
them. Tackling the changes for Morphia, we considered that,
in this case, a YAML notation could be more appropriate to
support the evolution to new ODMs.
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FIGURE 10. Mongoose configuration file example for the running database.

YAML is a widely-used data serialization language [13]
which has some interesting features: (i) it is easy to read,
as it follows closely the patterns used to write formatted
ASCII text, (ii) it is expressive, in the sense that it is
equivalent to JSON, and includes data structures similar to
those in popular programming languages such as Python,
Ruby, or Javascript, (iii) it is programming-language agnos-
tic, and parsing libraries are available for most programming
languages. In our case, to support the customization of the
code generation to more than one mapper, we decided to use
YAML instead of a full-blown DSL mainly because of two
reasons:
• The set of options to customize the m2m transforma-
tion is mostly a collection of key-value pairs, supported
natively by YAML, so there is no need of defining a
specialized grammar and parser.

• The set of options may be different for each ODM.
Also, the mapper used depends on the value of the
mapper property of the DSL text. This is difficult to
achieve, as grammars are fixed beforehand in order to
generate parsers. We may have ended up with either a
DSL with all the possible configuration keywords for
all supported mappers (and that we would have had to
change whenever we wanted to support a new mapper),
or different DSLs, one for each supported mapper. In the
case of YAML, the standard interpreter can walk and
recognize all the configuration options (option-value
pairs).

Using YAML as an additional input to the m2t transforma-
tion is feasible because the transformation itself is written in
a general-purpose language (Xtend [28]). Had we used m2t
transformation languages (e.g. Acceleo [27]), the choice of
YAML would have not been possible, because transforma-
tions can only take models as input.

Figure 10 shows an example of YAML configuration file
for Mongoose. The file is required to have the following
structure: First of all, a mapper property identifies the ODM
being configured. Next, an entities block encloses the
configuration for the entities the user wants to define options
for. For each of these entities, an entity block with the options
is defined, which is headed by the entity name. In turn, an
entity block contains one or more option blocks that consist

of a set of parameter/value pairs. Next, we indicate some of
the parameters for the considered options.
Indexes are configured by providing the following infor-

mation: the set of attributes to be indexed, the type of
index (ascending or descending), and some Boolean optional
parameters to indicate whether the index has that property:
unique, sparse, background, or weight, among oth-
ers. No index is created by default.
Validators require to indicate the name of the property

to be validated, and a set of parameters that depend on the
validation type, for example, min and max to establish a
numeric values range, minLength and maxLength to
establish String length, enumValues to declare a enu-
meration of possible values, match to define a pattern to be
matched by property values, etc. Also, a message may be
provided to be shown if the validation fails. No validation is
performed on a property if the corresponding option is not
defined.

In Mongoose, the validation is defined at the schema level,
and some frequently used validators are already built-in. The
required and unique validators can be applied to any property.
As explained in section V, we have used required to spec-
ify what properties are common to all the entity variations.
The unique validator is used to express that all the docu-
ments of a collection must have a different value for a given
field.

The example in Figure 10 shows the configuration of two
entities for the Mongoose mapper: Album and Review.
Three options are also configured for Album: a unique sparse
index is defined for the name and releaseYear properties,
which is created in ascending and descending order, respec-
tively, and two validators are defined for these two proper-
ties to check that those fields hold a correct value. Finally,
enumeration and range validators are defined for the property
rank and starts of the Review entity.

The Mongoose code generated for the options defined in
Figure 10 is shown in Figure 11. This figure shows how
built-in validators are introduced on the definition of certain
properties, and statements to create indexes are separated
from the schema definition. Note that in Mongoose there are
lazy references, since all the references must explicitly be
resolved by developers.
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FIGURE 11. Excerpt of code generated for Mongoose using the configuration file example.

FIGURE 12. Excerpt of code generated for Morphia for the Album entity using the configuration file example.

FIGURE 13. Excerpt of code generated for Morphia for the embedded Review entity using the configuration file example.

In the case of Morphia, Figures 12 and 13 show the gener-
ated code for a configuration file similar to that in Figure 10.
The defined options will be translated into annotations

provided by the mongodb and javax libraries. Indexes
are translated to @Indexes annotations appearing before
the class header. This annotation has several parameters: the
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FIGURE 14. Validation process workflow.

name and type of the properties being indexed, and optional
parameters providing information on the index type. In Fig-
ure 12 the index defined for the name and releaseYear
properties in the Album entity can be observed. For each
validation rule defined, some annotations are added to the
header of the property definition. For example, in Figure 12,
@Size on the name field or @Min and @Max on the
releaseYear field. Finally, in Figure 13, a @Pattern
tag may be seen to assure that the rank field holds allowed
values.

VIII. VALIDATION PROCESS
This Section presents the validation process designed to test
the approach described in this paper to generate ODM code.
In particular, we have used the code generated from a NoSQL
schemamodel to check the database consistency by executing
several test suites. Figure 14 shows the workflow of our
validation process.

We used a fragment of the Stackoverflow dataset2 to
populate a MongoDB database on which the validation
will be performed. This fragment is composed of the fol-
lowing collections: Users, Posts, Postlinks, Tags,
Votes, Comments, and Badges. For each collection,
around 15 million objects were inserted. Figure 15 shows the
NoSQL schema inferred by applying our schema extraction
process [6].

Once the schema model for the Stackoverflow dataset
is extracted, we generated the EntityDifferentiation model.
From that model the schemas for Mongoose and Morphia
were generated. Indexes and built-in validators defined in
Section VII have not been considered for testing purposes.
Figures 16 and 17 show the Mongoose and Morphia schema
code, respectively, generated for the Comment entity. Finally,
we have applied several test cases.

2https://archive.org/details/stackexchange.

FIGURE 15. An excerpt of the StackOverflow schema.
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FIGURE 16. StackOverflow Comment schema code generated for
Mongoose.

Three tests have been designed according to three require-
ments to be satisfied by the generated schemas: (i) they should
allow to read each document stored into the database and
create the corresponding object in memory, (ii) they should
allow to write each object previously read into a database,
and (iii) integrity should be preserved when the database is
updated, that is, properties can only be updated with values
of the types defined in the schema.

To validate the first requirement, we have performed a
test that reads all the documents of the database by checking
that there is no compatibility errors. The second requirement
has been validated by reading all the database documents
and performing a copy on another database; then the pre-
vious test is applied on the new database. The third test
consists on manipulating objects mapped from the database
and changing certain attributes of this objects to values of
different types to those defined on the schema, such as set-
ting String values on a UserId field, which only admits
Numbers.

All these tests were successfully validated. The three tests
are available on the GitHub public repository.3 They are part
of an Eclipse project, and code generated for several datasets
is also included.

3https://github.com/catedrasaes-umu/NoSQLDataEngineering/blob/
master/projects/es.um.nosql.s13e.entitydifferentiation.examples/test/es/um/
nosql/s13e/test/morphia/StackoverflowTest.java.

IX. RELATED WORK
As indicated in the report presented in [2], the successful
adoption of NoSQL database systems demands the existence
of database tools with similar functionality to those offered
for relational databases. Automatic code generation from
schemas is one of the functionalities considered in that report.
So far, the attention paid to this topic has been very limited in
tools and published works.

As far as we know, the work presented here is the first
published approach for automating the use ofODMs for exist-
ing databases. Recently, the Hackolade tool [34] has included
functionality to generate code for the Mongoose mapper.
When analyzing this tool we have found some significant
differences with our approach:
• Our schema inference process extracts the entity varia-
tions which are managed in the code generation process.
Instead, in Hackolade,Mongoose code is generated from
a schema without variations, created by the database
designer as part of a forward engineering process.

• Our approach generates a technology-independent inter-
mediate metamodel, and we have generated code for
Mongoose and Morphia mappers. In Hackolade, code is
only generated for the Mongoose mapper.

• We have defined a union type to address fields with the
same name but different type. In Hackolade, mixed types
are not considered as union types.

• In addition to schemas and validators, other artifacts
(indexes and reference management) are generated in
our approach.

A few MDE-based approaches for NoSQL databases
have been proposed [35]–[37], which have in common that
the generation process starts from a UML class diagram.
An MDE approach to generate code aimed to manipulate
graph databases is presented in [35]. A two-steps model
transformation chain is defined to generate code from a
conceptual schema expressed as a UML class diagram and
OCL statements. In the first step, the conceptual schema
is transformed into a model that conforms to a metamodel
that represents graph databases in a generic way. Then,
a m2t transformation generates code for two technologies that

FIGURE 17. An excerpt of StackOverflow Comment schema code generated for Morphia.
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provide uniform access to graph databases such as Blueprints
and Gremlin. Unlike our work, this approach is based on
a forward engineering strategy, where a designer creates
a conceptual schema, and mapper code is not generated.
In [36] and [37] a proposal to generate NoSQL schema
models from UML class diagrams is presented, but no code
is generated, only mappings are addressed.

X. CONCLUSIONS AND FUTURE WORK
The schemaless feature provides agility and flexibility
to developers of NoSQL applications. However, model-
ing tools are also needed for NoSQL databases, as noted
in [2], [38], [39]. Three capabilities are remarked for NoSQL
data modeling tools in [2]: (i) generating code, (ii) model
visualization, and (iii) metadata management. In our group,
we first defined a NoSQL schema inference strategy [6], and
then addressed the schema visualization [21]. Here, we have
explored the code generation for Object-Document mapping
tools. In our knowledge, it is the first published work for
automating the use of NoSQL mappers.

We have applied MDE techniques to define a technology-
independent solution, consisting of a two-step model trans-
formation chain. As a proof of concept, we have generated
code for two ODM tools: Mongoose and Morphia. Mappers
for other NoSQL document systems could also be considered.
In addition to schemas, we generated other artifacts such
as indexes and validators. The approach shows the useful-
ness of a high level NoSQL schema metamodel, and how
intermediate models help to simplify a m2t transformation.
Generating code for other mappers would only require to
implement a new m2t transformation, but the m2m trans-
formation is completely reusable. In our approach, we have
addressed the existence of entity variations and relationships
(aggregation and reference) in the inferred database schemas.
To represent properties with the same name and different
type, we have created a union type in Mongoose and defined
a strategy code pattern that allows to implement unions in
Morphia.

A set of parameters must be provided to the m2t trans-
formation in order to generate artifacts. In a previous ver-
sion of our work, we defined a textual DSL to specify
these parameters. This DSL was created with a metamodel-
based workbench that automatically generates the injector
that transforms text into a model that conforms to the DSL
metamodel. However, in this work we have created this DSL
without using MDE technology. Bearing in mind the need
to extend the DSL for new mappers, we have created the
notation using the YAML language. We have considered that
notations defined with YAML can be extended more easily
(in this case) than metamodel-based DSLs.

In our work, we created a utility that automates the use of
ODM tools, and also identified usage scenarios of our solu-
tion. In all these scenarios, a document database exists, and
mappers are useful to build new applications, or to migrate
the existing database or code.

With regard to futurework, we plan to consider some paths:
• Study adding more mappers for MongoDB and other
database systems.

• Instead of using just the inferred schema, the DSL could
include directives to adapt the objects of the database
to the application. For instance, if the application is
not interested in an attribute of an entity, ‘‘pre-load’’
methods that remove that attribute could be generated
automatically. The application would be then lazily
migrating the database when saving objects without that
attribute.

• Similarly to the previous point, scripts or map-reduce
transformations could be generated to migrate the
database off-line.

• Finally, a ‘‘strict’’ mode could be implemented that pre-
vents the application on generating new variations. Even
with the union mechanism, the application could create
combinations of attributes not previously present in the
database. The strict mode would prevent it by automat-
ically generating ‘‘pre-save’’ methods that prevent this
behavior.
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