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ABSTRACT Atomic norm minimization (ANM) has recently become a powerful tool for gridless com-
pressed sensing (CS). In this paper, the issue of joint estimation of direction-of-departure (DOD) and
direction-of-arrival (DOA) for bistatic multiple-input-multiple-output (MIMO) radar is investigated via two
dimensional (2D) ANM. However, a major problem of the primal 2D-ANM is that the direct conversion
of 2D-ANM into its semi-definite programming (SDP) problem is not strictly established theoretically and
is just an approximation, which results in a decline in estimation performance. Besides, the primal 2D-ANM
is limited to a single measurement vector (SMV) model. We propose a duality-based 2D-ANM algorithm for
grid-free DOD and DOA estimation in MIMO radar, in which the 2D-ANM problem is effectively solved
over its optimal variables in the dual-domain with SDP. Thus it retains the benefits of 2D-ANM and holds
in theory. Also, it is applicable for SMV as well as multiple measurement vectors (MMV) models and
appropriate for non-uniform linear arrays. The simulation results show that the proposed algorithm avoids
the grid mismatch effect in DOD and DOA estimation in contrast to the conventional CS methods, and is
robust to target correlation and the single-snapshot environment in comparison with the traditional subspace
methods.

INDEX TERMS Bistatic MIMO radar, DOD and DOA estimation, gridless compressed sensing,
two-dimensional atomic norm minimization (2D-ANM), duality.

I. INTRODUCTION
Multiple-input multiple-output (MIMO) radar systems has
potential advantages over conventional phased-array radars
by transmitting multiple linearly independent waveforms and
receiving signals by multiple antennas [1], which has greatly
enhanced the direction-finding ability and target localiza-
tion accuracy [2]–[4]. Bistatic MIMO radar with respectively
closely spaced transmitters and receivers, can achieve coher-
ent processing gain and high-resolution spatial spectral esti-
mates [5]. Specifically, joint direction-of-departure (DOD)
and direction-of-arrival (DOA) estimation in bistatic MIMO
radar has become a key issue in radar signal processing and
attracted lots of attention. So far, various approaches have
been put forward in the field. In [6], a two dimensional (2D)
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Capon method has been proposed to obtain the DOD and
DOA estimation. In [7], a 2D multiple signal classifica-
tion (2D-MUSIC) algorithm and its reduced-dimension ver-
sion have been deduced for DOD and DOA estimation.
In [8], [9], the 2D estimating signal parameter via rotational
invariance techniques (2D-ESPRIT) has been introduced to
estimate DOD and DOA of targets. In [10], a 2D expectation-
maximization (2D-EM)maximum likelihood (ML) algorithm
has been used for direction finding in bistatic MIMO radar.
Besides, several search-free 2D angle estimation methods
have been developed [11]–[13]. Despite the fact that these
methods have improved the performance of DOD and DOA
estimation in bistatic MIMO radar, they depend on sample
covariancematrices of the observed data.When the snapshots
are not sufficient relative to the number of antennas, their
estimation accuracy will degrade since the sample covariance
matrices are no longer the ML estimator of their statistical
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covariancematrices. In addition, the subspace-basedmethods
cannot work with a single snapshot, and fail to be applied to
estimate the angles of coherent targets.

Recently, compressed sensing (CS) theory [14], [15] has
drawn tremendous attention in many applications. According
to the idea of CS, a spare signal can be recovered from much
fewer samples than required by Nyquist sampling theory.
The application of CS to MIMO radar has been explored
in [16]–[19], mainly due to the fact that natural targets admit
a sparse or an approximate sparse representation in a cer-
tain spatial domain. In [20], the conventional least absolute
shrinkage and selection operator (LASSO) method [21] has
been extended to tackle joint sparse recovery for 2D param-
eters of MIMO radar. However, such sparse signal recovery-
based algorithms require to discretize the range of interest
into a grid of spatial angles, and assume that the true angles
of target should fall on the predefined grid. In some practical
situations in bistatic MIMO radar, no matter how fine the grid
is, the true DOD and DOA may not necessarily lie on the
exact grid. The off-grid target would cause a grid-mismatch
effect [22], which not only violates the sparsity conditions but
also deteriorates the estimation performance.

To overcome the grid-mismatch effect, some approaches
have been put forward recently. One is off-grid CS [23]–[25]
methods, in which the range of angle is first discretized
into a grid, then the first-order Taylor expression is used
to gradually approaching the true angle of off-the-grid tar-
get. Currently, these methods are only available for one
dimensional (1D) estimation. The other is grid-free CS tech-
nologies based on atomic norm minimization (ANM) [26].
ANM methods can recover the sparse signal in continu-
ous domain without grid discretization, and has become
a powerful tool for gridless CS. In [27], 1D-ANM has
been applied to line spectral estimation with a single mea-
surement vector (SMV). In [28], 1D-ANM has been used
in gridless DOA estimation with gain/phase uncertainties.
In [29], the line spectrum is estimated via 1D-ANM from
complete and incomplete data. In [30], the 1D-ANM with
multiple measurement vectors (MMV) has been explored.
In [31], 2D grid-free compressive beamforming has been
investigated, and a 2D-ANM method has been proposed to
estimate the elevation and azimuth of the acoustic sources.
However, the direct conversion of the primal 2D-ANM into
its semi-definite programming (SDP) problem is not strictly
established theoretically and is just an approximation [31].
Besides, the primal 2D-ANM is limited to a SMV model.
These approximation and limitations will result in a decline
in estimation performance.

To solve the above problem, we propose a novel duality-
based 2D-ANM algorithm (we name it 2D-ANM-duality) in
this paper, and apply it to the issue of grid-free DOD and
DOA estimation in bistatic MIMO radar. In the proposed
algorithm, we convert the primal 2D-ANM into its 2D dual
problem. Thus, the problem can be effectively solved over
its optimal variables in the dual domain with SDP. We derive
the expression of 2D Language dual function, give its optimal

solution, and construct a 2D spatial spectral function based on
optimal dual variables. The proposed algorithm can retain the
benefits of 2D-ANM and holds theoretically. In addition, it is
applicable for SMV as well as MMVmodels, and appropriate
for non-uniform linear array (non-ULA) case. In contrast to
the conventional CS methods such as 2D-LASSO, the pro-
posed algorithm can avoid the grid mismatch effect in DOD
and DOA estimation. Also, compared with the traditional
subspace methods such as 2D-MUSIC or 2D-ESPRIT, it is
robust to target correlation and single-snapshot environment.

The remaining of this paper is organized as follows.
In section II, the signal model for DOD and DOA estima-
tion in bistatic MIMO radar is illustrated. In section III,
the 2D ANM problem is formulated. In section IV, the primal
2D-ANM method for DOD and DOA estimation is intro-
duced. In section V, the 2D-ANM-duality algorithm for DOD
and DOA estimation is proposed. In section VI, the proposed
algorithm in non-ULAs and the computational complexity are
discussed. Section VII presents the numerical simulations,
and Section VIII draws the conclusion of this paper.
Notations: Vectors and matrices are denoted by lowercase

boldface and uppercase boldface, respectively. IN denotes the
N × N identity matrix. (·)∗, (·)T and (·)H represent the con-
jugate, transpose and conjugate transpose of matrix respec-
tively.⊗ denotes the Kronecker product.⊕ is the Khatri-Rao
product. The notation tr(·) denotes the trace of a matrix.
diag(x) is a diagonal matrix with vector x being its diagonal
and diag(A, n) returns a column vector of the elements on the
n-th diagonal of A. vec(·) means the vectorization operator.
Ivec(·)N×M means rearranging the data into anN×M matrix.
‖·‖2 represents the `2 norm. ‖·‖∞ represents the infinity
norm. sum(·) returns the sum of the elements. inf (·) denotes
the infimum.

II. SIGNAL MODEL
In this section, we consider a bistatic MIMO radar system
with the following parameters:
• P narrow-band point targets illuminated from the far
field.

• M transmitting and N receiving antennas consisting of
uniform linear arrays (ULA).

• M orthogonal transmitting pulse waveforms, each con-
sisting of K codes for each pulse.

• Swerling II case in which radar cross section (RCS)
is varying independently from pulse to pulse and the
coherent processing interval (CPI) consists of L pulses.

The bistatic MIMO radar configuration is shown in Fig.1.
dt and dr denote the elementary spacings of the transmitting
and receiving antennas of ULA, respectively, dt ≤ λ/2 and
dr ≤ λ/2, where λ is the wavelength of the transmitting
waveforms. ϕi and θi for i = 1, 2, . . . ,P denote the DOD
and DOA of the i-th target, respectively.
During the l-th pulse, l = 1, 2, . . . ,L, the return signals at

receiving array can be written as an N × K matrix

Yl = A(θ )diag(sl)B(ϕ)TW+ Nl (1)
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FIGURE 1. Bistatic MIMO radar configuration.

where A(θ ) = [a(θ1), a(θ2), . . . , a(θP)] ∈ CN×P and B(ϕ) =
[b(ϕ1),b(ϕ2), . . . ,b(ϕP)] ∈ CM×P denote the receiv-
ing and transmitting steering matrices, respectively, where
a(θi) = [1, e−j

2πdr sin(θi)
λ , · · · , e−j(N−1)

2πdr sin(θi)
λ ]T and b(ϕi) =

[1, e−j
2πdt sin(ϕi)

λ , · · · , e−j(M−1)
2πdt sin(ϕi)

λ ]T . sl = [sl1, sl2, . . . ,
slP]T ∈ CP×1 denotes the target signal vector during the
l-th pulse, where sli is the complex amplitudes having time-
varying characteristics during different pulses, and is pro-
portional to the RCS of the i-th target. W = [w1,w2,

. . . ,wM ]T ∈ CM×K denotes the transmitting baseband coded
waveform matrix, wm ∈ CK×1 belongs to the m-th trans-
mitting antenna. The M orthogonal transmitting waveforms
satisfy WWH

= IM . Finally, Nl ∈ CN×K denotes the noise
matrix during the l-th pulse, which is temporally and spatially
white Gaussian and uncorrelated with the targets.

ApplyingWH as the matched filter matrix, we can obtain

Ŷl = YlWH
= A(θ )diag(sl)B(ϕ)T + NlWH (2)

where Ŷl ∈ CN×M . By vectorizing the matrix Ŷl , we can
obtain the observed vector as

xl = vec(Ŷl) = (B(ϕ)⊕ A(θ )) sl + nl (3)

where xl ∈ CMN×1, B(ϕ)⊕ A(θ ) = [b(ϕ1)⊗ a(θ1),b(ϕ2)⊗
a(θ2), . . . ,b(ϕP)⊗ a(θP)], and nl = vec(NlWH ).
After collecting the data of L pulses, we can represent the

observed signal model as

X = (B(ϕ)⊕ A(θ ))S+ N (4)

where X = [x1, x2, . . . , xL], S = [s1, s2, . . . , sL] and N =
[n1,n2, . . . ,nL].

III. 2D ATOMIC NORM MINIMIZATION PROBLEM
Motivated by the concept of atomic norm [32], we define the
2D atomic set of DOD and DOA as

A , {b(ϕ)⊗ a(θ ) : ϕ ∈ [−π/2, π/2), θ ∈ [−π/2, π/2)}

(5)

Then the 2D atomic l0 norm of the observed vector xl in
(3) can be denoted as

‖xl‖A,0 ,

inf {k : xl =
k∑
i=1

hlib(ϕi)⊗ a(θi),b(ϕi)⊗ a(θi) ∈ A} (6)

Since the solution of l0 norm is a NP-hard problem and
computationally intractable, we exploit its convex relaxation,
and express the 2D atomic norm of xl as

‖xl‖A ,

inf {
∑
i

|hli| : xl =
∑
i

hlib(ϕi)⊗ a(θi),b(ϕi)⊗ a(θi) ∈ A}

(7)

Thus, the grid-free DOD and DOA estimation becomes a 2D
atomic norm minimization problem. Its objective function is
to minimize ‖xl‖A, i.e.,

min
hl ,nl
‖xl‖A

s.t. xl = Uhl + nl
‖nl‖2 ≤ ε (8)

where Ui ∈ A (i = 1, 2, · · · ) denotes the i-th column of U,
and hl can be regarded as a sparse vector which satisfies
the requirement for an accurate recovery with CS methods.
ε denotes the noise bound.

IV. PRIMAL 2D-ANM FOR DOD AND DOA ESTIMATION
In this section, we consider applying the primal 2D-ANM
method [31] to DOA and DOD estimation. This method is
limited to SMV model, so the number of snapshots (pulses)
is L = 1 for the observed matrix X in (4).
According to [31], (8) can be approximately casted to a

semi-definite programming (SDP) problem to obtain a noise-
free observation X̂, i.e.,

min
u,X̂,λ

1
2MN

Tr(T (u))+
1
2
λ

s.t.

[
T (u) X̂
X̂H λ

]
≥ 0, ‖X̂− X‖2 ≤ ε (9)

whereu = [u0,0, u0,1, . . . , u0,N−1, u1,−(N−1), u1,−(N−2), . . . ,
u1,(N−1), uM−1,−(N−1), uM−1,−(N−2), . . . , uM−1,(N−1)]∈CNu ,
where Nu = (M − 1)(2N − 1) + N , T (u) maps u into a
Hermitian, twofold block Toeplitz matrix

T (u) =


T0 T1 . . . TM−1
TH1 T0 . . . TM−2
...

...
. . .

...

THM−1 THM−2 . . . T0

 (10)

where Ti for i = 0, 1, . . . ,M − 1 is expressed as

Ti =


ui,0 ui,−1 . . . ui,−(N−1)
ui,1 ui,0 . . . ui,−(N−2)
...

...
. . .

...

ui,N−1 ui,N−2 . . . ui,0

 (11)

After obtaining the optimal noise-free estimate X̃ of X̂,
we combine (2) with (3) to obtain

Ivec(X̃)N×M = A(θ̃ )diag(s)B(ϕ̃)T (12)
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where θ̃ and ϕ̃ denote the estimates of θ and ϕ. Finally,
the estimation problem of DOD and DOA can be solved
with the matrix enhancement and matrix pencil (MEMP)
method [33].

However, we note that only if T (ũ) is able to be decom-
posed into the form of

T (ũ) = 969H (13)

where9 = [b(ϕ̃1)⊗a(θ̃1),b(ϕ̃2)⊗a(θ̃2), . . . ,b(ϕ̃P)⊗a(θ̃P)],
6 = diag([s̃l1, s̃l2, . . . , s̃lP]T ), then (8) can be casted to (9)
correctly. In fact, (13) does not always hold for twofold block
Toeplitz matrices [34], thus, (9) is just an approximation
of (8), which will result a decline in estimation accuracy.

To improve the performance of the prime 2D-ANM,
we address to solving the problem of (8) in its dual domain,
and put forward to a duality-based 2D-ANM algorithm for
DOD and DOA estimation, which can avoid the theoretical
approximation and the restriction of SMV model.

V. DUALITY-BASED 2D-ANM FOR DOD
AND DOA ESTIMATION
A. THE DUAL PROBLEM
To obtain the dual problem of (8), we construct the
Lagrangian formulation by augmenting the objective function
with a weighted sum of the constraints

L(xl,αl, βl) = ‖xl‖A + Re[αHl (xl − Uhl − nl)]

+βl(nHl nl − ε
2) (14)

where αl ∈ CMN and βl ∈ R1+ are Lagrange multipliers
(or the dual variables) related to the equality and inequality
constraints, respectively. The dual function f (αl, βl) is the
infimum of the Lagrangian formulation L(xl,αl, βl) over the
optimization variable hl and nl , i.e.

f (αl, βl) = inf
hl ,nl

L(xl,αl, βl)

= inf
hl ,nl

{
Re[αHl xl − αHl nl]+ βl(n

H
l nl − ε

2)

+‖xl‖A − Re[αHl Uhl]
}

(15)

First, minimizing over the unknown noise vector
nl ∈ CMN , we can obtain

∂f (αl, βl)
∂nl

= −αl + 2βlnl = 0 (16)

Then the optimal noise vector of nl is n0 = αl/(2βl). The
dual function evaluated at n0 is

f (αl, βl)|n0 = Re[αHl xl]−
αHl αl

2βl
+ βl(

αHl αl

4β2l
− ε2)

+ inf
hl
(‖xl‖A − Re[αHl Uhl]) (17)

Next, maximizing the dual function (17) evaluated at the
dual variable βl , we have

∂f (αl, βl)
∂βl

=
αHl αl

4β2l
− ε2 = 0 (18)

Then the optimal value of the dual variable βl is β0 =
‖αl‖2/(2ε).

Thus, the dual function at the optimal values n0 and β0
becomes

f (αl)|n0,β0 = Re[αHl xl]− ε‖αl‖2

+ inf
hl

(
‖xl‖A − Re[αHl Uhl]

)
(19)

Finally, we formulate the dual problem of (8) by maximiz-
ing the dual function f (αl)|n0,β0 over the dual variable αl .
Let hli denote the i-th element of hl , we note that

for each hli, Re[(αHl U)ihli] = Re[(UHαl)Hi hli] =

|(UHαl)i||hli| cos(φi), where φi is the angle between hli and
(UHαl)i. Then

|hli| − Re[(UHαl)Hi hli] = |hli|[1− |(U
Hαl)i| cos(φi)]

≥ |hli|[1− |(UHαl)i|] (20)

The lower bound (20) is nonnegative if |(UHαl)i| ≤ 1 and
the infimum is zero. Otherwise, if |(UHαl)i| > 1, the infi-
mum is attained at −∞. Therefore, the dual function in (19)
becomes

f (αl) =

{
Re[αHl xl]− ε‖αl‖2 , ‖UHαl‖∞ ≤ 1
−∞ otherwise

(21)

According (20), we can also have

|(UHαl)i| = 1, hli 6= 0

|(UHαl)i| < 1, hli = 0 (22)

Thus, maximizing (21) over αl constitutes the following
dual problem:

max
αl∈CMN

Re[αHl xl]− ε‖αl‖2

s.t. ‖UHαl‖∞ ≤ 1 (23)

B. CONVERTING THE DUAL PROBLEM INTO
SEMI-DEFINITE PROGRAMMING
The dual problem in (23) is a semi-infinite programming
problem with a finite number of optimization variables
αl ∈ CMN , and infinitely many inequality constraints, which
is still intractable.

Fortunately, the inequality constraint in (23) implies that
the dual polynomial has amplitude uniformly bounded for all
Ui ∈ A, then the constraint in (23) can be replaced with
finite dimensional linear matrix inequalities. Thus, the dual
problem could be solved by semi-definite programming
(SDP) [35].

According to (23), we obtain

UH
i αlα

H
l Ui ≤ 1 (24)

Therefore, we can construct a Hermitian matrix Dl ∈

CMN×MN , which satisfies that for any Ui ∈ A, UH
i DlUi = 1.
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According to the Schur complement, we have[
D αl

αHl 1

]
≥ 0 (25)

Then (23) is transformed to

max
αl∈CMN ,Dl

Re[αHl xl]− ε‖αl‖2

s.t.

[
Dl αl

αHl 1

]
≥ 0 (26)

Similar to (24), when considering the observed matrixX in
(4) with L snapshots, we can also obtain

UH
i ααHUi ≤ L = UH

i DUi (27)

where α = [α1,α2, · · · ,αL], D is a newly constructed
Hermitian matrix. The details of constructing the matrix D
is elaborated in Section V-C.

Then (26) can be modified as

max
α∈CMN×L ,D

Re[Tr(αHX)]− ε‖α‖2,1

s.t.

[
D α

αH IL

]
≥ 0 (28)

where ‖α‖2,1 denotes the sum of the `2 norms of the columns
of the matrix.

C. CONSTRUCTING THE MATRIX D
The details of constructing the matrix D are as follows:
First, divide the Hermitian matrix D into anM ×M block

matrix, each block is an N ×N matrix. So, D is expressed as

D =


D0,0 D0,1 · · · D0,M−1

DH
0,1 D1,1 · · · D1,M−1

...
...

. . .
...

DH
0,M−1 DH

1,M−1 · · · DM−1,M−1

 (29)

Then, we denote

Tj =
M−1−j∑
i=0

Di,i+j, j = 0, 1, . . . ,M − 1 (30)

If T satisfies that

sum(diag(T0, 0)) = L

sum(diag(T0, k)) = 0, k = 1, . . . , (N − 1)

sum(diag(Tj, k)) = 0, j = 1, . . . , (M − 1)

k = −(N − 1), . . . ,−1, 0, 1, . . . , (N−1) (31)

Then, for anyUi, we will haveUH
i DUi = L. The proof can

be found in the Appendix.

D. THE FINAL OBJECTIVE FUNCTION
Considering the constraint of the matrixD, the final objective
function becomes

max
α∈CMN×L ,D

Re[Tr(αHX)]− ε‖α‖2,1

s.t.
[
D α

αH IL

]
≥ 0

D is Hermitian

sum(diag(T0, 0)) = L

sum(diag(T0, k)) = 0, k = 1, . . . , (N − 1)

sum(diag(Tj, k)) = 0, j = 1, . . . , (M − 1)

k = −(N − 1), . . . ,

−1, 0, 1, . . . , (N − 1) (32)

Thus, (32) can be solved by off-the-shelf solvers such as
SDPT3 [36].

E. ESTIMATING DOD AND DOA FOR MIMO RADAR
After obtaining the optimal estimate α̃ of α in (32), we define
a spatial spectral function according to (22), which is
written as

f (ϕ, θ) , [b(ϕ)⊗ a(θ )]H α̃α̃H [b(ϕ)⊗ a(θ )] (33)

where ϕ ∈ [−π/2, π/2) and θ ∈ [−π/2, π/2). Then,
the locations of the P largest peaks of f (ϕ, θ) represent the
estimated DOD and DOA for the P targets.

VI. DISCUSSION
A. NON-ULA CASE
The proposed 2D-ANM-duality algorithm is also applicable
to the non-ULA case. We see that if the elementary positions
of non-ULA are the integer multiple of unit distance (with
the first element being a reference one), then it can be equiv-
alent to a ULA whose elementary spacing is unit distance,
with some array elements being inactive. Then we can add
some constraints to the dual parameter matrix α. That is,
αinactive (αinactive ∈ α) matched with the inactive array
elements can be set to zero. Thus, (28) can be rewritten as

max
α∈CMN×L ,D

Re[Tr(αHX)]− ε‖α‖2,1

s.t.
[
D α

αH IL

]
≥ 0

αinactive = 0 (34)

B. COMPLEXITY COMPARISON
The computational complexity of the proposed 2D-ANM-
duality algorithm can be analyzed and compared with five
previously proposed DOD and DOA estimation methods
in bistatic MIMO radar, including the 2D-MUSIC [7],
2D-ESPRIT [8], 2D-EM [10], 2D-LASSO [20] and primal
2D-ANM [31]. For the 2D-MUSIC, the computational com-
plexity isO{LM2N 2

+M3N 3
+UmVm(MN −P)(MN + 1)},

where Um and Vm are the step sizes of DOD and DOA
peak searching, respectively. For the 2D-ESPRIT, it requires
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O{LM2N 2
+M3N 3

+2P2(M −1)N +2P2(N −1)M +6P3}.
For the 2D-EM, the complexity is O{JeLMN + JeP(MN +
2L(MN )2 + Ue(MN )3 + Ve(MN )3)}, where Je is the num-
ber of iterations, Ue and Ve denote the step sizes of DOD
and DOA peak searching, respectively. For the 2D-LASSO,
the complexity is O{LMN (UlVl)2 + L(UlVl)3} [39]–[41],
where Ul and Vl respectively denote the numbers of DOD
and DOA searching grids. For the 2D-ANM, the complexity
is O{(MN + 1)3Ja + M2N 2

+ M3N 3
} [33]–[42], where Ja

denotes the number of iterations. For the proposed 2D-ANM-
Duality, the complexity is O{(MN + L)3Jd +UdVdL(MN +
1)}, where Jd is the number of iterations, and Ud and Vd
respectively denote the step sizes of DOD and DOA peak
searching using the spatial spectral function in (33).

VII. SIMULATION RESULTS
This section shows the simulation results to evaluate the
performance of the proposed 2D-ANM-duality algorithm for
DOD and DOA estimation in bistatic MIMO radar. The
calculation of Cramér-Rao bound (CRB) can be referenced
in [37], [38]. The root mean square error (RMSE) is exam-
ined at Q = 200 Monte Carlo trials, which is defined as

RMSE =
1
P

P∑
i=1

√√√√√ 1
Q

Q∑
j=1

[(ϕ̃i,j − ϕi)2 + (θ̃i,j − θi)2] (35)

A. EXAMPLE 1
In this example, we validate the effectiveness of the proposed
2D-ANM-duality algorithm for DOD and DOA estimation.
Assume that the numbers of the transmitting and receiving
antennas areM = 10 and N = 10. Two ULAs are used as the
transmitting and receiving arrays, with elementary spacings
being dt = dr = λ/2, respectively. There are P = 3 uncor-
related far-field targets located at (ϕ, θ) = (−10◦,−20◦),
(10◦, 0◦), (30◦, 20◦). The SNR is 5dB. Fig. 2 shows the sim-
ulation results of the proposed algorithm under the condition
of single snapshot (L = 1) and multiple snapshots (L = 20),
respectively.

It indicates from Fig. 2 that the proposed algorithm can
effectively estimate the three targets with high accuracy.
Unlike the primal 2D-ANMmethod which is limited to SMV
model with L = 1, the proposed method is also applicable
for MMV model with L > 1. Thus, the multiple-snapshot
data can be exploited and the estimation performance can be
improved.

B. EXAMPLE 2
In this example, we further explore the capability of the
proposed 2D-ANM-duality algorithm in estimating DOD and
DOA with non-ULAs. Assume that M = 10 and N = 10.
The positions of two non-ULAs as transmitting and receiv-
ing arrays are denoted as [0, dt , 2dt , 4dt , 6dt , 7dt , 8dt , 10dt ,
12dt , 13dt ] and [0, 2dr , 3dr , 4dr , 5dr , 7dr , 9dr , 10dr , 11dr ,
13dr ], respectively. Other simulation conditions are the same
with VII-A. Based on the optimization function for the

FIGURE 2. Simulation results of estimating DOD and DOA using the
proposed algorithm with ULAs. (a) Single snapshot. (b) Multiple
snapshots.

FIGURE 3. Simulation results of estimating DOD and DOA using the
proposed algorithm with Non-ULAs. (a) Single snapshot. (b) Multiple
snapshots.

non-ULA case in (34), we can obtain the simulation results
of DOD and DOA estimation, as shown in Fig. 3.

From Fig. 3 we can see that the proposed algorithm can
effectively estimate DOD and DOA of the three targets with
non-ULAs. Unlike the primal 2D-ANM with MEMP, our
duality-based 2D-ANM algorithm has the ability to work in
the non-ULA case with some elementary spacings larger than
half-wavelength.

C. EXAMPLE 3
In this example, we investigate the RMSE performance of
the proposed 2D-ANM-duality algorithm for DOD and DOA
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estimation in single-snapshot environment, i.e., L = 1, and
compare our algorithm with the 2D-MUSIC, 2D-ESPRIT,
2D-EM, 2D-LASSO and primal 2D-ANMmethods. Assume
that M = 10 and N = 10, with ULA elementary spacings
being dt = dr = λ/2. There are P = 3 uncorrelated far-
field targets located at (ϕ, θ) = (−10◦,−20◦), (10◦, 0◦),
(30◦, 20◦). For the 2D-LASSO, assume that the uniform
searching dictionaries of DOD and DOA are [−30◦ : 3◦ :
50◦] and [−40◦ : 3◦ : 40◦], respectively, with gird interval 3◦.
For the 2D-EM, assume that the initial values of DOD and
DOA of three targets are (ϕinitial, θinitial) = (−5◦,−15◦),
(15◦, 5◦) and (35◦, 25◦), respectively, and the number of
iteration is 200. For the 2D-MUSIC, 2D-EM methods and
the proposed algorithm, the step sizes of DOD and DOA peak
searching are all 0.2◦ and the searching ranges are the same
with the 2D-LASSO. The results of RMSE versus SNR for
the six methods as well as the CRB are shown in Fig. 4.

FIGURE 4. RMSE versus SNR in single-snapshot environment (L = 1).

From Fig. 4, we can see that the proposed algorithm has
the best performance in single-snapshot environment. The
subspace-based 2D-MUSIC and 2D-ESPRIT methods have
lost the estimation effect with a single snapshot, due to
the rank deficiency of the covariance matrices. The 2D-EM
requires sufficient snapshots for ML estimation, therefore it
cannot achieve higher accuracy in single-snapshot environ-
ment. Though the 2D-LASSO as a CS method can work with
a single snapshot, its estimation accuracy will degrade due
to the grid-mismatch effect. Thus we see that the true values
of DOD and DOA do not fall on the grid of the 2D-LASSO,
which leads to the deterioration in accuracy, and its RMSE no
longer decreases with SNR increasing. The primal 2D-ANM
can avoid the grid-mismatch effect as a gridless CS method,
however, its estimation accuracy is inferior to the proposed
algorithm due to the approximation in the procedure of cast-
ing (8) to (9). When the SNR is lower than 0dB, the gap
between the proposed algorithm and the primal 2D-ANM

method becomes larger. Thus, the proposed 2D-ANM-duality
algorithm has the lowest RMSE among the six methods, and
its RMSE is close to CRB in single-snapshot environment.

D. EXAMPLE 4
In this example, we investigate the RMSE performance of
the proposed 2D-ANM-duality algorithm for DOD and DOA
estimation in multiple-snapshot environment. Assume that
the number of snapshots is L = 20. Other simulation condi-
tions are the same with VII-C. Since the primal ANMmethod
does not work with multiple snapshots, we only compare
our algorithm with other four previously proposed DOD
and DOA estimation methods, including the 2D-MUSIC,
2D-ESPRIT, 2D-EM and 2D-LASSO. Fig. 5 shows the
results of RMSE versus SNR for these five methods.

FIGURE 5. RMSE versus SNR in multiple-snapshot environment (L = 20).

From Fig. 5 we can observe that the proposed algorithm
still has the best performance in multiple-snapshot environ-
ment. In the 2D-MUSIC, 2D-ESPRIT and 2D-EM methods,
the sample covariance matrices of the observed data are
needed for DOD and DOA estimation. When the snapshots
is not sufficient (L = 20) relative to the product of the num-
bers of the transmitting and receiving antennas (MN = 100),
the sample covariance matrices of these methods are no
longer the ML estimator of their statistical covariance matri-
ces, which brings to the degradation in estimation perfor-
mance. In the 2D-LASSO method, the ranges of DOD and
DOA are divided into grids for CS dictionary construction
and sparse presentation. However, no matter how fine the
grid is, the grid-mismatch effect always exists which has
reduced its estimation accuracy though the MMV model is
used. Also, the computational complexity and the coher-
ence of grids in the 2D-LASSO will greatly increase if the
grid interval becomes smaller. In the proposed algorithm,
no sample covariance matrix calculation is required, and the
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signal can be reconstructed via the continuous domain CS
without discrete grid. In addition, the ANM-based method
has the function of de-noising. Thus, the proposed algorithm
outperforms the subspace-based methods and the grid-based
CS methods in estimation accuracy in both single-snapshot
and multiple-snapshot environment.

E. EXAMPLE 5
In this example, we investigate the performance of RMSE
versus snapshots of the proposed algorithm for DOD and
DOA estimation, and compare it with the 2D-MUSIC,
2D-ESPRIT, 2D-EM, 2D-LASSO methods when snapshots
L changing from 5 to 25. SNR=5dB. Other simulation con-
ditions are the same with VII-D. The results are shown as
Fig. 6. We can see that the proposed algorithm has the best
performance among the five methods. From VII-C, VII-D
andVII-E, we have verified the advantage of estimation accu-
racy of the proposed method in different SNR and snapshots.

FIGURE 6. RMSE versus snapshots.

F. EXAMPLE 6
In this example, we validate and compare the resolution of
DOD and DOA estimation using the proposed 2D-ANM-
duality algorithm and 2D-MUSIC, 2D-ESPRIT, 2D-EM,
2D-LASSO methods. Assume that there are two closely
spaced targets located at (ϕ, θ) = (10◦, 20◦), (15◦, 25◦).
Other simulation conditions are the same with VII-D. The
results are shown as Fig. 7 . We can see that the proposed
algorithm has higher resolution than other methods in distin-
guish two closely spaced targets.

G. EXAMPLE 7
In the example, we explore the ability of estimating
DOD and DOA of coherent targets using the proposed

FIGURE 7. RMSE versus SNR with two closely spaced targets.

FIGURE 8. Simulation results of estimating DOD and DOA of two
coherent targets using the proposed algorithm and the subspace-based
2D-MUSIC method. (a) 2D-MUSIC. (b) 2D-ANM-duality.

2D-ANM-duality algorithm and the 2D-MUSIC method.
There are P = 2 coherent far-field targets. The second target
signal is generated by the first target multiplied by a complex
scalar. They are located at (ϕ, θ) = (20◦, 20◦), (30◦, 30◦).
The number of snapshots is L = 20 and SNR = 5dB. Other
simulation conditions are same with VII-A. Fig. 8 shows the
simulation results of estimating DOD and DOA using the
proposed algorithm and the 2D-MUSIC method.

Fig. 8 demonstrates that the proposed algorithm can accu-
rately estimate the DOD andDOAof the two coherent targets.
However, the subspace-based 2D-MUSIC cannot distinguish
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the two peaks of spatial spectrum, it is not appropriate for the
case of target coherence.

H. EXAMPLE 8
In the final example, we make a comparison of computational
complexity of the proposed 2D-ANM-duality algorithm
with the 2D-MUSIC, 2D-ESPRIT, 2D-EM, 2D-LASSO and
primal 2D-ANM methods in single-snapshot environment.
Since there are undetermined numbers of iterations for
the 2D-LASSO, 2D-ANM and 2D-ANM-duality in noisy
environment, we compare the six methods in term of the
average running time in 200 Monte Carlo trials, based on
Windows 10, Intel(R) Core(TM) i5-8250U CPU@ 1.60GHz
1.80GHz, RAM8GB. The simulation conditions are the same
with VII-C. The average running time is shown in Table. 1.

TABLE 1. Running time.

FromTable. 1 we can see that the 2D-ESPRIT has the light-
est computational burden, followed by the primal 2D-ANM,
2D-MUSIC and 2D-LASSO. The proposed algorithm and the
2D-EMmethod have heavier computational cost, and they are
similar in running time.

VIII. CONCLUSION
In this paper, a novel grid-free DOD and DOA estima-
tion algorithm is proposed for bistatic MIMO radar via
duality-based 2D-ANM. The problem of solving 2D-ANM
is formulated, and the procedure of converting the primal
2D-ANM into its dual problem is derived. The proposed
algorithm outperforms the primal 2D-ANM in estimation
accuracy. It works well in both cases of a single measure-
ment and multiple measurements, and is also appropriate for
the non-ULAs. It achieves robust estimation performance in
contrast to the subspace-based methods in target coherence
and single-snapshot environment. In addition, compared with
the conventional CS methods, the proposed algorithm is not
affected by the grid mismatch effect, thus high accuracy can
be obtained.

APPENDIX
THE PROOF

[b(ϕ)⊗ a(θ )]HD[b(ϕ)⊗ a(θ )]

= sum{[b(ϕ)⊗ a(θ )]∗[b(ϕ)⊗ a(θ )]T � D}

(36)

where � denote the Hadamard product. Let G = [b(ϕ) ⊗
a(θ )]∗[b(ϕ) ⊗ a(θ )]T . All the elements of G is exponential.

Also, G is a Hermitian and twofold Toeplitz matrix.

G =


G0,0 G0,1 · · · G0,M−1
GH

0,1 G0,0 · · · G0,M−2
...

...
. . .

...

GH
0,M−1 GH

0,M−2 · · · G0,0

 (37)

where Gi,j is a Toeplitz matrix. Each diagonal value of G0,0
is one.

When D is a Hermitian matrix and denoted as

D =


D0,0 D0,1 · · · D0,M−1
DH
0,1 D1,1 · · · D1,M−1
...

...
. . .

...

DH
0,M−1 DH

1,M−1 · · · DM−1,M−1

 (38)

Let

Tj =
M−1−j∑
i=0

Di,i+j, j = 0, 1, · · · ,M − 1 (39)

If T satisfies

sum(diag(T0, 0)) = L

sum(diag(T0, k)) = 0, k = 1, · · · , (N − 1)

sum(diag(Tj, k)) = 0, j = 1, · · · , (M − 1)

k = −(N − 1), · · · ,−1, 0, 1, · · · , (N−1) (40)

Then, we can obtain sum(G � D) = L, that is [b(ϕ) ⊗
a(θ )]HD[b(ϕ) ⊗ a(θ )] = L. For any Ui ∈ A, from (5),
we have UH

i DUi = L.
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