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ABSTRACT As key electrical equipment in the power system, the normal operation of a high-voltage
circuit breaker is related to the reliability and economy of the power supply. In this paper, a mechanical
fault diagnostic method for a high-voltage circuit breaker via the hybrid feature extraction and the integrated
extreme learning machine (IELM) is investigated. First, the complete ensemble empirical mode decompo-
sition with adaptive noise (CEEMDAN) is used to decompose the vibration signal to obtain intrinsic mode
functions (IMF). Then, the sub-band reconstruction of each order IMF component is performed by combining
the Hilbert transform and the band-pass filter in order to obtain the time-frequency matrix. Moreover,
mechanical fault feature vectors can be formed by the time-frequency entropy and the singular entropy,
which are extracted by transforming the time-frequency matrix into the energy matrix and normalizing the
frequency bands via the normal cumulative distribution function (NCDF). In addition, an IELM is built for
the fault classification. The advantages of the proposed CEEMDAN scheme in combination with band-pass
filtering can eliminate the modal aliasing, reduce the number of auxiliary noise additions, and improve the
decomposition efficiency. Besides, the performance of the singular entropy normalized by the NCDF is more
stable, and the IELM composed of multiple weak classifiers can solve the shortcomings of the traditional
extreme learning machine. The experimental results based on measured data show the proposed method can
effectively diagnose the mechanical failure via small samples of high-voltage circuit breakers.

INDEX TERMS High-voltage circuit breaker, vibration signal, complete ensemble empirical mode decom-
position with adaptive noise (CEEMDAN), time-frequency entropy, singular entropy, integrated extreme

learning machine (IELM).

I. INTRODUCTION

With the development of economy, the requirements for the
reliability and stability of a power system are constantly
improving. As important electrical equipment in the power
system, the high-voltage circuit breaker has dual functions of
optimizing the network structure and protecting the safety of
the power grid. Once the high-voltage circuit breaker fails,
it may cause significant economic losses or even compro-
mise system safety. Therefore, it is extremely important to
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accurately identify defects and faults of high-voltage circuit
breakers.

The statistical analyses indicate that 80% of faults in
high-voltage circuit breakers are caused by poor mechan-
ical properties, and most of them are problems of oper-
ating mechanisms [1], [2]. The diagnostic and eliminative
methods for traditional mechanical faults mainly rely on
scheduled maintenance [3]. Unfortunately, scheduled main-
tenance often has the disadvantages of over-repair and waste
of human resources. In addition, repeated disassembly and
repair may cause mechanical structural changes and even
bring new faults [3]. With the development of artificial
intelligence (AI) technologies, the diagnostic methods for
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mechanical faults have gradually combined with Al tech-
nologies. Among many emerging methods, vibration signals
[3]-[14], contact stroke displacements [15], [16], and electro-
magnetic coil currents [17] are typical factors for diagnostic
methods. The non-intrusive fault diagnostic method based
on vibration signals has gradually become the mainstream
research due to the convenient data acquisition.

The vibration signal of high-voltage circuit breakers usu-
ally exhibits non-stationary and non-linear behavior owing to
the interaction between mechanical structures [5]. Therefore,
the signal decomposition is always required to obtain the
characteristics in the time-frequency domain before the fea-
ture extraction. General methods via time-frequency analyses
mainly include the wavelet transform (WT) [18], the wavelet
packet transform (WPT) [5]-[7], the empirical mode decom-
position (EMD) [8], [19], the ensemble empirical mode
decomposition (EEMD) [9], [10], [20], the variational mode
decomposition (VMD) [11], [12], [21], etc. These algorithms
have been widely used in the processing of vibration signals.
The WT is a decomposition method based on a basis func-
tion, which is similar to the Fourier transform of a tunable
window. As for the decomposition form, the selective range
of basis functions in the WT is wider than that of the Fourier
transform. However, the WT has a limitation in decompos-
ing the high-frequency information. In order to improve this
shortcoming, the WPT has been developed on the basis of
the WT. The WPT can effectively decompose high-frequency
and low-frequency information, and take the advantages of
wavelet orthogonality, completeness and locality into account
at the same time. However, both the WT and the WPT belong
to non-adaptive decomposition methods. Before the decom-
position, the basis function needs to be determined, and the
decomposition result is greatly affected by the basis function.
Besides, there are some unavoidable defects between them,
such as energy leakage, interference problems, and so on. The
EMD is a modal component-based decomposition method
to adaptively decompose complex signals into a series of
intrinsic mode functions (IMF) containing local feature infor-
mation. Liu et al. [8] adopted the EMD to decompose the
vibration signal of a high-voltage circuit breaker, obtained
the envelope of each order IMF components by the Hilbert
transform, and extracted the envelope energy entropy as the
features. The extracted features have obvious recognition
in identifying normal and faulty signals. But, it also lacks
sufficient data for verification, and the performance of the
method in [8] is not further analyzed. Although the EMD is
an adaptive decomposition method, it also has certain lim-
itations. For example, the recursive decomposition method
causes the envelope estimation error to be transmitted all
the time, and results in the modal aliasing, which is hard to
accurately separate components with similar frequencies. For
the phenomenon of the modal aliasing, the EEMD is derived
from the EMD. The EEMD increases continuity to different
scales by adding auxiliary noise to the original signal, which
suppresses the modal aliasing to some extent. Unfortunately,
there are often residual noise components in the reconstructed
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signal, which directly affects the accurate analysis of the
signal. Unlike recursive modal decomposition methods (such
as EMD and EEMD), the VMD can eliminate the modal alias-
ing phenomenon of the EMD. In addition, the components of
the VMD have limited bandwidth, and its center frequency
can achieve online estimation. However, there are certain
deficiencies in the VMD [21]. It is difficult to select the modal
number and modal frequency bandwidth control parameters.
The number of modalities usually needs to be set manually,
and is often selected by the central frequency observation
method to be greatly influenced by subjective factors. The
vibration waveform of the high-voltage circuit breaker is too
complicated, and it is difficult to obtain a suitable modal
number by the center frequency observation method. In addi-
tion, the selection of the modal frequency bandwidth control
parameters will affect the ability to consistently interfere with
noise.

The complete ensemble empirical mode decomposition
with adaptive noise (CEEMDAN) [22]-[25] is proposed
to solve these problems. Compared to the EEMD [26],
the CEEMDAN obtains the IMF component by adding adap-
tive auxiliary noise and calculating the unique margin. As a
result, it can maximize the zero reconstruction error of the
decomposed signal. Because the CEEMDAN eliminates the
modal aliasing with fewer times of additive noise, it greatly
reduces the cost of computing resources. Lv et al. [23] pro-
posed a rolling bearing fault diagnostic method based on the
CEEMDAN and improved the multivariate multi-scale sam-
ple entropy (MMSE). From the results in [23], the CEEM-
DAN performs better than the EEMD in mitigating modal
aliasing, which can extract the characteristic frequency of the
faults more accurately. In addition, Ren er al. [24] studied
the performance of the EMD, the EEMD, the complementary
EEMD (CEEMD) and the CEEMDAN in wind speed pre-
diction, and combined these algorithms with artificial neural
networks and support vector regression (SVR) to predict the
wind speed in time series. From the comparisons in [24],
the CEEMDAN-SVR performs best than all other methods.
In view of the above analyses, this study uses the CEEMDAN
as the time-frequency analysis method for the vibration signal
of a high-voltage circuit breaker.

Among the feature extraction methods for vibration signals
of high-voltage circuit breakers, the entropy has been widely
used as the characteristic attribute [27]. Huang et al. [4]
selected the WT to decompose the signal according to
the vibration signal energy distribution reflected by the S-
transform, constructed the time-frequency matrix through the
module operation, and converted it into an energy matrix.
Moreover, the energy entropy from the time domain and
the frequency domain was extracted to construct the time-
frequency entropy, and the one-class support vector machine
(OCSVM) was used to determine whether there are mechan-
ical failures or not. He et al. [13] proposed a new method
for the fault identification of high-voltage circuit break-
ers based on the density peak clustering, the kernel fuzzy
C-means clustering and the support vector machine (SVM).
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First, the local mean decomposition was used to decompose
the sound and vibration signals, and the maximum original
signal correlation law was used to filter the waveform. Then,
the product functions were quantized by the approximate
entropy, and the entropy value was taken as the charac-
teristic of the fault signal. The result in [13] showed that
the feature recognition accuracy extracted by double clus-
tering is significantly higher than that of a single clustering
method. Although the features extracted by the entropy as a
characteristic attribute have certain characterization ability,
the influence of disturbance and noise cannot be avoided,
especially the statistic that directly quantizes the time series,
such as the sample entropy, the permutation entropy, and the
approximate entropy. The time-frequency entropy [4], [14]
was composed of the time-energy entropy and the frequency-
energy entropy, which takes the block energy as the analytic
object and mainly characterizes the energy distribution of
each frequency-band or period. Compared with the direct
quantization of the time-series complexity, the influence of
disturbance and noise is weak. In view of good characteriza-
tion ability of the time-frequency entropy, the time-frequency
entropy can be chosen for extracting the mechanical vibration
signal of a high-voltage circuit breaker. Since the existence of
disturbance and noise, the characterization ability of the time-
frequency entropy also has some certain limitations. On this
basis, another feature extraction method, namely the singu-
lar entropy, is adopted to solve the problem of insufficient
representation ability of single type features. Although the
singular value decomposition [28], [29] has strong robustness
against noise and interference in the background, excessive
influence value will affect the stability of singular values.
In recent years, the normal cumulative distribution func-
tion (NCDF) is always used to process the signal before the
feature extraction, and weaken the influence of the impact
maximum values on the singular value decomposition [30].
The singular entropy takes the singular value as the analytic
object, which can achieve both dimensionality reduction and
the energy distribution characteristics of the time-frequency
matrix.

After the feature extraction, choosing a classifier with good
performance is a key issue. Traditional classification meth-
ods include the back-propagation neural network (BPNN)
[6], [7], the support vector machine (SVM) [4], [11], the
K-nearest neighbor method (KNN) [31], [32], the decision
tree (DT) [33], [34], etc. Among them, the BPNN has good
anti-noise and generalization ability [35]. But, its classifi-
cation performance depends on a large number of training
samples, and it is prone to local convergence. The SVM
is suitable for the classification problem of small samples
with nonlinear and high-dimensional features. Due to the
structure of binary tree classification, the training time of the
SVM is longer [10]. Besides, the classification results are
greatly affected by the parameters. As for the KNN method,
the parameter estimation and training process are not required
so that it is easy to implement. However, the selection of the
number of the nearest neighbors and the choice of distance
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will affect the final recognition result. Although the DT is
easy to understand and implement, it suffers from the over-
fitting and insufficient generalization problems.

Intelligent diagnostic strategies including fuzzy theory and
neural network have been commonly used for fault diag-
noses [36], [37]. Song et al. [36] used statistical tests in
the frequency domain to sequentially extract features for
diagnosing a number of anomalous states from the measured
signals, and combined the trivalent logic inference diagnosis
theory with the possibility and fuzzy theory to establish a
stepwise fuzzy diagnosis method for diagnosing faults in
rotating mechanical structures. However, there are difficul-
ties in obtaining fuzzy diagnostic knowledge and relying
too much on fuzzy knowledge bases. Wang et al. [37] pro-
posed a novel fault recognition method for rotating machin-
ery on the basis of multi-sensor data fusion and bottleneck
layer optimized convolutional neural network (MB-CNN).
Unfortunately, the computation burden for the MB-CNN is
a latent problem.

The extreme learning machine (ELM) [38], [39] is a new
fast learning algorithm that avoids the problem of falling into
a local optimum. Because the weights and offsets between
the input layer and the hidden layer of the ELM are ran-
domly generated, the generated models are inconsistent each
time, and the classification effect is also different. In view of
the above analyses, the integrated extreme learning machine
(IELM) is investigated in this study. The IELM consists of a
group of ELM weak classifiers generated by small samples,
which not only includes the advantages of rapidity and global
in the ELM, but also applies the ELM with large sample
classification to the classification problem of small samples.

In this study, a novel mechanical fault diagnostic method
for high-voltage circuit breakers is investigated. First, the
CEEMDAN is applied to the time-frequency analysis of the
vibration signal. Moreover, the sub-band reconstruction of
the decomposed components is performed by combining the
Hilbert transform and the band-pass filter in order to analyze
the signal at the same scale. In addition, the time-frequency
entropy from the energy matrix and the singular entropy nor-
malized by the NCDF are extracted, and the characteristics
of this diversity are sufficient to enhance the characteriza-
tion ability of the original signal. Furthermore, the IELM is
trained by the hybrid features, and is used to classify small
fault samples of high-voltage circuit breakers.

This study is organized as follows. Following the Intro-
duction, Section II introduces the principle of the CEEM-
DAN algorithm. Section III investigates the methods of the
time-frequency entropy and the singular entropy extraction.
Section IV explains the structure of the IELM. Section V
analyzes and discusses the experimental process and results.
Section VI summarizes the methods presented in this study.

Il. WAVEFORM DECOMPOSITION BASED ON CEEMDAN

In the CEEMDAN algorithm, the operator Ej(-) is defined to
obtain the jM-order IMF component through the EMD. w;(r)
is the Gaussian white noise obeying the N (1,0) distribution,
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and ¢; is the coefficient for controlling the signal-to-noise
ratio of the auxiliary noise and the original signal. Given the
signal x(¢) to be processed, the CEEMDAN algorithm [22]
can be described as follow:

(1) The first IMF component can be obtained by the EMD
decomposition of x(¢) plus egw;(t).

1 1
ci(t) = 7 3 Ev(x() + eowi(1) ()

i=1

where i = 1,2, ...,1, in which [ is the adding times of the
auxiliary noise.
(i1) The first margin can be calculated by

ri(t) = x(t) — c1(r) @)

(iii) The second IMF component can be obtained by the
EMD decomposition of 71(¢) plus e1 E1(w;(t)), that is,

1 1
ext) = 7 3 E1(n () + 1 Ea(@i(1) 3)

i=1

(iv) Similar to the steps in (ii)-(iii), the (k+1D™" IMF
component can be expressed as

1 1
ck1(0) = 7 Y E10k(t) + ecEi(@i(1))) €
i=1

(v) Until the margin satisfies the termination condition
of the residual component, the original signal x(#) can be
decomposed into

K
x(t) =) alt) +r(t) )

k=1

where K is the total order of the IMF components, and r(?) is
the residual component.

Ill. FAULT FEATURE EXTRACTION

A. WAVEFORM RECONSTRUCTION BASED ON HILBERT
TRANSFORM AND BAND-PASS FILTERING

When the CEEMDAN is performed on the same type of
vibration signals, the number of acquired components may be
different, or the bandwidths of the components with respect
to the same order may also be different. If features are directly
extracted from these components, there is no uniform speci-
fication. In other words, the features extracted from the same
type of vibration signals in the same order are different, and
it is difficult to extract the general feature information for
affecting the later diagnostic design. In this study, a waveform
reconstruction method based on the Hilbert transform and
the band-pass filter are used to reconstruct the decomposed
waveform into each frequency band, extract the general fea-
tures from the signals in the same category, and investigate
the difference between different-type signals. The process of
waveform reconstruction and band-pass filtering is expressed
as follows:
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(i) First, a Hilbert transform [19] is performed on each
order IMF component ¢ (t):

+00
Hle ()] = ~ / (™ g ©)

T) o t—T

Then, a parsing signal can be constructed by
(1) = e (1) + jH[cr ()] = g (1)@ D 7

Thus, the corresponding phase function can be expressed as

Hlcr(1)]
Cr(t)
In addition, the instantaneous frequency of the phase function

can be calculated by

¢r(t) = arctan

®)

1 depr (1)
fie@®) = . X a

(ii) It is assumed that the number of pre-divided bands
is M. A reconstructed signal of the (Fu—1, Fu)ly=12...m
band can be obtained by traversing each IMF component
ck(t). When the instantaneous frequency with respect to each
data point in ck(¢) is within this frequency band, the data
point is maintained; otherwise, it will be cleared. After that,

a new sequence can be formed. By accumulating all new
K

sequences (D(7) = >_ ¢ (t)) to obtain the waveforms in the

®

.....

decomposed into each of the specified frequency bands.

The division of IMF components in different frequency
bands is convenient by analyzing the changes of vibration sig-
nals at the same scale. Based on the normative time-frequency
matrix, it becomes meaningful to seek commonality or char-
acteristics. Since different types of vibration signals often
differ in the same frequency bands, the method of waveform
reconstruction described herein is very beneficial for signal
analysis.

B. HYBRID FEATURE EXTRACTION BASED ON ENTROPY
The vibration signal of a high-voltage circuit breaker is the
result of the composite vibration of multiple mechanical com-
ponents. From the perspective of the frequency domain, it is
the superposition of multi-frequency characteristic informa-
tion. But, it is an attenuation process of multiple vibration
energy from the perspective of the time domain. When the
mechanical structure changes, the path of the vibration energy
transfer may change to accordingly cause the amplitude and
frequency variation of each mechanical component. As a
result, the amplitude and frequency of the composite vibra-
tion signal also change. In order to analyze the vibration
signal accurately, it is necessary to extract the features from
the time domain and the frequency domain. From the concept
of entropy, the degree of irregularity of a system or time
series can be quantified by the probability distribution of its
state. Therefore, two entropy features, which can be used to
characterize the mechanical state of a high-voltage circuit
breaker, are adopted in this study.
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The time-frequency entropy [4], [14] takes the energy
matrix as the analytic object and statistically calculates the
energy distribution for each time period and each frequency
band, respectively. Whether it is the distribution of the energy
probability of each frequency band or each time period, it is
directly related to the path of the vibration energy trans-
mission. Different energy transfer paths will cause changes
in the amplitude and frequency of each mechanical compo-
nent. In other words, the amplitude variation will cause a
change in the energy probability distribution for each time
period, and the frequency variation will cause a change
in the energy probability distribution of each frequency
band. Therefore, the time-frequency entropy is used to find
the energy distribution characteristics of the vibration sig-
nals at different mechanical states in the time-frequency
domain.

The singular entropy uses the time-frequency matrix at
each time period as the analytic object to describe the distri-
bution statistics of the singular values of the time-frequency
matrix. The singular value decomposition can extract the
feature of signal stability under the occurrence of disturbance
and noise, and the distribution of amplitude from large to
small in order. Because the degree of decline of singular
value distribution in different time periods is different, the
probability distribution of the singular value is also different.
Thus, the singular entropy is extracted as the other feature of
a high-voltage circuit breaker in this study.

1) TIME-FREQUENCY ENTROPY

In the frequency domain, the reconstructed waveform is
divided into M sub-waveforms at different frequency bands
to form a time-frequency matrix of M x N size. In the
time domain, the time-frequency matrix is equally divided
into L time periods to form a M x L block time-frequency
matrix, wherein each block matrix has a length N/L. Let
D't)l =1,2,...,Lym = 1,2,..., M) be the time series
corresponding to the /™ period in the m™ frequency band,
and the calculation formula of its energy value Ej ,,, can be
represented as

N/L

> _Dr? (10)

t=1

From (10), the block time-frequency matrix can be con-
verted into the block energy matrix. Then, the energy
matrix is normalized according to the following conversion
formula:

Pim=En/E (11)

where E is the total energy value of the matrix; P, ,, is the
proportion of Ej ,, in E.

As an indicator to evaluate the complexity of time series,
the Shannon entropy is often used to characterize the uncer-
tainty of the signal. The greater the uncertainty, the larger the
entropy, and the greater the amount of information needs to
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clarify it. The Shannon entropy ® can be calculated as

R
®=-) clogg (12)
i=1

In this study, the Shannon entropy is used as a characteristic
attribute. The time-frequency entropy features are extracted
in the energy matrix from the time-frequency domain direc-
tion. The specific calculation formulas can be expressed as
follows:

M
W == " (Prx x log(Prx))
k=1

L
an1 = — Z(Pk’m X lOg(Pk’m)) (13)
k=1

In (13), Wl’ is a characteristic value with respect to the /!
time period in the time domain, and reflects the distribution of
energy in different frequency bands during this period, which
is simply referred to as the time-domain entropy (TE). W',f,, isa
characteristic value with respect to the m™ frequency band in
the frequency domain, and reflects the distribution of energy
in different time periods during this band, which is simply
referred to as the frequency-domain entropy (FE). W =
Wi, wi,....,wj, W{, W;, ..., Wy, 1 s the total feature set,
which is the time-frequency entropy (TFE) described herein.
It can be seen from the form of the feature vector that the TFE
are composed of the TE and the FE.

Acceleration/g

0 500 1000 1500 2000
Sample points

FIGURE 1. Impact maximum value of vibration signal.

2) NCDF-SINGULAR ENTROPY

The vibration signal generated from the operation of the high-
voltage circuit breaker has a certain amount of non-periodic
impact maximum values (IMV) as shown in Fig. 1. These
values are caused by the strong collision between mechan-
ical components and the influence of interference factors.
Thus, the amplitudes of vibration signals do not decrease
synchronously with the attenuation of vibration energy. These
values are sensitive to the singular value decomposition, and
it is difficult to obtain stable singular value characteristics
by the singular value decomposition of the time-frequency
matrix directly. Therefore, the NCDF is introduced in this
study to conduct the standardized processing of vibration
signals at all frequency bands for weakening the impact of
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FIGURE 2. NCDF distribution with respect to different variances.

impact maximum value on the singular value decomposition
and improving the stability of singular value characteristics.

The NCDF is an integral of a probability density function
obeying a normal distribution and can fully describe the
probability distribution of the random variable X. It can be
expressed as

X _ 2
F(u; ps o) = 127,/ exp— =0 (14

o 202

where wu, o and o2 are the mean, the standard deviation,
and the variance of the random variable X, respectively.
Figure 2 shows the NCDF distribution for different variances
when the mean is zero. It is obvious that the NCDF curves
with respect to different magnitudes of o2 are steep in the
middle and smooth at both ends, and the steepness is related
to the magnitude of o2. The reasonable parameter selection
can effectively distribute the impact maximum values to
the two poles of the curve, which essentially highlights the
overall distribution of the vibration signal, thereby reducing
the impact of the impact maximum values. After completing
the normalization processing by the NCDF for each fre-
quency band, the steps of the singular entropy extraction are
explained as follows.

Suppose D is a matrix of @ x b size according to the
singular value decomposition in [28], for any matrix with
a x b dimension, there is always a matrix U with a X ¢
dimension, a matrix V with ¢ x b dimension, a diagonal
matrix A with ¢ x ¢ dimension, so that the matrix D can be
expressed as

D=UAVT (15)

Among them, the diagonal element Ax(k = 1,2,...,¢)
in the matrix A is called the singular value of the matrix D.
Singular values are non-negative and are arranged in
a decreasing manner. Then, the singular values can be
normalized by

Pk =M/ Y (16)

k=1
where py is the proportion of A; in the total singular value.
In addition, the singular entropy (SE) can be defined as

C
Se=—) pilogp (17)
k=1
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In order to obtain finer features, the time-frequency matrix
consisting of reconstructed waveforms needs to be divided.
For a time-frequency matrix of M x N dimension, it can be
equally divided into G block in the time direction, wherein
each block matrix has the dimension of M x (N/G). The
SE feature vector can be extracted from each block time-
frequency matrix.

The NCDF-singular entropy of the high-voltage circuit
breaker vibration signal is implemented by the follow-
ing steps: 1) Perform the CEEMDAN decomposition on
the vibration signals, and then reconstruct the waveform;
2) Normalize the reconstructed waveform with the NCDF,;
3) Perform the singular value decomposition and calculate the
singular entropy.

IV. INTEGRATED EXTREME LEARNING MACHINE
The ELM is a feedforward neural network with single hidden
layer and random learning [38]. It has the characteristics of
randomly generating input weights and determining output
weights by analyses. Since the input weights are randomly
assigned, the ELM does not need to adjust the network param-
eters in a learning process, and requires less computational
memory than traditional learning algorithms.

The ELM consists of an input layer, a hidden layer, and an
output layer. Given the training set Zy as

Zy ={(5. ) [y e R y; e R"} 1, (18)

where x; is the input vector of n x 1 size; y; is the target vector
of wx 1 size, and J is the total number of samples. The output
function of an ELM with g nodes in the hidden layer can be
expressed as

q
fe) =) Bi-plei-xi+g) =y, j=12...J (19)
i=1

where ¢ is the activation function; ¢; is the weight of the con-
nection between the i hidden layer node and the input node;
Bi is the connection weight between the i hidden layer node
and the output node; g; is the bias of the i/ hidden layer
node. By the principle of the ELM, the output of the ELM
can be represented as

HB=Y (20)

where H is the output matrix of the hidden layer. The solution
of B can be obtained by calculating the least squares solution
of (20) as

H}Sin IHB — Yl 2

From (21), one can obtain the solution as
g=H'Y (22)

where HT is the Moore-Penrose generalized inverse
matrix of H.

The use of the ELM as a classifier for the mechanical
fault diagnostic model of high-voltage circuit breakers has
two disadvantages. Because the weights and the biases are
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FIGURE 3. Framework of proposed mechanical fault diagnostic method.

randomly generated, the network generated by each training
process is inconsistent, and its performance is also signif-
icantly different. Moreover, for each generated model, the
evaluation optimal criteria are insufficient. In addition, the
training of the ELM network requires a large number of
samples. Unfortunately, the mechanical failure of the high-
voltage circuit breaker belongs to a small sample event, so the
result generated by the ELM classifier will be weak. In view
of the shortcomings of a single ELM, an integrated extreme
learning machine (IELM) is proposed in this study. The IELM
is composed of many weak classifiers generated by a group of
ELMs. The process of implementing decision classification
can be expressed as follows.

For an ELM with multiple output nodes, it usually makes
the category with the highest output value as the final
output label. For example, given a test data x, f(x) =
[f1x), fo(x), ..., fin(x)] is the value of each output node of the
ELM, where w is the number of output nodes and f;(.) is the
functional model of the ELM. For the convenient description,
the value of f(x) is an integer within the range from 1 to w.
The decision function of the ELM with multiple output nodes
can be expressed as

label(x) = arg max fi(x), ie[l,2,...,w] (23)
1
where arg(.) is the value function for obtaining the indepen-
dent variable, and the right side of (23) indicates the category
label with respect to the maximum situation.
The IELM is composed of a set of ELMs, whose decision
functions can be represented as

Label(x) = argmaxsum(i), i€ [1,2,...,w] (24)
1

where sum(i) represents the number of sub-classifiers whose
prediction result is i.

In this study, a mechanical fault diagnostic method for
high-voltage circuit breakers via the hybrid feature extraction
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FIGURE 4. Photograph of experimental setup for data acquisition.

and the IELM is proposed. The framework of the proposed
method is depicted in Fig. 3.

V. EXPERIMENTAL ANALYSIS AND RESULTS

A. EXPERIMENTAL PLATFORM INSTRUCTION

An indoor vacuum circuit breaker (ZN63A-12) is used in this
experiment, and the photograph of the experimental setup for
data collection is depicted in Fig. 4. The sensor adopts the
piezoelectric acceleration sensor (LCO102T model), whose
sensitivity, measurable range, and the frequency response
range is 10.06 mV/g, 500 g, from 2 Hz to 13,000 Hz, respec-
tively. The multi-function equipment (USB-6211) manufac-
tured by the NI corporation is used as the data acquisition
unit, and its update rate is 250kS/s.

Four actual mechanical states are simulated on this plat-
form, and the corresponding data acquisition is performed.
In this data set, the data at the normal state, the base-loosen
state, the C-phase leading-closing state, and the C-phase
hysteresis-closing state are recorded as from Class 1 to
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Class 4, respectively. Classes 3 and 4 belong to the asyn-
chronous closing failure. In addition, in order to verify
whether the proposed method is valid in practical field,
the experimental data can be obtained under the background
interference, such as the circuit breaker activity, passing peo-
ple or passing the vehicle.

B. FEATURE EXTRACTION FROM VIBRATION SIGNALS

In this study, the vibration signal of each mechanical state is
collected at a sampling frequency of 20 kHz, and the total
sampling time is 0.5 s. In order to alleviate the influence of
the zero drift of the sensor, the vibration signal needs to be
intercepted before the feature extraction. The waveform 10ms
before startup and 190ms after startup (4000 points in total)
are taken as valuable data information.
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FIGURE 5. CEEMDAN decomposition with respect to each order
component at base-loosen state.

The signal is decomposed by the CEEMDAN, and the
added Gaussian white noise is 0.2 times the amplitude of the
original signal standard deviation, and the adding time is 20.
For example, Figure 5 is the IMF components and the residual
component extracted by the vibration signal decomposition at
the base-loosen state, where the horizontal axis is a time series
with 4000 data points, and the vertical axis is the amplitude
of the vibration signal. It is obvious that the amplitudes of the
IMF components after the sixth order are small.

TABLE 1. Correlation between different-order reconstructed signals and
original signals.

Order Ist 2nd 3rd 4th Sth 6th 7th

Class 1 0.819 0921 0976 0990 0.994 0997 0.998
Class 2 0.769  0.901 0.960 0.989 0.995 0997 0.999
Class 3 0.797 00911 0.975 0997 0999 0999 0.999
Class 4 0.794 0921 0979 0991 0996 0.998 0.999

Progressive reconstruction is carried out for each order
component signal successively, and the correlation with the
original signal is calculated to obtain the results in Table 1.
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As can be seen from Fig. 5, the amplitude of the 7th IMF
waveform is significantly reduced. From Table 1, the corre-
lation between the reconstructed signal of the first 6-order
IMF component and the original signal reaches 0.997, and
the signal can be almost completely described. Therefore,
this study selects the first 6-order of IMF components for
subsequent analyses to reduce the effects of low-frequency
spurious waveforms.

As for dividing the frequency band, a total of 10 frequency
bands are allocated, and the bandwidth is 1000 Hz, i.e.,
the frequency band is from 0 Hz to 1000 Hz, from 1,000 Hz
to 2,000 Hz, ..., from 9,000 Hz to 10,000 Hz, respectively.
In order to extract the time-frequency entropy, each frequency
band of data is equally divided into twenty sets to form 10x20
block time-frequency matrices, where each block matrix has
a size of 1 x 200. It should be pointed out that if the number
of the block is too small, it is easy to cover up important
information, and the extracted features are unrepresentative.
However, if the number of the block is too large, the important
information is dispersed and the corresponding features are
difficult to extract. The number of the block selected in this
study is the best result through multiple experimental trials.

Three samples are randomly selected for each mechanical
state, and the TFE is extracted. As a result, a two-dimensional
feature map is drawn in Fig. 6. The first 20 features are the
time domain entropy and the last 10 features are the frequency
domain entropy. It is obviously shown that the states of
C-phase leading-closing and hysteresis-closing are signifi-
cantly different from the other two states in the time domain
characteristics. In particular, the difference between the
C-phase hysteresis-closing state and the other three states is
mainly reflected in the features from 2™ to 11" features.
However, the difference between the C-phase leading-closing
state and the normal state or the base-loosen state is reflected
in the features at 7" and 11" feature sequences. Since the nor-
mal state and the base-loosen state are only slightly different,
the features at the time domain are not sufficient to distinguish
them. Similarly, although there is a slight difference between
four mechanical states from 21% to 25" features, it is not
obvious in the frequency domain. It can be seen that the
discrimination of the time-frequency entropy features of each
mechanical state depends only on a few features, and the
vibration energy may change randomly under the background
of noise and disturbance, resulting in the instability of these
features based on the energy matrix extraction. Therefore, it is
very significant to use a variety of hybrid features to enhance
the ability to characterize signals.

Before the singular entropy feature is extracted, the NCDF
function is used to normalize each frequency band in order
to weaken the influence of the impact maxima values on the
singular value decomposition. The value of the variance (o%)
determines the degree of standardization. If the value of o2 is
too small, the NCDF curve is too steep and most of the infor-
mation will be mapped at both ends of the curve. The details
of the signal will be submerged, even small noise signals
will be amplified. If the value of o2 is too large, the NCDF
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FIGURE 6. Time-frequency entropy with respect to four different
mechanical states: (a) Normal state; (b) Base-loosen state; (c) C-phase
leading-closing state; (d) C-phase hysteresis-closing state.

curve is too flat. Most of the information will distribute in
the middle of the gradual area to be approximately linearity,
and cannot achieve the effect of weakening the impact signal.
For example, there is a comparison of signals at the Class 1
state before and after the normalization by the NCDF in
Fig. 7(a)~(d). In Fig. 7(a), the first 2000 data points of the
signal are subjected to the standardization, and in the different
range of o' they are respectively mapped into the range from
0 to 1 as shown in Fig. 7(b), 7(c), and 7(d). In Fig. 7(b), most
of the data are mapped to 0 and 1, and the details of the signal
are almost completely submerged. In Fig. 7(c) and 7(d), as the
value of o2 increases, the standardized signal tends to the
linear mapping of the original signal. As for o> = 2, the nor-
malized signals of the other three states (Class 2, Class 3 and
Class 4) are depicted in Fig. 7(e), 7(f) and 7(g), respectively.
Obviously, the impact maximum values for the signal stan-
dardized by the NCDF can be significantly reduced, which is
beneficial for the singular value decomposition. In order to
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achieve the effect of weakening the impact value, this study
compares the results of many experiments, and finally one
sets the value of o2 to be 2.

In the time domain, 100 data points are divided into 40 time
slots to form 40 time-frequency matrixes, wherein each block
matrix has a size of 10 x 100, then the SE of each block matrix
can be obtained. The singular entropy characteristics of three
groups of vibration signal samples at the C-phase leading-
closing state with or without the NCDF standardization is
depicted in Fig. 8. For the case without normalization, all the
singular entropy of the same type of vibration signal tends
to the same value, and there is no significant difference in
the singular entropy at different periods. After the NCDF
standardization, not only the singular entropy of the same
period approaches the same value, but also the characteristic
differences in different periods are particularly prominent.

In order to visualize the singular entropy characteristics,
the partial singular entropy extracted from vibration signals of
four different mechanical states in three-dimensional coordi-
nates is depicted in Fig. 9, where Fig. 9(a), 9(b), 9(c) and 9(d)
describe the characteristic distribution of the singular entropy
interval of 101 - 12th, 23t _ 25t 26t _ 28t apd 30t - 32t
for different cases, respectively; 10 samples are randomly
selected for each case. For the interval shown in Fig. 9(b),
although there is a certain difference between Class 1 and
the other three classes, this difference is too small to be
difficult for accurately classifying. If it is combined with the
interval represented by Fig. 9(a) and 9(c) to form complete
information, the feature differences between Class 1, Class 3
and Class 4 are significantly increased. The set of these multi-
interval features is very effective for the expression of fault
features in vibration signals.

C. ANALYSES OF RESULTS

1) ELM PARAMETER SELECTION

In order to enhance the classification performance of a single
ELM, the number of hidden layer neurons and the type of
activation functions need to be determined before the classi-
fier is trained. Moreover, as for the selection of the number of
neurons in the hidden layer and the type of activation func-
tions, the classifiers of two feature types should be discussed
separately. Since the mechanical failure of the circuit breaker
is a small probability event, this study collects 50 samples
for each mechanical state, i.e. the total number of samples
is 200. Among them, 76% of the samples are used to train the
classifier model, and 24% of the samples are used to test the
accuracy of the classification.

The K-fold cross-validation method is applied herein to
obtain a combination of parameters that makes the ELM
classification ability more robust. Note that, the trained and
validated samples are from the same 152 samples. In this
study, the K value is set to 10, which is a typical 10-fold
cross-validation method. With the changes of the number
of neurons, the functions of sigmoidal, sinusoidal hardlim,
rectified linear units (Relu), Tanh and improved sigmoidal
(Isigmoid) [40] are respectively used as activation functions.
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FIGURE 8. Comparison of singular entropy with or without NCDF
normalization.

TABLE 3. Accuracies of SE features under different neurons and
activation functions.

1 . Number  Sigmoid _ Sin Hardlim  Relu Tanh Isigmoid
. 50 94.0%  954% 81.6%  934% 90.1% 93.4%
% & 100 902%  91.4% 823%  90.0% 88.8%  88.1%
£ £ 150 73.6%  76.9% 82.9%  88.1% 624%  85.5%
= = 200 822%  90.1% 84.8%  88.1% 74.9% 73.8%
250 89.5%  89.5% 81.7%  703% 82.9%  59.1%
300 93.4%  927% 822%  67.0% 88.1%  64.6%
350 92.1%  90.1%  78.8%  63.6%  88.8%  67.6%
Feature 11 05 05 Feature 10
(a)
. o used in combination with the sinusoidal function, the ELM
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205 -~ P cation accuracies than other parameter combinations. Thus,
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FIGURE 9. Partial singular entropy with respect to different mechanical
states (a) features of 10th-12th; (bzI features of 23th-25th; (¢) features of
26th-28th; (d) features of 30th-32th,

The average accuracy calculated by the cross-validation
method is used as an indicator for evaluating each combina-
tion of parameters.

The average accuracies of TFE and SE characteristics in
different neuron numbers and activation functions are sum-
marized in Tables 2 and 3, respectively. When 50 neurons are
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layer neurons is set to 50 and the sinusoidal function is
selected as the activation function. In addition, 50 sets of sub-
classifiers are trained with the time-frequency entropy and
the singular entropy as input vectors, respectively, i.e., a total
of 100 sets of results are generated in each testing sample
during the diagnostic process, and these 100 sets of results are
used for comprehensive decision-making. The total number
of correct classifications of 48 testing samples in 100 sub-
classifiers is depicted in Fig. 10 with the form of histogram.
The horizontal axis represents the testing sample. Samples
1512t 13thp4th 25t 36t and 371-48M belong to the
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normal state, the base-loosen state, the C-phase leading-
closing state, and the C-phase hysteresis-closing state,
respectively. The vertical axis represents the correct number
of classifications. Blue color labeling is the correct classifi-
cation number of SE classifiers, and the green color labeling
is the correct classification number of TFE classifiers. The
decision criterion for the IELM is: the more the numbers
of classifiers with respect to a certain type, the greater the
probability of determining it as this type.

For the first testing sample, the number of the normal state
identified by the TFE classifier and the SE classifier is 50.
That is, 100 classification results point to the normal state
and are finally determined to be normal. It is clearly shown
that the state characteristics of this sample are relatively
obvious, so that each sub-classifier can correctly classify it.
For the 12 testing sample, the number of the TFE classifier
recognized as the normal state is only nine. However, there
are 43 SE classifiers to be identified as the normal state.
Therefore, 52 of the 100 sub-classifiers trained by the two
features identify it as the normal state, and the 12" sample
is accurately identified as the normal state according to the
decision rule. Obviously, if only relying on the TFE classifier
for decision, eventually there will be a miscalculation. For
some samples with relatively weak state features, in the case
where some of the features are weak, the other features are
enhanced, and the complementarity of the two makes the
overall features distinguishing significantly. Therefore, based
on the hybrid features of the TFE and the SE, the intrinsic
information of the signal can be mined deeper. As can be seen
from Fig. 10, the total number of sub-classifiers correctly
classified for each testing sample is greater than 50. Accord-
ing to the decision rule defined in this study, the recognition
accuracy of the testing samples can reach 100%.

The TE, FE, TFE, and SE are compared as the features in
this study to further verify the effect of the feature extraction.
The source of experimental data set and the ratio of training
data and testing data are the same as the previous experiments.
Experimental results in Table 4 show that the TFE has higher
identification accuracy in comparison with the TE and the
FE. Although both the TFE and the SE can achieve a higher
accuracy, they cannot be completely classified correctly, and
the classification results of them do not show a mutual subset
relationship. For example, the TFE is classified wrong in
Class 1 and Class 2 sets, while the SE is classified wrong
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TABLE 4. Classification results with respect to multiple features.

Feature Class 1 Class2  Class 3 Class4  Accuracy
TE 9 10 11 11 85.42%
FE 10 11 10 11 87.50%
TFE 10 11 12 12 93.75%
SE 12 12 11 12 97.92%
TFE+SE 12 12 12 12 100%

in Class 3. The hybrid features of the TFE and the SE can
solve the problem of insufficient feature representation for a
single type.

On the other hand, one tries to input both TFE and SE
features into a classifier for training. The effect is slightly
better than the one of the TFE or the SE, separately. In order
to improve the accuracy, multiple sub-classifiers are also
used for integrating decision making. Although experimental
results show that the identification accuracy can be further
improved with the number of sub-categories increases, more
sub-classifiers are required to stabilize the results in com-
parison with the method proposed in this study. Because the
separate training method makes the classifier more diverse,
the integrated classifier has a stronger cognitive ability.

TABLE 5. Classification results with respect to multiple sample sets.

Data set Class 1 Class 2 Class 3 Class 4 Accuracy
Sampleset2 12 12 12 12 100%
Sampleset3 12 12 10 12 95.83%
Sampleset4 12 12 12 12 100%

Three new sample sets are respectively collected and
observed to verify the robustness of the IELM. In order to
distinguish from the first sample set, three new sample sets
are respectively recorded as sample set 2, sample set 3, and
sample set 4. Moreover, the number of each mechanical state
samples, and the ratio of the training set and testing set in
each sample set are consistent with the above experiments.
Experimental results in Table 5 show that best classification
accuracy also can be achieved for three newly collected sam-
ple sets. For the sample set 3 in Class 3 that was misjudged, it
does not rule out that abnormal data or interference from the
surrounding environment during the experimental collection
process has changed the way the mechanical components
interact. From a holistic perspective, the integrated learning
approach makes the output more stable. The examined results
of the above four sample sets strongly verify the robustness
of the method described in this study.

3) COMPARISON WITH OTHER METHODS

In order to analyze the difference between the classifica-
tion accuracy of the proposed method and other methods
in previous researches, it is compared with the methods in
[4], [6], [11]. In [4], the S-transformation is used to decom-
pose the vibration signal, and the time-frequency entropy is
extracted and classified by the OCSVM. In [6], the WPT
is used to decompose the vibration signal, and the BPNN is
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TABLE 6. Performance comparisons.

Method Name Class 1 Class 2 Class 3 Class 4 Accuracy
Proposed method 12 12 12 12 100%
Ref. [ 4] 10 9 12 12 89.58%
Ref. [ 6] 9 10 8 11 79.17%
Ref. [ 11] 11 9 12 12 91.67%

used as the fault classifier after obtaining the time-frequency
entropy. In [11], the VMD is used to decompose the vibration
signal, and the singular value is obtained by block and then
classified by the OCSVM. Experiment data comes from the
sample set 2. Among them, 76% of each mechanical state is
used to train the classifier model, and 24% of the samples are
used to test the accuracy of the classification. The examined
results of four methods are summarized in Table 6.

Although the time-frequency entropy is used as the char-
acteristic in both [4] and [6], the results are quite differ-
ent, mainly due to the difference between the SVM and
the BPNN. Obviously, the BPNN has insufficient ability to
classify small sample events. Huang et al. [4], [11] used the
SVM as the classifier, which has a higher recognition rate
than the one in [6]. But, there is also a certain amount of
misjudgment. There are three main reasons for misjudgment:
1) Whether the components obtained by the decomposition
can accurately describe the time-frequency quantity of the
signal; 2) Whether the extracted features have the charac-
terization ability, and 3) Whether the classifier has a strong
generalization. The classification accuracy of the proposed
method is higher than those of the other three methods,
mainly reflected in the double feature to make up for the
problem of insufficient representation ability of single-class
features. In addition, the IELM is used as a classifier, which
makes up for the lack of generalization ability of a single
classifier.

VI. CONCLUSION

In this study, vibration signals are taken as analytic objects,
and a method for mechanical fault diagnoses of high-voltage
circuit breakers based on hybrid feature extraction and IELM
is proposed. From theoretical analyses and experimental
results, the major contributions of this study are summarized
as follows:

(1) The vibration signal is decomposed by the CEEM-
DAN, and two different characteristics including the time-
frequency entropy and the singular entropy are constructed.
The waveform is normalized by the NCDF, which improves
the stability of the singular entropy characterization signal.
Moreover, the hybrid features avoid the problem of insuf-
ficient representation ability for single-type features. The
corresponding experiments show that the classification accu-
racy with respect to the hybrid features can reach 100%,
which is significantly higher than the one with respect to the
single-type features.

(ii)) Based on the idea of integrated decision-making,
an IELM is constructed to compensate for the inconsistency
of the single ELM model. On the other hand, the ELM for
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large training samples has also been successfully applied to
solve the problem of small sample classification.

Under the same experimental samples, the performance
of the proposed method is compared with other methods
in [4], [6], [11]. It can conclude that the proposed method has
certain improvements in the time-frequency signal analysis,
the feature extraction, and the pattern recognition. The high
diagnostic accuracy verifies the excellent performance of the
proposed method.
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