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ABSTRACT Mixed Weibull distributions are widely used in lifetime modeling of products with multiple
failure modes. It is difficult to estimate parameters of the mixed Weibull distribution since it contains
multiple parameters. A parameter estimation model for the mixedWeibull distributions is proposed based on
nonlinear least squares estimation (LSE). An approach of determining parameters’ approximate values and
rough bounds is presented for selecting good starting points used in the particle swarm optimization (PSO)
procedure. The PSO solution of the nonlinear LSE method is proposed by a step-by-step procedure. A case
study is given to illustrate the accuracy and efficiency of our proposed method. Compared with the genetic
algorithm (GA)-based nonlinear LSEmethod, our method shows advantages in both accuracy and efficiency.
And compared with the maximum likelihood estimation (MLE) method, our method shows significant
advantages in efficiency.

INDEX TERMS Mixed Weibull distribution, parameter estimation, nonlinear least squares estimation,
particle swarm optimization.

I. INTRODUCTION
The Weibull distribution has been proved, empirically and
analytically, to be an excellent model for many individual
failure mechanisms on individual components. Its accuracy
in modeling single failure modes has been widely recognized.
On the other hand, aWeibull distribution is often a poormodel
for a system or product with multiple failure modes. There are
times when a failure distribution for a product with multiple
failure modes needs to be determined. A preferred approach
is to perform a Weibull analysis on each mode separately
if enough data is available, and then combine them mathe-
matically to obtain the overall product distribution. However,
there are usually few failures on the individual modes.What’s
worse, product failures are reported but details of the failure
modes are not. In this case, a MixedWeibull distribution may
be a good solution [1].

The probability density function (PDF) of products with
multiple failure modes will have a bimodal or multimodal
shape. Consequently, the mixed Weibull distributions can
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yield the best fits to lifetimes of such products and have
been widely used in this field. He et al. [2] presented a
mixed Weibull probability distribution model for reliabil-
ity evaluation of the paper-oil insulation. Ling et al. [3]
studied the fatigue life prediction of mechanical compo-
nents based on the mixed Weibull distribution, and a case
study is used to show that their method can fit the observed
cumulative failure probability more properly than the stan-
dard two-parameter Weibull distribution. Reliability predic-
tions are used to illustrate the effectiveness of their model.
Carlucci and Tognarelli [4] presented an approach to model
the forced outage distribution by using the mixed Weibull
Distribution. This approach can be applied to support reliabil-
ity block diagram basedMonte Carlo simulation. Du et al. [5]
established a reliabilitymodel for electrical engineering prod-
ucts by using the mixed Weibull distribution. The results
indicate that the mixed Weibull distribution model has a
higher accuracy compared with other methods. Andersen
and Dennison [6] developed a mixed Weibull Distribution
Model of DC Dielectric Breakdown failures, as these fail-
ures incorporate both low-and high-energy defect modes.
Ghavijorbozeh and Hamadani [7] applied the mixed Weibull
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distribution in the machine reliability analysis for the Cellu-
lar manufacturing system. Their findings show that reliabil-
ity analysis model based on the mixed Weibull distribution
approach can give options to a user to select the suitable
failure rate and mode for a specific situation. Yuan et al. [8]
proposed a mixed Weibull distribution based reliability esti-
mation method for aircraft engines, which are typical com-
plex products with diverse failure modes.

Although the mixed Weibull distribution is preferred to
be applied in modeling of products with multiple failure
modes, its parameters cannot be estimated easily. Many
researchers have beenmaking efforts to get a good solution of
the parameter estimators for the mixed Weibull distribution.
Jiang and Kececioglu [9] proposed an algorithm in terms of
the principle of the Maximum Likelihood Estimation (MLE)
via the Expectation and Maximization algorithm, and it is
derived for both postmortem and non-postmortem time-to-
failure data. Attardi et al. [10] proposed an MLE algorithm
of the mixed Weibull model parameters. And a stepwise
procedure has been used to test the significance of covariates
and to construct the regression model. Gong [11] used the
shuffled complex-evolution metropolis algorithm to estimate
mixed Weibull distribution parameters in the automotive reli-
ability analysis. And the accuracy of the algorithm is veri-
fied by comparing with the MLE method. Huang et al. [12]
proposed an algorithm to estimate parameters for mixed
Weibull distributions by combining the fuzzy classification
and the MLE. The results show their algorithm has better
accuracy compared with Jiang and Kececioglu’s method [9].
Touw [13] studied the Bayesian estimation of mixed Weibull
distributions. And it is found that the Bayesian estimation can
improve the accuracy for situations with low mixture ratios,
so long as the prior on theweak subpopulation’s characteristic
life has an expected value less than or equal to the true
characteristic life. Ling et al. [14] establishes the parame-
ter estimation methods for the mixed Weibull model using
the theory of the nonlinear least squares estimation (LSE);
and quasi-Newton method is used to solve the optimization
problem. And, a numerical example is given to compare the
proposed method with the conventional graphical method.
Krohling et al. [15] formulated the parameter estimation of
the mixed Weibull distribution as the maximization of the
likelihood function of the corresponding mixture model, and
Bare Bones Particle Swarm Optimization (PSO) algorithm
were applied to get the maximum value of the likelihood
function. Chi et al. [16], [17] presented an optimizationmodel
for parameter estimations for the mixed Weibull distribution
by minimizing the residual sum of squares, and the Cuckoo
Search algorithm is used to search the optimal estimators.
At present, the MLE and the LSE are the most frequently
used methods for distribution parameter estimations. MLE
is considered to have many good statistical properties and
is preferred by researchers. The LSE method is essentially
a regression method, which takes the summation of squared
residuals as the minimizing objective. LSE is very conve-
nient, and hence is preferred by practitioners [18].

Among all of the optimization algorithms, PSO is a popu-
lation based stochastic optimization technique, which mimics
the behavior of flocks of birds, swarms of insects or schools
of fish, in which individuals are called particles and the
population is called a swarm [19]. The PSO algorithm has
been widely used in parameter estimation since it has been
proposed by Eberhart and Kennedy more than twenty years
ago. özsoy et al. [20] applied the PSO algorithm in the param-
eter estimation based on MLE for the four-parameter Burr
type III distribution, and their simulation shows that the PSO
approach provides accurate estimates. Örkcü et al. [21] also
presented a comprehensive investigation of different PSO
variants (according to inertia weight procedures, acceleration
coefficients, particle size, and search space) in the parameter
estimation of the three-parameter Weibull distribution, and
numerical examples show that PSO approach variants exhibit
a high efficiency and accuracy in the MLE based param-
eter estimation. Jiang et al. [22] conducted the parameter
estimation for Weibull, Rayleigh, Gamma and Lognormal
probability distributions by using the LSE method, the MLE
method and the moment method respectively. Three meta-
heuristic optimization algorithms, including the bat algo-
rithm, the cuckoo search algorithm and the PSO algorithm,
as well as the numerical method are employed to obtain
the optimal parameters. Their experimental results show that
the three metaheuristic optimization algorithms are better
than the numerical method. Additionally, the PSO based
estimation for the Weibull distribution is slightly superior
to the cuckoo search based method. Lu et al. [23] pro-
posed the nonlinear least-squares parameter evaluation meth-
ods of maintenance time distribution based on PSO, their
result shows the precision of method proposed here is better
than the traditional methods. Ma et al. [24]–[26] studied
the application of optimization method in the gas emis-
sion source identification. Different kinds of swarm intel-
ligent optimization methods are discussed in their work,
which include the PSO method, the genetic algorithm (GA),
the simulated annealing, the ant colony optimization algo-
rithm, the firefly algorithm, the pattern search method,
the Nelder-Mead simplex method and their hybrid optimiza-
tionmethods. The comparison among thesemethods has been
presented and their results show the PSO method is a good
choice in the gas emission source identification, and it can
obtain satisfied estimation results under different boundary
constraints.

PSO algorithm is a type of global search method, which
depends less on the initial values compared with traditional
optimization methods. PSO method is superior in compu-
tational efficiency compared with other metaheuristic algo-
rithms such as the ant colony optimization algorithm, the
firefly algorithm and the GA. In addition, PSO method can
obtain satisfied estimation results under different boundary
constraints [24], [25]. Therefore, it will also be applied in
the LSE based parameter estimation of the mixed Weibull
distribution in this study. Specifically, the PSO algorithmwill
be used to minimize the summation of the relative deviations
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between the actual value of the distribution function and the
value predicted by the distribution model.

The rest of this paper is structured as follows. In Section II,
definitions related to the mixed Weibull distribution and the
empirical distribution function are given, and the optimiza-
tion model of the LSE based parameter estimation is devel-
oped. In Section III, the method of determining parameters’
approximate values and rough bounds of the mixed Weibull
distribution is given for selecting good starting points used
in PSO, and the PSO solution of the LSE based optimization
model for parameter estimations is proposed by a step by step
procedure. In Section IV, case studies are given to illustrate
the correctness and effectiveness of our proposed method.
In Section V, concluding remarks are presented.

II. PROBLEM STATEMENT
A. DEFINITIONS RELATED TO MIXED
WEIBULL DISTRIBUTIONS
The PDF of the mixed Weibull distribution is expressed as

f (t) =
n∑
i=1

pi
βi

α
βi
i

tβi−1e
−

(
t
αi

)βi
, (1)

where pi, βi and αi are the weighting factor, the shape param-
eter and the scale parameter of the ith subpopulation respec-
tively, and n is the number of sunpopulations [18]. And we
have

n∑
i=1

pi = 1. (2)

The distribution function or the cumulative density func-
tion (CDF) of the mixed Weibull distribution is expressed as

F(t) = 1−
n∑
i=1

pie
−

(
t
αi

)βi
. (3)

In reliability engineering, CDF is also called the failure
probability or unreliability, and the reliability function of
Weibull distributions can be expressed as

R(t) =
n∑
i=1

pie
−

(
t
αi

)βi
. (4)

A matrix used to denote the unknown parameters in
(1), (3) or (4) is given as

θ =

 p1 p2 . . . pn
β1 β2 . . . βn
α1 α2 . . . αn

 , (5)

where we have

0 < pi < 1
n∑
i=1

pi = 1

αi > 0
βi > 0

, i = 1, 2, · · · , n. (6)

B. EMPIRICAL DISTRIBUTION FUNCTIONS
In failure data analysis, the empirical distribution function
is usually used to denote the actual value of the distribution
function. To the m ordered lifetime samples t1, t2, · · · , tm,
i.e. t1 ≤ t2 ≤ · · · ≤ tm, the empirical distribution function
can be given as [27]

F̂(t) =


0, t < t1
j
m
, tj ≤ t < tj+1 (j = 1, 2, · · · ,m− 1)

1, t ≥ tm.

(7)

When the size of lifetime samples are less than 20, the median
rank values of F (t) are computed using Bernard’s approxi-
mation which is given below [28]

F̂(t) =


0, t < t1
j− 0.3
m+ 0.4

, tj≤ t< tj+1 (j = 1, 2, · · · ,m− 1)

1, t ≥ tm.

(8)

C. OPTIMIZATION MODEL OF THE NONLINEAR LSE
BASED PARAMETER ESTIMATION
The objective of parameter estimations is to find the parame-
ter values of the model to best fit the data samples. The fit of
the distribution is usuallymeasured by the deviations between
the actual value of the empirical distribution function and the
value predicted by the distribution model. In the linear LSE,
the CDF of a distribution model is generally transformed to a
linear formation for the convenience of calculation. However,
it is very difficult, if not impossible, to transform the CDF of
the mixed Weibull distribution to a linear formation. In this
study, the nonlinear CDF of the mixed Weibull distribution is
used to calculate the residuals directly. And the summation
of the squared residuals is selected as the objective function
of the parameter estimation model. With the expression of
constraints for the unknown parameters given in (6), the opti-
mization model of the nonlinear LSE based parameter esti-
mation can be expressed as

min f (θ ) =
m∑
j=1

[
F̂(tj)− F(tj, θ )

]2

s.t.



0 < pi < 1
n∑
i=1

pi = 1

αi > 0
βi > 0

, i = 1, 2, · · · , n, (9)

where F̂(tj) is the value of the empirical distribution function,
and it can be calculated via (7) or (8).F(tj, θ ) is the CDF value
that can be calculated via (3).

In (9), the residuals are expressed by the difference
between the nonlinear CDF and the empirical distribution.
In this way, we do not have to transform the CDF to a linear
formation for using of the linear LSE method, and the dif-
ficulties in linearization of the mixed Weibull distributions’
CDF can be overcomed.

VOLUME 7, 2019 60547



Z. Lu et al.: Nonlinear LSE for Parameters of Mixed Weibull Distributions

Our goal is to find the estimating values of all parameters
that can minimize the objective function in the case that all
constraints can be satisfied. And the PSO algorithm will be
used to get the optimizing values of these parameters in the
following section.

III. PSO SOLUTION FOR THE LSE BASED
PARAMETER ESTIMATION OF THE MIXED
WEIBULL DISTRIBUTION
PSO is a metaheuristic optimization method. It solves an
optimization problem by having a population (swarm) of
candidate solutions (particles), and moving these particles
around in the search-space according to a few simple formu-
lae over the particle’s position and velocity. The movements
of the particles are guided by their own (local) best known
position in the search-space as well as the entire swarm’s
(global) best known position. Better positions of the particles
maybe discovered by the movement. The discovery of the
better positions will update the local and global best known
positions, and guide the movements of the swarm. The pro-
cess is repeated, and by doing so, it is hoped that a satisfactory
solution will eventually be discovered [29].

A. APPROACH OF DETERMINING PARAMETERS’
APPROXIMATE VALUES AND ROUGH BOUNDS
PSO is a space searching optimization, the goodness of
the starting point will affect the efficiency significantly.
Approaches for determining parameters’ approximate values
and rough bounds are proposed here, and then the starting
points (namely initial points) can be obtained according to the
rough bounds. Although the method proposed can only get
parameters’ approximate values and rough bounds, it will not
affect the accuracy of the estimating results. As the approxi-
mate values and rough bounds are only used to determine the
initial points, and the accuracy of the PSO algorithm depends
less on the initial points.

The empirical distribution function of a single Weibull
distribution is expressed as

F(t) = 1− e−(
t
α )

β

. (10)

It can be transferred to the following linear formation

ln {− ln [1− F(t)]} = β ln t − β lnα. (11)

To lifetime samples tj(j = 1, 2, · · · ,m) following the
mixed Weibull distribution with n subpopulations, and their
corresponding empirical distribution functions F̂(tj), we do
transformations according to (12){

xj = ln tj
yj = ln

{
− ln

[
1− F(tj)

]} j = 1, 2, · · · ,m. (12)

When plotting all the m points (xj, yj) on the general
coordinate system, there will be n straight lines which are
separated by n − 1 inflection points, and each straight line
is roughly corresponding to a subpopulation of the mixed
Weibull distribution.

By (11), the slope of the ith straight line is the approximate
value of the shape parameter βi.
Assume the size of points fitting the ith straight line is

mi(i = 1, 2, · · · , n), then the approximate values of the
weighting factors can be denoted as

pi =
mi
m
. (13)

According to (7) and (10), we haveF(α) =
j(α)

m
F(α) = 1− e−1,

(14)

where j(α) denotes the ordinal number of the lifetime sample
whose value is roughly equal to α. Hence we have

j(α) =
[
m · (1− e−1)

]
. (15)

where [•] is the rounding function. For the ith subpopula-
tion of the mixed Weibull distribution, we have the similar
expression

j(α)i =

[
mi · (1− e−1)

]
. (16)

Thus, the j(α)i th lifetime sample pertinent to the ith
straight line is the approximate value of the scale
parameter αi.

Based on the parameters’ approximate values determined,
we can determine the rough bound of each parameter.
Assume p(A)i , α(A)i and β(A)i are the approximate values of
the pi, αi and βi respectively, the rough lower and upper
bounds of pi can be calculated by{

p(lower)i = max(p(A)i − 0.2, 0)

p(upper)i = min(p(A)i + 0.2, 1),
(17)

where p(lower)i and p(upper)i are the rough lower and upper
bounds of pi respectively.
The rough lower bound of αi can be calculated by

α
(lower)
i =


α
(A)
i−1 + α

(A)
i

2
, i > 1

0.9α(A)i , i = 1,

(18)

whereα(lower)i is the rough lower bound ofαi. The rough upper
bound of αi can be calculated by

α
(upper)
i =


α
(A)
i+1 + α

(A)
i

2
, i < n

1.1α(A)i , i = n,

(19)

where α(upper)i is the rough upper bound of αi.
The rough lower and upper bounds of βi can be calcu-

lated by {
β
(lower)
i = max(0.5β(A)i , 0)

β
(upper)
i = 1.5β(A)i ,

(20)
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FIGURE 1. PSO flowchart of the LSE based parameter estimation.

where β(lower)i and β(upper)i are the rough lower and upper
bounds βi respectively.

B. STEP BY STEP PROCEDURE
In this study, particle positions are used to denote the specific
values of the unknown parameter matrices, and particles’
velocities are used to denote the change rates of the param-
eters. We assume that there are totally q particles in the
swarm. The position of the lth particle in thekth iteration is
expressed as

θ (l,k) =


p(l,k)1 p(l,k)2 . . . p(l,k)n

β
(l,k)
1 β

(l,k)
2 . . . β

(l,k)
n

α
(l,k)
1 α

(l,k)
2 . . . α

(l,k)
n

 . (21)

The velocity of the lth particle in the kth iteration is
expressed as

V (l,k)
θ =


v(l,k)p1 v(l,k)p2 · · · v(l,k)pn

v(l,k)β1
v(l,k)β2

· · · v(l,k)βn

v(l,k)α1 v(l,k)α2 · · · v(l,k)αn

 . (22)

The flowchart of the step by step procedure of the PSO
based nonlinear LSE based parameter estimation for the
mixed Weibull distribution is given in Fig. 1. And the pro-
cedure is composed of 5 steps.

1) Initialize particles’ positions and velocities;
2) Initialize local and global best known positions;
3) Update particles’ positions and velocities;
4) Update the local and global best known positions;
5) Determine whether the termination criterion is

met. If it is met, the procedure will be finished;
otherwise, go back to update particles’ positions and
velocities.

1) STEP 1: INITIALIZE PARTICLES’
POSITIONS AND VELOCITIES
We use (23) to express the initial values of the weighting
factors pi

p(l,0)i =
p(lower)i + (p(upper)i − p(lower)i )× rand
n∑
j=1

p(lower)j + (p(upper)j − p(lower)j )× rand
, (23)

where rand is random number generated from the uniform
distribution U (0, 1). Equation (23) can make sure that the
summation of all p(l,0)i (i = 1, 2, · · · , n) equal 1.
The initial values of the shape parameters βi can be

expressed as

β
(l,0)
i = β

(lower)
i + (β(upper)i − β

(lower)
i )× rand . (24)

And the initial values of the scale parameters αi can be
expressed as

α
(l,0)
i = α

(lower)
i + (α(upper)i − α

(lower)
i )× rand . (25)

To the initial velocities, we have
v(l,0)pi = (p

(lower)
i − p(upper)i )+ 2(p(upper)i − p(lower)i )× rand

v(l,0)βi
= (β(lower)i − β

(upper)
i )+ 2(β(upper)i − β

(lower)
i )×rand

v(l,k)αi = (α
(lower)
i − α

(upper)
i )+ 2(α(upper)i − α

(lower)
i )×rand .

(26)

We can obtain the initial particles’ positions θ (l,0) via
(23) (24) and (25), as well as the initial particles’ velocities
V (l,0)

θ via (26).

2) STEP 2: INITIALIZE LOCAL AND GLOBAL
BEST KNOWN POSITIONS
We use pbest(l,k) to express the local best known position of
the lth particle until the kth iteration, and gbest(k) to express
the global best known position up to the kth iteration. As the
initial local best known positions are just the initial positions,
we have

pbest(l,0) = θ (l,0), l = 1, 2, · · · , q. (27)

And, we can obtain the initial global best known position
gbest(0) by (9) which is also the fitness function in the PSO
algorithm.

3) STEP 3: UPDATE PARTICLES’ POSITIONS AND VELOCITIES
The updating of the velocity for the lth particle in thekth
iteration is expressed as

V (l,k)
θ = w(k)

× V (l,k−1)
θ + c1 × rand × (pbest(l,k−1)

− θ (l,k−1)) + c2 × rand × (gbest(k−1) − θ (l,k−1)).

(28)

where c1 and c2 are constants and their values are usually
equal to 2, w(k) is the inertia weight of the velocity in the
kth iteration. Eberhart and Shi [30], [31] have illustrated that
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an improved performance can be acquired when the inertia
weight typically decrease linearly from 0.9 to 0.4 during one
evolution. We use the following expression to calculate w(k)

w(k)
= 0.4+ 0.5× (1− 10−a)k . (29)

where a is a positive integer. As the number of iterations is not
set as the terminating condition in Step 5, we cannot express
the inertia weight in an absolutely linear way. However, equa-
tion (29) is approximately linear when k is less than 1000 and
a is set as 3 in the case study given in Section IV.

And the updating of the position for the lth particle in
thekth iteration is expressed as

θ (l,k) = θ (l,k−1) + V (l,k)
θ . (30)

The parameters’ values may violate the constraints given
in (6) after updating particles’ positions. In this case, we will
generate a feasible position randomly according to the initial-
ization method of positions given in Step 1.

4) STEP 4: UPDATE LOCAL AND GLOBAL
BEST KNOWN POSITIONS
The local and global best known positions are updated
according to the fitness function of the present positions of
the particles. In the kth iteration, the updating of the local
best known position for the lth particle can be expressed as

pbest(l,k) =

{
θ (l,k), f (θ (l,k)) < f (pbest(l,k−1))
pbest(l,k−1), otherwise.

(31)

To update the global best known position, we have to do
calculations for all (l = 1 to q) particles according to the
following expression.

gbest(k) =

{
pbest(l,k), f (pbest(l,k)) < f (gbest(k−1))
gbest(k−1), otherwise.

(32)

After the q comparisons have been finished, we can get the
updated global best known position.

5) STEP 5: DETERMINE WHETHER THE TERMINATION
CRITERION CAN BE MET
The procedurewill terminate as the fitness function converges
and approaches an extremely small value. When the fitness
function converges, the difference of fitness function value
between the two neighbored iterations will be negligible.
Namely, f (gbest(k))and f (gbest(k−1)) are extremely close.

Therefore, the termination criterion can be expressed as{
f (gbest(k)) < ε1

|f (gbest(k))− f (gbest(k−1))| < ε2,
(33)

where ε1 and ε2 are both arbitrarily small positive reals.
If (33) can be satisfied, the procedure will terminate, and

the elements of gbest(k) will be the ultimate parameter esti-
mates. Otherwise, the procedure will go back to Step 3 and a
new iteration will start.

One of PSO’s the deficiencies is that its result might be
trapped into a local optimal solution. In this case, the fitness

function will converge but it cannot approach the extremely
small value. To avoid being trapped into the local opti-
mal solution, a predetermined number of iterations is given,
and the evolution of the procedure will terminate when the
iterations reach the predetermined number. And the results
obtained from this evolution will be discarded.

IV. CASE STUDY AND DISCUSSIONS
A. CASE STUDY
To illustrate the application of our method, 200 random num-
bers generated from the mixed Weibull distribution whose
distribution function is given in (34) are used as lifetime
samples.

F(t) = 1− 0.2e−(
t

800 )
0.5
−0.6e−(

t
1200 )

3
−0.2e−(

t
2000 ). (34)

To get the 200 random numbers, 40 samples are generated
from the Weibull distribution with α = 800 and β = 0.5,
120 samples are generated from the Weibull distribution with
α = 1200 and β = 3, and 40 are generated from the Weibull
distributionwith α = 2000 and α = 1. To each singleWeibull
distribution, its random numbers are generate via the Inverse
transform technique [21]. The lifetime samples are given in
Table 1. The totally 200 samples are divided into 10 groups.

By transforming each lifetime sample and the correspond-
ing empirical distribution function via (12), we can find three
straight lines given in Fig. 2.

Andwe can get the approximate value of each parameter by
the methods proposed in Section III. Additionally, the upper
and lower limit of each parameter can be determined accord-
ing to the approximate value. The approximate values and the
corresponding upper and lower limits are given in Table 2.

In the case study, we let ε1 = 0.01, ε2 = 10−10 and w(k)
=

0.4+ 0.5×0.999k , namely a is set as 3 in (29). The population
size is set as 200, and the predetermined number of iterations
is set as 1000. We have conducted the PSO based procedure
for 20 times, one of the evolutions of the PSObased procedure
is shown in Fig. 3, and the iteration number of this evolution
is between 500 and 600.

The results of the 20 evolutions of the PSO based pro-
cedure are given in Table 3. And the total elapsed time of
the 20 evolutions running in our MATLAB program is about
254 seconds. So the elapsed time of one evolution is nearly
12.7 seconds. The computer used was Intel (R) Core (TM)
i5-6500 four Core Processor 3.6GHz, 8GB of RAM.

We can see that the number of iterations have reached
1000 but the value of the fitness function has not approached
ε1 in the 14th, 17th, and 20th evolution. The values of these
evolution will be discarded, as their results have been trapped
in the local optimum solution.

Therefore, we take the average values of the left 17 evolu-
tions as the estimates of the parameters for the mixedWeibull
distribution, which are given in Table 4.

The results obtained from the GA based nonlinear LSE
method and the PSO based MLE method as well as the
corresponding elapsed time are also listed in Table 4.
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TABLE 1. The lifetime samples.

TABLE 2. Parameters’ approximate values and bounds.

FIGURE 2. Plotting of lifetime samples.

In the GA based nonlinear LSE method, the popula-
tion size is set as 200 which is identical to the PSO
based method. The crossover rate is 0.6, and the muta-
tion rate is 0.01. The optimum individual of each gen-
eration has been saved and not be involved in the
selection, crossover and mutation operation of the next
generation.

FIGURE 3. One evolutionary process of the PSO based procedure.

The CDF obtained by these methods are shown in Fig. 4 to
compare with the empirical distribution function. Fig. 4.
Shows the CDF obtained by these methods as well as the
empirical distribution function.

Fig. 5 Shows curves of the errors between CDF obtained
by different methods and the empirical distribution function.
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TABLE 3. The results of the twenty evolutions.

TABLE 4. Parameters’ estimated values.

FIGURE 4. The curves of CDF obtained by different methods.

The average errors and maximum errors of the CDF
obtained by different methods are listed in Table 5.

B. RESULT DISCUSSIONS
Table 4, Table 5 and Fig. 5 illustrate that both PSO and
GA based LSE method can get the satisfied estimation of

FIGURE 5. The errors between CDF obtained by different methods and
the empirical distribution function.

each parameter, and their results are close to each other.
However, our PSO based method is still more accurate and
efficient than the GA based nonlinear LSE method. There
might be two reasons:
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TABLE 5. Errors of different methods.

1) The parameters’ estimated values of the GA based non-
linear LSE method are restricted in the initial bounds, since
the value of each variable is constrained in a given bound
in the GA based optimization. When the true value of the
parameter is not located in the given bound, the GA based
method cannot find the optimal result. For example, the true
values of β2 and β3 are both greater than their upper bounds
given in Table 2. Their estimated values obtained by the GA
based nonlinear LSE method are 2.63 and 0.75 respectively,
which are their upper bounds and less their true values.

2) The optimization of the PSO algorithm is realized by
the movements of particles, which are only guided by their
own best known position as well as the entire swarm’s best
known position. PSO is simpler thanGA as it has no selection,
crossover and mutation operations.

Additionally, Table 4 also shows our method is much more
efficient than the MLE method, there are also two reasons:

1) The expression of the likelihood function is more com-
plicated than the expression of the summation of the squared
residuals. The likelihood function of the mixed Weibull dis-
tribution is expressed by

L (αi, βi, pi) =
m∏
j=1

[
n∑
i=1

pi
βi

α
βi
i

tβi−1j e
−

( tj
αi

)βi]
. (35)

For single distributions, the likelihood function can be
transferred to a simplified formation by taking the natural log-
arithm.However, the PDF of amixed distribution is expressed
as the weighted summation of several single PDFs, thus it
cannot be simplified by taking the logarithm. The natural
logarithm of the likelihood function is expressed as

L (αi, βi, pi) =
m∑
j=1

ln

[
n∑
i=1

pi
βi

α
βi
i

tβi−1j e
−

( tj
αi

)βi]
. (36)

And the summation of the squared residuals of the mixed
Weibull distribution is expressed by

f (αi, βi, pi) =
m∑
j=1

{
F̂(tj)−

[
1−

n∑
i=1

pie
−

(
t
αi

)βi]}2

. (37)

Obviously, the calculation of (37) is much simpler than the
calculation of both (35) and (36).

2) The likelihood function’s order of the magnitude is
extremely small, as it is calculated by continually multiplying
the probability density functions, particularly when the sam-
ple size is large. Therefore, it will cost much time to get the
optimal value when the MLE is applied.

V. CONCLUSIONS
The optimization model of the nonlinear LSE based parame-
ter estimation is developed for the mixed Weibull distribu-
tion. The objective function of the model is expressed by
the summation of the squared nonlinear residuals, which is
the difference between the nonlinear CDF and the empirical
distribution of the mixed Weibull distribution. In this way,
the cumbersome work of transforming the CDF of the mixed
Weibull distribution to a linear formation can be avoided.

An approach of determining parameters’ approximate val-
ues and rough bounds is presented for selecting good starting
points used in the PSO. The good starting points can improve
the efficiency of PSO algorithm and make it converge faster.

The PSO solution of the LSE is proposed by a step by
step procedure. The procedure will terminate as the fitness
function converges and approaches an extremely small value.
A predetermined number is also treated as the up limit of
the procedure’s iterations, the evolution of the procedure
will terminate when the iterations reach the predetermined
number. Hence, the deficiency of being trapped into the local
optimal solution can be avoided.
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