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ABSTRACT In social opportunistic networks, mobile devices can be regarded as socialization nodes.
Furthermore, they carry and store useful information.Mobile devices can select destination nodes and deliver
messages through social opportunistic networks because messages can be securely and conveniently stored,
carried, and transmitted with nodes. According to such characteristics, communities can be established.
However, many communities may deliver messages only depending on one or two nodes. If those nodes
are not enough cache and over-flooding, data transmission in communities may wait for a long time.
To find many cooperation neighbor nodes can share much useful information. This paper proposes a method
that characteristic interests with neighbors are selected or pushed service by users. According to establish
interest characteristic probability predicted method, interest neighbors can be selected and receive or send
information. Compared with the social opportunistic network algorithms, the new research method achieves
better results in accuracy selected and delivery ratio, transmission delay, and routing overhead. According to
the simulation experiments, the average delivery ratio of new research method is 0.88, which is 40% higher
than that of the Epidemic algorithm; the end-to-end delay reduces 38% with Spray and wait for algorithm.

INDEX TERMS Social networks, interest, neighbor, probability distribution, information transmission.

I. INTRODUCTION
In recent years, as wireless networks have penetrated into our
daily lives, the application scale of network has been increas-
ing. As a new type of self-organizing network, it has attracted
the attention of researchers at home and abroad [1]–[2].
To get rid of the restriction of establishing the end-to-end
communication path to achieve network communication,
the concept of social opportunistic network is proposed. This
concept has been widely used in animal tracking, vehicle
network and other fields [3]–[5]. Social opportunistic net-
works belong to intermittent connectivity networks. Nodes
in social opportunistic networks are characterized by typical
mobility, openness, and sparseness. They have low encounter
rates and lack fixed and secure connectivity links. Generally,
the ‘‘Storage-Carrying-Forwarding’’ mechanism [6] relies on
the opportunity brought by node mobility to realize routing.
This model requires that all nodes cooperate to forward the
routing messages of other nodes in a coordinated manner and
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realize communication hop by hop through the chances of
encounters caused by node movement.

With the rapid growth of the data volume in wireless com-
munication networks, the number of data transmission and
the data volume per transmission are also greatly improved,
but nodes do not have enough capacity to transmit a large
amount of data. Also, nodes need not only to transmit data,
but also to calculate some tasks, so nodes consume more
energy. At present, many compute intensive mobile applica-
tions are deployed on nodes, so the time for nodes to enter
the sleep state is faster because of low energy [7]–[10]. As a
result, the issue of energy efficiency becomes more serious
and challenging in wireless communication networks. There-
fore, to improve energy efficiency, we start from reducing
energy consumption of nodes. Especially, in order to reduce
the energy consumption of nodes in wireless communication
networks, we mainly study from the following two aspects.

On the one hand, we propose efficient data packet
iteration based on social opportunistic networks. Social
opportunistic networks derive from the end-to-end com-
munication of mobile devices carried by people based on
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the encounter opportunity [11]–[13]. When the transmission
domain between users cannot be reached, the social oppor-
tunistic network usually adopts the store-and-forwardmethod
to complete the data transmission process [9], and the mes-
sage carrying node forwards the message to a certain relay
node or the destination node bymeans of the encounter oppor-
tunity caused by movement to forward. In wireless networks,
nodes in an unpredictable geographical location need to com-
municate with each other at unpredictable geographical inter-
vals. Therefore, as a multi-hop wireless technology, social
opportunistic network proposes that end-to-end data trans-
mission can be achieved through ‘‘opportunistic communica-
tion’’. Such communication relies on the movement of nodes
and the effective routing-forwarding algorithm, so as to give a
node the opportunity to act as a relay node in some end to end
data transmission. In addition, an effective routing forwarding
algorithm may select reliable relay nodes for efficient data
transmission [14]. Compare with other routing-forwarding
algorithms, an effective routing forwarding algorithm have
the less number of hops in all successful message forwarding
processes, and then the less time and energy nodes spend in
the forwarding processes. Therefore, how to select reliable
relay nodes is a very important problem in routing-forwarding
algorithm.

On the other hand, different routing-forwarding algorithms
take different similarity factors of nodes in the network into
account, and few algorithms take multiple similarity factors
into consideration [15]–[18]. However, each of these similar-
ity factors plays a different role in deliver ratio. Therefore,
the routing-forwarding algorithm based on node similarity
should considermultiple similarity factors rather than a single
factor. Human movement and social attribute usually reflect a
special relationship between human, which can be a powerful
condition for the choice of relay nodes [19]. In social scene,
the corresponding geographic locations of nodes at different
times combine to represent the moving trajectories of nodes.
People may keep the same movement track almost every day
for a certain period of activity, which means they are likely
to meet the same people in the same period of time every
day, such as from the place of residence to the place of work.
In social opportunistic networks, besides the movement of
node, each node has a large number of social attributes, such
as interest, occupation, place of residence and place of work.
The similarity between nodes is calculated by evaluating the
social attribute value of nodes [20]. Based on the higher social
similarity, nodes that encounter more frequently are divided
into the same community and thus more opportunities to
exchange information.

This work proposes a method that characteristic inter-
ests with neighbors are selected or pushed service by users.
According to establish Interest Characteristic Probability Pre-
dicted (ICPP) algorithm, we can select interest neighbors to
receive or send information. A good performance is achieved
with nodes that extend network lifetime reduce delay and
overhead in social communication environment.

The study makes the following contributions:
(1) Interest behaviors by neighbors are established with

multiple values of nodes in social communication.
(2) By effectively analyzing the attribute preference of

nodes in transmission process, we can define the individual
preference of nodes as preference similarity, so as to measure
their impact on information transmission.

(3) In accordance with the simulation results in the Oppor-
tunistic Networking Environment (ONE), we analyze the per-
formance of ICPP and compared it with Epidemic algorithm,
Spray and wait algorithm and PRoPHET algorithm, ICPP
algorithm shows enhanced performances in increasing the
delivery ratio and End-to-end delay and overhead.

The structure in this study is as follow. Related works is
section 2; system design is section 3; simulation is section 4
and conclusion is section 5.

II. RELATED WORKS
At present, many study methods in social opportunistic net-
works have focused on algorithm research. Some algorithms
can be adapted to different application fields. In different
scenes, effective methods can be established interdisciplinary
by improving the available algorithms. Some existing oppor-
tunistic network algorithms are discussed as follows.

In recent years, the academic has done a lot of researches
around the routing-forwarding algorithms in social oppor-
tunistic networks [8], [12], [17], [18], [19], and proposed
different effective methods under different application sce-
narios. In social opportunistic networks, routing-forwarding
algorithms are usually divided into two types: context-
aware routing-forwarding algorithms and non-context-aware
routing-forwarding algorithms. Context-aware routing for-
warding algorithm based on the similarity of nodes to select
relay nodes through the social relations between nodes and
the contextual information related to nodes [7], [12], [17].

In addition, although context-aware routing-forwarding
algorithms can improve the transmission environment and
improve transmission efficiency, these algorithms usually
need to manage a large amount of information and per-
form computing tasks, thus bringing additional delay and
energy consumption to the network. However, non-context-
aware routing-forwarding algorithms perform flooding trans-
mission, which brings many redundant messages group
copies to the network, and eventually leads to extremely
high forwarding delay and energy consumption of the
network [8], [18], [19]. It can be seen that both the context-
aware routing-forwarding algorithm and the non-context-
aware routing-forwarding algorithm will bring some extra
delay and energy consumption to the entire wireless net-
work, especially the non-context aware routing-forwarding
algorithm.

In context-aware routing-forwarding algorithms, many
studies calculate the similar level between nodes to define the
relationship between nodes, such as the possibility of a future
encounter between nodes, the moving trajectory of nodes,
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and community partitioning of nodes. In [20], Wang et al.
innovatively extracts social identity frommessages generated
by mobile nodes, and proposes the Exclusive OR algorithm
that takes into account the multiple social identities of mobile
nodes and their corresponding social influences. By the final
simulation results, the performance of data transmission can
be improved by taking social identity into account. However,
the Exclusive OR algorithm does not consider a variety of
social attributes.

In [21], Wu et al. proposes the SRBRA algorithm, which
is based on social relations. Firstly, real-time data generated
by nodes are analyzed and summarized, and then specific
factors affecting social relations between nodes are extracted
to calculate the value of social relations between nodes.
Finally, according to the social relation value between nodes,
the social relation value between the neighbor node and the
destination node is sorted to select the optimal next-hop relay
node to complete the transmission of messages. However,
the SRBRA algorithm does not take the mobility of nodes
into consideration. Besides, in [22], Wu et al. studies a frame-
work that takes individual context, society and relationships
as matching opportunity predictors. The proposed algorithm
based on a series of studies can predict the cooperation oppor-
tunities of data transmission between nodes, and then deter-
mine the end-to-end communication between nodes in the
network according to the cooperation opportunities between
nodes.

Some mathematical methods and models are usually used
in context-aware routing-forwarding algorithms, such as
markov decision model, set theory and graph theory. Of the
three related works to be introduced, two uses game the-
ory and the other uses graph theory. In [23], Nguyen and
Nahrstedt proposes a new context routing protocol based
on game theory to select the most appropriate relay node
to forward packets. Through the non-zero cooperation times
of two nodes, the context routing protocol builds the game
depends on the context information, the distance between the
corresponding node and the target node, and the encounter
index.

In [24], in order to determine the cost to achieve efficient
data transmission, Talipov et al. designed a model based on
user context replication and the graph theory, which is an
online backpack problem. The scheme learns and predicts the
context information of each node in order to calculate the data
delivery probability of each node, and the number of copied
messages is adjusted based on the given delivery threshold.
However, the scheme only considers the data information in
the process of node transmission, which means the decision
accuracy of message transmission needs to be improved in
the process of transmission. Besides, in [25], in order to
find the vertex cover suitable for the perceptive tasks in the
group, Phuong Nguyen and Klara Nahrstedt designed a new
context-aware approximation algorithm. At the same time,
in order to assign the sensor task to a more ‘‘socialized’’
device for better sensor coverage, a human centered guidance

FIGURE 1. The characters and relationships in social networks.

TABLE 1. Data symbols in human activity.

strategy for initial assignment of the sensor device based on
participants’ meta information was also designed. And the
node of this algorithm completes the individual coverage of
a social vertex with the human-centered information.

Based on the introduction to social opportunistic networks
technology, the next step is designing a model in social
opportunistic networks.

III. SYSTEM DESIGN
A. DEFINITION OF USER CHARACTERISTICS
IN SOCIAL NETWORKS
Social networks usually focus on user information, such as
geographic location, time period, region, and keywords.

Fig 1 shows the characters and relationships in social net-
works. For a person, he used to interest in the same characters
when others mention similar topic. If a person establishes
focusing on network, he has more ‘opportunity’ acquiring to
‘interest point’ or ‘help’ by mobile devices. He also found a
good cooperation by neighbors when they have many similar
characters.

In social networks, similar characters usually come from
many items. Such as go to the place, buy some sale goods,
watch exciting game at the same time. More similar charac-
ters can improve messages transmission in social.

In social networks, some data symbols can describe human
activity. It assumes that a node in social networks. The node
concludes many characters such as user, interest, location,
relationship, time, and region. We can establish the data
symbols in Table 1.
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TABLE 2. Parameter symbols in human activity.

Using the definitions in Table 1, we can analyze a user
node’s reference to other nodes. When a user node is needed
to assess user interest, the behavior presented in Table 2
can be used to determine the characteristic parameters, such
as probability of a user in selecting target, for obtaining
interested users.

Interested users not only can send data information to each
other but also can pay attention to the updates on data and
information in a timely manner. From Table 1 and Table 2,
we can establish interest model by users in social networks.
The main ideas and work steps are shown in the following
flow chart:

We consider that the properties of a node in communi-
cation can be used as a reference value for similar nodes.
By analyzing and predicting the similarity of their individual
preferences, appropriate nodes can be selected to cooperate
effectively so as to complete the information transmission.
Themainway to build a community of interest featuremodels
is shown in Figure 2. First, the nodes communicate with each
other, and after establishing a communication connection,
they can see each other’s preference attributes. Then compare
their interests and preferences with each other, if the fit is
very high, the two nodes are divided into a community. If the
fit is low, the two nodes do not constitute a community.
Do the same with the other nodes.We judge the feature fitting
degree of nodes by calculating the transmission probability
and the prediction cooperation probability between nodes.

FIGURE 2. Main steps of the interest feature model.

Among them, the transmission probability is used to indicate
whether it is possible to establish cooperation and transmis-
sion between two nodes. The prediction indicates whether
the node can establish the probability of cooperation because
there aremore identical attributes. The difference between the
two is that the former is implemented in the calculation, and
the latter is realized by examining the commonality of the
attributes.

B. ITERATIVE UPDATE OF INTERESTED USERS
To evaluate the characteristics of user interest, we establish
the probability distribution model of θu, and this model is
represented by parameter α

P(θu|α) =
0(

∑
z
α)∏

z
0(α)

∏
z

θα−1u,z (1)

0(
∑
z
α) is a function. The polynomial interest parameter

of α is shown as follows.

P(θl ′|α′) =
0(

∑
z
α′)∏

z
0(α′ )

∏
z

θ ′
α
′
−1

l,z (2)

P(φz|β) =
0(

∑
w
β)∏

w
0(β)

∏
z

φβ−1z,w (3)
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P(ςu|δ) =
0(

∑
s
δ)∏

s
0(δ)

∏
s

ς δ−1u,s (4)

P(ϑu|γ ) =

0(
∑
γ

γ )∏
γ

0(γ )

∏
γ

ςγ−1u,γ (5)

P(ϕr |τ ) =
0(

∑
v
τ )∏

v
0(τ )

∏
v

ϕτ−1r,v (6)

Given that all interests are in an independent distribution,
we calculate the joint distribution of the polynomial interest
parameter of α using Formulas (2)–(6).

P(v, lv,wv, t, z, r, s|α, α
′

, β, γ, τ, φ, µ,
∑

)

= P(z|α)P(z|α
′

)P(r|γ )P(s|δ)

P(wv|z, β)P(v|r, τ )P(t|z, φ)P(lv|r, µ,
∑

)

=

∫
P(z|θ )P(θ |α)dθ

∫
P(z|θ

′

)P(θ
′

|α)dθ
′

×

∫
P(r|ϑ)P(ϑ |γ )dϑ

∫
P(z|ς )P(ς |δ)dδ

×

∫
P(wv|z, φ)P(φ|β)dφ

×

∫
P(v|r, ϕ)P(ϕ|τ )dϕP(t|z, φ)P(lv|r, µ,

∑
) (7)

For each user, interest collection represents (u, v, lv,wv, t).
We obtain the value of user interest behavior by acquiring the
social relevance S, potential theme Z , and potential region R
of the user. Using Formula (7) and Bayes’ rule, we can
obtain the conditional probability. Social correlation s can be
expressed as

P(s|s−u,v, z, r, v, lv,wv, t, u) =
n−u,v
u,s′
+ δ∑

s′
n−u,v
u,s′
+ δ

(8)

In the equation above, s−u,v represents the social relevance
of all current user relationships; nu,s′ represents the number
of social correlation s sampled from the social correlation
distribution of user u; −u, v represents the number of entries
except for current attendance records. According to the
principle of subject consistency, we analyze the probability
sampling (0, 1):

P(a = 1|a−u,v, z, u)

=

n−u,v
u,z′
+ α∑

z′
n−u,v
u,z′
+ α
·

n−u,vu,a1 + b

n−u,vu,a1 + n
−u,v
u,a0 + b+ b

′
(9)

P(a = 0|a−u,v, z, u)

=

n−u,v
l,z′
+ α

′∑
z′
n−u,v
l,z′
+ α

′
·

n−u,vu,a0 + b
′

n−u,vu,a1 + n
−u,v
u,a0 + b+ b

′
(10)

where n−u,vu,a1 represents the number of visits to the user liter-
ature during a = 1; n−u,vu,a0 indicates the number of visits to
the user literature during a = 0. Z represents the interest of
choice. By choosing z, when a = 1, we obtain

P(z|a = 1, z−u,v, s, r, v, lv,wv, t, u)

=

n−u,v
u,z′
+ α∑

z′
n−u,v
u,z′
+ α
·
(1− t)

1
φz,1 t

1
φz,2

B(ϕz,1, ϕz,2)
·

∏
w∈wv

n−u,v
z,w′
+ β∑

w′
n−u,v
z,w′
+ β

(11)

When a = 0

P(z|a = 0, z−u,v, s, r, v, lv,wv, t, u)

=

n−u,v
u,z′
+ α

′∑
z′
n−u,v
u,z′
+ α

′
·
(1− t)

1
φz,1 t

1
φz,2

B(ϕz,1, ϕz,2)
·

∏
w∈wv

n−u,v
z,w′
+ β∑

w′
n−u,v
z,w′
+ β

(12)

We pass the probability sampling region r :

P(r|r−u,v, z, r, v, lv,wv, t, u)

=
n−u,vu,r + γ∑
r ′
n−u,v
u,r ′
+ γ
·

n−u,vr,v + τ∑
v′
n−u,v
r,v′
+ τ
· P(lv|µr ,

∑
r ) (13)

We can update parameters µr and
∑

r using the matrix
generated by the potential theme z and potential region r in
the iteration

µr = E(r) =
1

|sr | − 1

∑
v∈sr

lv (14)

∑
r = D(r) =

1
|sr | − 1

∑
v∈sr

(lv − µr )(lv − µr )T (15)

where sr represents the interest collection of potential
regional r . With the interest set, we can update the φ param-
eter of the next interest point:

φz,1 = tz(
tz(1− tz)

s2z
− 1) (16)

φz,2 = (1− tz)(
tz(1− tz)

s2z
− 1) (17)

where tz and s2z represent the sampling mean and covariance
of the time stamps configured on theme z, respectively.

By updating the iterative social correlation s and potential
theme z and region r , the next moment of interest feature
model can be expressed as

θ (t+1)u,z = θ (t)u,z +
nu,z′ + α∑
z′
nu,z′ + α

(18)

θ ′
(t+1)
l,z = θ

(t)
l,z +

nl,z′ + α
′∑

z′
nl,z′ + α′

(19)
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φ(t+1)z,w = φ(t)z,w +
nz,w + β∑

w′
nz,w′ + β

(20)

ς (t+1)u,s = ς (t)u,s +
nu,s′ + δ∑
s′
nu,s′ + δ

(21)

ϑ (t+1)
u,r = ϑ (t)

u,r +
nu,r + γ∑

r ′
nu,r ′ + γ

(22)

ϕ(t+1)r,v = ϕ(t)r,v +
nr,v + τ∑

v′
nr,v′ + τ

(23)

µ(t+1)
z = µ(t)

z + µz (24)∑
(t+1)
r =

∑
(t)
r +

∑
r (25)

λu =
nus1 + b

nus1 + nus0 + b+ b′
(26)

C. USER INTEREST QUERY AND RECOMMENDATION
If we need to query whether user u currently matches our
requirements for matching degree, then we can analyze it
by querying the probability joint distribution of this user.
Suppose we add the � feature vector to our regular feature,
which represents our newly-added goal. Through probability
matching model analysis, we obtain

P(v, lv,wv, t|u, r, �)

= P(lv|r, �)P(v|r, �)
∑
s

(
∏
u∈s

P(s|u, �))
1
|wv|

·

∑
z

P(z|u, �)P(z|lv, �)P(t|z, �)

· (
∏
w∈wv

∑
z

P(w|w, �))
1
|wv| (27)

By updating the correlation s society, underlying themes
r and z, and potential area, we can track and carry out the �
eigenvector user change data process. Using the joint proba-
bility distribution value will decide whether the current user
is added to the interested users.

If the current user conditions meet the requirements of our
interested users, that is, social relevance s and underlying
themes z and r conform to the target users and potential areas,
then we can recommend data information to the user.

Assuming that the user carries q data information in line
with the conditions of the current interested user, we can set
an interest rate S(q, v), which indicates the v user with q data
information scores. The rank of interest is expressed as

S(q, v) =
∑
r

w(q, r)F(v, r)
∑
s

w(q, s)
∑
z

w(q, z)F(v, z)

(28)

wherew represents the weight of potential theme z and region
r in terms of social relevance s. Among them,

w(q, r) = P(lq|µr ,
∑

r ) (29)

w(q, s) = (
∏
u∈wv

ςu, s)
1
|wv| (30)

w(q, z) = θu,zθlv,zθz,t (31)

By calculating S(q, v), we can rank the user nodes in
the social network and finally select the node of the corre-
sponding score as the interest node and prioritize such data
information.

The pseudo-code with ICPP is in Table 3.

TABLE 3. Interest characteristic probability predicted (ICPP) algorithm.

The time complexity in ICPP is O(n). Nodes in community
could be established a list. If neighbors can be selected by
nodes, the list could be added. Nodes cannot wait for response
and move to other path. It is not like Epidemic algorithm
and Spray and wait algorithm, nodes must send and receive
all messages. There is no community can afford redundant
neighbors or cache. So, the time complexity in Epidemic
algorithm and Spray and wait algorithm are O(n2).

IV. SIMULATION
In this paper, The One Simulator is used to simulate the
proposed algorithm, and some opportunistic network clas-
sical routing algorithms are compared. The performance of
ICPP algorithm is evaluated from the aspects of delivery ratio,
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overhead, and transmission delay. We use an open street map
to edit city maps in ONE. In the simulation, Shortest Path
Map-Based Movement (SPMBM) is used by calculated the
movement with nodes by collecting real map data according
to the minimum distance coordinate. In addition, the simula-
tion adopts an open street map to edit city maps in Helsinki.
Different parks, streets, and shops are established in the
map [25]. They can exhibit a real environment.

The parameters can be settled based on the randommodels
social networks. The parameters adopted in the experiment
are set as follows. The simulation time is 100 minute to
400 minute, and the simulation area is 4500 m × 3400 m
in the map. The involved nodes are 2000. The transmission
pattern is broadcast, the maximum transmission area of each
node is 10 m2, and the sending frequency of a data packet is
25 s to 35 s. The data packet type is random array. Moreover,
a node consumes one Joule unit energy when it sends a data
packet; initial energy for node is 100J. Each node carries
10 data packets, and the transmission pattern of nodes is
a social model. Furthermore, the transmission speed of the
node is 0.5–1.5 m/s, and the cache of each node is 5 MB.
In parameter setting, weight w is marked signwnew,wdelete,
wchange, wold ; other parameter of node concludes: connect
time t , relationship list r , location l.
ICPP is compared with types of classical algorithm men-

tioned to verify its performance. This study focuses on the
following parameters:
(1) Selected and delivery ratio: This parameter explains to

the probability of selecting a relevance node in deliver-
ing messages.

(2) Average end-to-end on delay: This parameter includes
the delay of route selecting, waiting delay in the data
classification queue, transmission delay, and redeliver-
ing in MAC.

(3) Overhead on average: This parameter shows the cache
space in source node when information is transmitted.
In this paper, we can design the node which delivers
data to its neighbors is source node.

In simulation, we firstly compare with node and its neigh-
bors and find a conclusion how many neighbors are the most
suitable for node to transmit messages in ICPP. We count
average value in 2,000 nodes.

Fig 3 shows the relationship between delivery ratio and
neighbors. We found from 1 neighbor to 4 neighbors, node
in ICPP can improve its delivery ratio. When the cooperation
neighbors become 4, the delivery ratio is 0.88. That is to say,
more neighbors can find same interesting point nodes easily.
However, over 5 neighbors joined in transmission, the deliv-
ery ratio can reduce because more redundancy information
have delivered by neighbors. Interesting points may have not
been received by neighbors when node sent.

Fig 4 shows the relationship between delay and neigh-
bors. More neighbors can reduce delay if nodes can share
transmission mission. From 1 neighbor to 3 neighbors, delay
can be reduced and nodes can acquire the best transmission
environment. Over 3 neighbors take apart in transmission;

FIGURE 3. The relationship between delivery ratio and neighbors.

FIGURE 4. The relationship between delay and neighbors.

FIGURE 5. The relationship between overhead and neighbors.

redundancy information may affect quality in transmission.
The same condition is as Fig 5, much cache have been con-
sumed. That is to say, over 3 neighbors joined in transmission,
overhead and delay would increase.

The next step, we would compare with delivery ratio, delay
and overhead between ICPP and other algorithms.

59008 VOLUME 7, 2019



J. Wu et al.: Interest Characteristic Probability Predicted Method in Social Opportunistic Networks

FIGURE 6. Delivery ratio and simulation time.

FIGURE 7. End-to-end delay on average and simulation time.

Fig 6 shows the relationship between delivery ratio and
simulation time. Spray and wait algorithm has the lowest
delivery ratio, it is only 0.32 to 0.38. The reason is that
algorithm adopted over-flood spray to transmit information.
Each node has to sendmuch information. Epidemic algorithm
improves information transmission and reduces the number
of data copies. It is better than Spray and wait algorithm.
Epidemic algorithm adopts a packet queue according to trans-
mission cost. It determines the replication order according to
the priority of packets, which not only avoids congestion, but
also save resources by blindly copying message. PRoPHET
algorithm adopted probabilistic prediction. Much cache can
be used in transmission. The target node can be founded eas-
ily. So the delivery ratio is better than Epidemic algorithm and
Spray andwait algorithm. The ICPP algorithm has the highest
transmission deliver ratio, reaching 0.87 to 0.93. Precisely,
it uses a combination of features to calculate the social net-
work trust relationship to select trusted nodes, which reduces
congestion and information replication, and then improves
the efficiency of the selected node and the reachability of the
destination node. It also effectively improves delivery ratio.

Fig 7 shows the relationship between End-to-end delay on
average and simulation time. From the figure, the average

delay of the Epidemic algorithm reaches over 700 when
the simulation time has over 400 minutes. The Epidemic
routing algorithm uses flooding to deliver packets. As time
increases, more and more data packets are transmitted. The
resources have been consumed in large amounts. PRoPHET
algorithm and Spray and wait algorithm are better than Epi-
demic algorithm. The average delay has been controlled from
130 to 350. Effective methods can limit nodes delivering
messages at random. The average delay in ICPP is very low.
It has only no more than 50. Because this method adopted
to interesting point transmission. If characteristics are not the
same or forcing, information cannot be accepted. It avoids a
number of redundancy data transmitting between node and its
neighbors.

FIGURE 8. Overhead on average and simulation time.

Fig 8 shows the relationship between overhead and sim-
ulation time. From the figure, we can see that overhead of
the ICPP algorithm is not affected by the time. Spray and
wait algorithm has the highest overhead because over-flood
spraying. The top overhead is 580. After this moment, many
nodes cannot send and receive messages because caches have
not enough. The overhead can reduce slowly. The same con-
dition appeared to PRoPHET and Epidemic algorithm. ICPP
algorithm is not affected when the simulation time increased.
Because many interesting point nodes receive and send mes-
sages by neighbors.Much useful information can be transmit-
ted immediately. There are enough cache to delivering next
data packets. So, it is good performance in simulation.

Fig 9 shows the relationship between the number of
selected neighbor nodes and the delivery ratio. It can be seen
from the figure that their trend is that as the number of neigh-
bor nodes increases, the transmission success rate increases
and then decreases. Due to the number of cooperative neigh-
bor nodes selected by the node, there are many redundant
data packets in the network, which occupy the resources of
the network and cause network congestion. Therefore, it will
degrade network performance and reduce the transmission
success rate. As can be seen from the figure, the Spay andwait
algorithm and the Epidemic routing algorithm have the lowest
transmission success rate, and the transmission success rates
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FIGURE 9. The relationship between the number of neighbors and
delivery ratio.

FIGURE 10. The relationship between node cache and delivery ratio.

of the two algorithms are between 0.3 and 0.6. The ICPP
algorithm is always better than other algorithms. Since the
neighbor nodes we choose are not random, the transmission
of information through effective nodes can reduce the redun-
dancy of a large amount of data in the network. However,
the number of effective nodes is not large. As the number
of neighbor nodes increases, some nodes that have little
influence on data transmission are selected as neighbor nodes,
which has no gain for network performance improvement.
Therefore, the transmission success rate will also decrease.

Fig 10 shows the relationship between node cache and
delivery ratio. As can be seen from the figure, when the
node cache is small, the impact on the delivery ratio is large.
From the trend point of view, increasing the cache of nodes
can effectively improve the success rate of data transmission.
Among them, the transmission success rate of the ICPP algo-
rithm is higher than other algorithms, and tends to be stable as
the cache increases to 35M. Its trend is similar to the Spay and
Wait algorithm, which is independent of the data cache size
when considering neighbor nodes. Therefore, when the cache
reaches a certain value, the cache size has less impact on our

algorithm. Regarding the Epidemic algorithm that delivers
messages based on flooding mode can be seen from Fig 10,
the size of the cache has a greater impact on it. The larger the
node cache, the more messages can be cached. The delivery
ratio increases due to a reduction in congestion conditions due
to a large amount of data.

FIGURE 11. The relationship between average distance and end-to-end
delay on average.

Fig 11 shows the relationship between the average max-
imum transmission distance of the nodes and the average
end-to-end delay. We can see from the figure, the delay
decreases with the increase of the average maximum trans-
mission distance of the nodes. This is because the increase
of the data transmission distance can increase the probability
of encountering with the target node and reduce the data
transmission time. Among them, the Epidemic algorithm has
the highest average delay. The high delay of this algorithm
is due to the use of flooding mode to transfer data, which
will cause a lot of data redundancy to the network. Therefore,
it is greatly affected by the transmission range of the node,
and the descending speed is fast. The average delay of the
ICPP algorithm is always lower than other algorithms and is
less affected by the transmission range. Because the method
we proposed effectively improves the way to filter nodes,
the larger the transmission range, the more nodes that can
provide filtering. Their contribution to the data transfer path
will be more helpful in reducing latency.

The simulation in the ICPP algorithm uses different mobile
models and cache to demonstrate the performance. The sim-
ulation uses the SPMBM, random walk (RM), and random
way point (RWP) models.

Fig 12 explains three different topological structure models
in communication map. In the RM model, the structure is
sparse and the performance is limit, because, the effective
data cannot be delivered to arrive at destination nodes. In this
condition, the selected and delivery in RM is only 0.65.
In RWP model, the delivery ratio is better than RM when
messages are delivering in data packets because the density
for nodes on the map is larger RM model. The delivery ratio
in RWP exceeds over 0.75. However, both RWP and RM
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FIGURE 12. Delivery ratio in different models.

FIGURE 13. Average end-to-end delay of different models.

adopt a non directional and simple movement. The weight
among nodes transmission messages depend on movement
and meeting. So, transmission delay in different model may
occur in finding a neighbor and in waiting to send. As shown
in Fig 13, the delay in RWP and RM method are higher
than that in SPMBM. The ICPP algorithm uses the SPMBM
model, which can record mobile routing. It shows a real node
movement model.

V. CONCLUSION
In this study, we contribute a social networks algorithm that
characteristic interests with neighbors are selected or pushed
service by users to solve the problems in social networks.
With satisfactory results from simulation and comparison
with some existing algorithms, the new method is found to
not only decrease energy consumption but also improve the
delivery ratio and overhead in social networks.

In future work, we will consider the energy consumption
of nodes in the case of large-scale data transmission in 5G
network. Explore more effective data transmission methods
to analyze social attributes and network structure of nodes

to reduce energy consumption and improve transmission per-
formance. Moreover, the security of data transmission in big
data communication network is considered.
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