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ABSTRACT Granger Causality analysis originated in the field of econometrics is used as a time series
analysis tool based on vector auto-regression, and its phased generalized transfer entropy (TE), which is
based on conditional co-information in information theory, has been widely used in data analysis in recent
years. In this paper, we forecast the Fifth-Generation (5G) channel based on the Granger causality and
transfer entropy, then use the water filling algorithm to allocate power for the forecasted 5G channel. In the
first part of the paper, we use the Granger causality test to verify the Granger causality correlation of two
random 5G channels and ensure that the two channels can be forecasted using the Transfer Entropy method.
In the second part, we use transfer entropy to forecast two channels and verify the accuracy of the forecasted
channels using Root Mean Square Error (RMSE) and Cramer-Rao Lower Bound (CRLB). Finally, we use
the Inverse Water-Filling (IWF) algorithm to perform the power allocation for the forecasted channels and
compare it with the Equal Gain (EG) algorithm. The simulations further validate our theoretical results.

INDEX TERMS 5G channel forecasting, transfer entropy, Granger causality, power allocation, inverse water
filling.

I. INTRODUCTION
The 5G is a new generation of mobile communication sys-
tem developed for the demand for mobile communication
after 2020 [1]. According to the development law of mobile
communication, 5G will have ultra high spectrum utilization
and energy efficiency, and increase the magnitude or higher
of the 4G mobile communication in terms of transmission
rate and resource utilization. [2]. 5G will be an important
part of the network society and will help realize the vision
of unlimited access to information and data for anyone, any-
thing, anytime, anywhere [3], [4]. Power efficiency has long
played an important role in mobile communication devices.
The high power efficiency of the device extends battery life
and has always been an important element of the revolution
in mobile communications [5]. However, the need for high
energy efficiency has also become a key point in network
infrastructure. Although the amount of communication traffic
and users has increased significantly, reducing the overall
power consumption of the network is still our goal. The main
reasons are as follows:

1) High network power efficiency is the key to reducing
operating costs, and is the driving force for better node and
network deployment, thereby reducing the total investment
cost [6].

The associate editor coordinating the review of this manuscript and
approving it for publication was Tawfik Al-Hadhrami.

2) High network power efficiency is part of the overall goal
of the operator and aims to provide wireless access in a way
that is sustainable and resource efficient [7], [8].

The 5G power is unevenly distributed. Even in the same
area, there is a large spatial difference in 5G power distri-
bution [9]. Therefore, even in dense urban areas with high
traffic loading, there is a specific place for low traffic load-
ing [10]. At present, more andmore attention is paid to energy
efficiency and energy consumption. The implementation of
network function should not consume energy excessively.
5G should be able to support lower power consumption
and become a greener and environmentally friendly mobile
communication network [11], [4]. Therefore, the high energy
efficiency goal of reducing power consumption is a key
requirement of 5G. The prominent contribution of the paper is
applying the TE method on the simulated actual 5G channel
to forecast the channel coefficient, then in order to achieve
high power efficiency, the paper utilized IWF algorithm to
optimize the energy distribution of the forecasted 5G channel
based on transfer entropy, compared to the traditional EG
distribution method.

The rest of this paper is organized as follows. In Section II,
we introduce the concept of Granger Causality and test for 5G
Channels. The forecasting is carried out on the basis of the
fact that the two channels have correlation and in Section III,
we propose the 5G channel forecasting based on transfer
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entropy. In Section IV, we propose the RMSE and CRLB of
forecasted channels, and the comparison between the RMSE
and the CRLB for the forecasted channel and the real channel
ensures a lower forecasting error. In Section V, we pro-
pose the power allocation based on water-filling algorithm.
In the process of power allocation, we compare the efficiency
of power allocation using the traditional method of equal
gain algorithm and the water-filling algorithm. In section Vi,
we perform simulations and Performance Analyses. Finally,
we conclude this paper and discuss further research directions
in Section VII.

II. INTRODUCTION TO GRANGER CAUSALITY
AND TEST FOR 5G CHANNELS
In economic analysis, it is often necessary to judge the causal
relationship between economic variables. Using statistical
inference methods to derive empirical judgments of causal
relationships between variables from actual observation data,
may be an effective method for causality testing. The Granger
Causality test can statistically test the causality between vari-
ables. For things that have unclear causal relationships, this
method can be used to perform statistical tests [12].

In 1969, Granger proposed a definition of causality from
the perspective of econometrics: With two time series xt , yt ,
consider the linear projection of xt on the past values
of x and y:

xt =
∞∑
j=1

hjxt−j +
∞∑
j=1

vjyt−j + εt . (1)

where, for any positive integer k , Eεtxt−k = Eεtyt−k =
0 [13], εt is noise.

If for a given past value of all x, the past value of y
contributes to predicting x, ie. there is at least one j0 such
that vj0 6= 0, then the variable y is the Granger sense reason
for x.

According to this definition, in 1972 Sims proposed a
proposition that there is no causal relationship which is, Let
(xt , yt ) be a zero-mean joint covariance stationary sequence,
then y is not a necessary and sufficient condition for the
Granger’s cause of x [5]. There exists a vector moving aver-
age representation of the lower triangle:(

xt
yt

)
=

(
a(L) 0
b(L) h(L)

)(
εt
ut

)
(2)

where εt and ut are zero-ranging sequence-independent pro-
cess, and for any integer t, s,Eεtus = 0, a(L), b(L), h(L)
is the non-negative exponent of L Polynomials on the side,
ie., a(L) =

∑
∞

j=0 ajL
j, b(L) =

∑
∞

j=0 bjL
j, h(L) =∑

∞

j=0 hjL
j, in which L is a delay operator defined by Lxt =

xt − 1.
If y is not the Granger cause of x, (2) holds. Rewrite (2):

xt = a(L)εb
yt = b(L)εb + h(L)ut

From the joint covariance stationarity of (xt , yt ), the inverse
polynomial a−1(L) of a(L) exists, and it is non-negative
power-universal to the delay operator L.

Let b(L) = b(L)a−1(L), et = h(L)ut , and then there are:

yt = b(L)a−1(L)xt + h(L)ut
= d(L)xt + et (3)

This formula shows that the regression residual of yt which
is et on the current and past x (ie xt , xt−1, xt−2,) is not related
to the future xt [14]. In other words, given the current and
past xt , the future xt does not affect yt , i.e., (3) is a represen-
tation under the condition that y has no feedback effect on x.
Observe that Granger’s Causality definition assumes that
future events cannot cause current or past events. Therefore,
the real meaning of Granger’s Causality is the ’preceding’
relationship in time, not the causality in the usual sense.

According to his above proposition, Sims proved a theo-
rem that facilitates Granger Causality test as follows [15].
Assume that (xt , yt ) is a zero-mean joint covariance stationary
sequence, εt is a white noise sequence, considering the linear
projection of yt over the whole x process:

yt =
∞∑

j=−∞

bjxt−j + εt

where, for any integer j, Eεtxt−j = 0. Then y is not Granger’s
cause of x, i.e., in (1), for any j, vj = 0, if and only if it is an
arbitrary negative integer j, bj = 0.
Granger Causality can be tested using the following metro-

logical methods. Let xt , yt be the covariance stationary
sequences, set up a regression model of xt for lags of y and x:

xt = c+
n∑
i=1

htyt−i +
n∑
j=1

ajxt−j + εt (4)

where, c is constant.
Among them, the choice of lag period n is relatively

arbitrary.Then the judgment that ’y is not the cause of x’
is equivalent to performing an F-test on the null statistical
hypothesis:

H0 : h1 = h2 = . . . hn = 0

Let SSR1(Residual Sum of Squares) and SSR0 represent the
residual sum of squares of regression model(4) and the model
when the null hypothesis H0 holds. Then, the test statistic

F =
(SSR0 − SSR1)/n
SSR1/(N − 2n− 1)

follows the F-distribution with the first degree of freedom
n and the second degree of freedom N − 2n − 1 under the
condition that H0 holds. Where N is the number of sample
data.

When the value of the above F statistic is greater than the
critical Fα(n,N − 2n − 1) of the F distribution below the
significance level 1 − α, y can be considered as the Granger
cause of x under the confidence of 1− α.

We perform a Granger causality test on two random and
relatively independent 5G channels in order to verify the
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existence of causality between the two channels. If there are
two channels without causality, in other words, the change
of channel 1 has no effect on the change of channel 2 or the
change of channel 2 has no effect on the change of channel 1,
then we cannot forecast two channels with transfer entropy
theory.

We will show the test results in section VI Simulations and
Performance Analysis.

III. 5G CHANNEL FORECASTING BASED
ON TRANSFER ENTROPY
A. INTRODUCTION TO TRANSFER ENTROPY
In this paper, we found that the 5G channel coefficient
followed the Gaussian distribution. Based on the equiva-
lence between Granger causality and transfer entropy under
Gaussian variables [16], we could use the transfer entropy to
forecast the 5G channel coefficient.

Transfer Entropy is a time-asymmetry non-parametric
information measure based on conditional co-information
proposed by Schreiber [17]. Although it differs from Granger
causality based on the vector auto-regression model, trans-
fer entropy does not use any model assumptions. Both are
essentially derived from Wiener’s construction of causality,
that is, the addition of historical information of new variables,
which reduces the uncertainty of the prediction of the target
variable [2], [18]. And causality is a measure of this change
in uncertainty.

The definition of transfer bribery: For two discrete random
variables X and Y , the probability distribution functions are
p(x) and p(y) respectively. The joint probability of events x
and y occurring at the same time is p(x,y), then the Shannon
entropy H(x) is defined as [19].

H (x) = −
∑
x

p(x)logp(x) (5)

The conditional probability of Y with X is:

p(y|x) = p(x, y)/p(x) (6)

In Eq.(6) if p(y|x) = p(y) x and y are independent. Then
p(x, y) = p(y|x)p(x) = p(y)p(x)

The joint entropy of X and Y is

H (X ,Y ) = −
∑
x,y

p(x, y)logp(x, y) (7)

The conditional entropy of X with Y is

H (X |Y ) = −
∑
x,y

p(x, y)logp(x|y) (8)

The Mutual Information(MI) contained between X and Y
is the output of the two systems as though they were indepen-
dent as opposed to their ‘actual’ relationship

M (X;Y )

= H (X )+ H (Y )− H (X ,Y )

= −

∑
x,y

p(x, y)log(p(x)p(y))+
∑
x,y

p(x, y)log(p(x, y))

=

∑
x,y

p(x, y)[log(p(x, y))− log(p(x)p(y))]

=

∑
x,y

p(x, y)log
p(x, y)
p(x)p(y)

(9)

However, MI is not effective at predicting future events
from current data since it is symmetric,M (X ,Y ) = M (Y ,X ).
And it does not indicate which way the information is flow-
ing. These shortcomings may be remedied by time shift-
ing one of the variables. Transfer Entropy (TE) (Schreiber
2000 [17]) is based on rates of entropy change, it captures
some of the dynamics of a system.

Suppose two systems which generate events. We define an
entropy rate which is the amount of additional information
required to represent the value of the next observation of one
of the systems [20]:

h1 = −
∑
xn+1

p(xn+1, xn, yn)logap(xn+1|xn, yn) (10)

Suppose that value of observation xn+1 was not dependent
on the current observation yn:

h2 = −
∑
xn+1

p(xn+1, xn, yn)logap(xn+1|xn) (11)

The quantity h1 represents the entropy rate for the two
systems, and h2 represents the entropy rate assuming that
xn+1 is independent of yn.Thus, we get transfer entropy:

h2−h1=−
∑

xn+1,xn,yn

p(xn+1, xn, yn)logap(xn+1|xn)

+

∑
xn+1,xn,yn

p(xn+1, xn, yn)logap(xn+1|xn, yn)

=

∑
xn+1,xn,yn

p(xn+1, xn, yn)loga(
p(xn+1|xn, yn)
p(xn+1|xn)

) (12)

There are actually two equations for the transfer entropy,
because it has an inherent asymmetry in it.

TJ→I =
∑

xn+1,xn,yn

p(xn+1, xn, yn)loga(
p(xn+1|xn, yn)
p(xn+1|xn)

) (13)

TI→J =
∑

yn+1,xn,yn

p(yn+1, xn, yn)loga(
p(yn+1|xn, yn)
p(yn+1|yn)

) (14)

Then with substitutions:

p(xn+1|xn, yn) = p(xn+1, xn, yn)/p(xn, yn)

p(xn+1|xn) = p(xn+1, xn)/p(xn)

our equations become [20]

TJ→I =
∑

xn+1,xn,yn

p(xn+1, xn, yn) · log(
p(xn+1, xn, yn) · p(xn)
p(xn, yn) · p(xn+1, xn)

)

(15)

TI→J =
∑

yn+1,xn,yn

p(yn+1, xn, yn) · log(
p(yn+1, xn, yn) · p(yn)
p(xn, yn) · p(yn+1, yn)

)

(16)
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In (15)(16), J represents 5G channel 1, and I represents
5G channel 2. We use TE algorithm to forecast the channels
based on two equations. Since the row 5G channels are
too long to plot, we choose part of the forecasted channel
randomly, then show them in section VI Simulations and
Performance Analysis.

IV. FORECASTED 5G CHANNEL ACCURACY
PROOF BASED ON RMSE AND CRLB
A. ROOT MEAN SQURE ERROR OF
FORECASTED CHANNEL
First we apply the RMSEmetric between real 5G channel and
forecasted channel. The RMSE can be computed as

RMSE =

√√√√ N∑
n=1

((xn − x ′n)2)/N (17)

where xn is the observed value, which is the forecasted
channel coefficient in our work. x ′n is the true value, which
represents the real 5G channel coefficients here. N is the total
number of channel coefficient. In order to avoid specialty,
we proposed 2000 pairs of Real 5G channels as training
groups and 1000 pairs of Real 5G channels as test groups to
do the forecasting based on transfer entropy and calculated
the average RMSE. We will show the RMSE performance in
section VI Simulations and Performance Analysis.

B. CRAMER-RAO LOWER BOUND
Cramer-Rao Lower Bound (CRLB) can be used to calculate
the best estimation accuracy that can be obtained in unbiased
estimation, so it is often used to calculate the best estimation
accuracy that can be achieved by theoretically, and to evaluate
the performance of parameter estimation methods ( Whether
it is close to the lower limit of CRLB) [21].

The 5G channel follows a Gaussian distribution with a
variance γ 2. Assume x = A + ω, ω is a Gaussian noise,
ω ∼ N (0, σ 2).
The pdf of xm is [22]

f (xm) =
1√

2π (γ 2 + σ 2)
exp

[
−

(xm − m)2

2(γ 2 + σ 2)

]
(18)

where xm is a random channel coefficient, σ 2 is the variance
of Gaussian noise ω.
Let x , [x1, x2, . . . , xM ], then the pdf of x is

f (x) =
M∏
m=1

f (xm)

=

M∏
m=1

1√
2π (γ 2 + σ 2)

exp
[
−

(xm − m)2

2(γ 2 + σ 2)

]
(19)

let

θ , γ 2

then Eq. (19) can be expressed as

f (x) =
M∏
m=1

1√
2π (θ + σ 2)

exp
[
−
(xm − m)2

2(θ + σ 2

]
(20)

Then find the logarithm to get the log likelihood function

logf (x)=
M∑
m=1

[
log

1√
2π (θ + σ 2)

]
+

M∑
m=1

−(x − m)2

2(θ + σ 2)
(21)

let

∂

∂θ
logf (x)|

θ=θ̂
=

M∑
m=1

[
−1

2(θ + σ 2)
+

(x − m)2

2(θ + σ 2)2

]
=0 (22)

which has the unique solution

θ̂ (x) =
M∑
m=1

σ 2
− (x − m)2 (23)

Since

∂2

∂θ2
logf (x)|

θ=θ̂
=

M∑
m=1

−1
2(θ + σ 2)

−
(x − m)2

(θ + σ 2)3
< 0 (24)

this solution gives the unique maximum of logf (x). The
expectation of θ̂ (x) is

E
[
θ̂ (x)

]
=

∫
∞

0
[
M∑
m=1

σ 2
−(x−m)2]f (xm)dxm

=

∫
∞

0

[
M∑
m=1

σ 2
−(x−m)2

]

·
1√

2π (θ + σ 2)
exp

[
−
(xm − m)2

2(θ + σ 2)

]
dxm

= θ (25)

Therefore it’s unbiased. The Fisher’s information for our
case can be expressed as

Iθ = −Eθ

[
∂2

∂θ2
logf (x)

]
= −Eθ

[
M∑
m=1

−1
2(θ + σ 2)

−
(x − m)2

(θ + σ 2)3

]
(26)

So the Cramer-Rao lower bound (CRLB) is

Varθ [θ̂ (x)] ≥
1
Iθ
=

1

−Eθ
[∑M

m=1
−1

2(θ+σ 2)
−

(x−m)2

(θ+σ 2)3

] (27)

We will show the CRLB performance in section VI Simu-
lations and Performance Analysis.
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V. CHANNEL POWER ALLOCATION BASED ON INVERSE
WATER-FILLING ALGORITHM
The Inverse Water-Filling(IWF) algorithm is based on a
certain criterion, and adaptively allocates the transmission
power according to the channel condition. Usually when the
channel condition is good, then the power is allocated more,
and when the channel is poor, the power is allocated less,
and when the channel is poor, the power is not allocated.
Thereby maximizing the transmission rate. To achieve the
’IWF’ distribution of power, the transmitter must know the
Channel State Information(CSI).When the transmitter knows
the channel, the channel capacity can be increased [23].

Consider a r×1-dimensional zero-mean cyclic symmetric
complex Gaussian signal vector s̃, where r is the rank of
the transmission channel. The vector is multiplied by the
matrix V (H = U6VH ) before transmission. At the receiver,
the received signal vector y is multiplied by UH [24]. The
effective input-output relationship for this system is given by:

ỹ =

√
Es
MT

UHHV s̃+ UHn =

√
Es
MT

UHU6VH s̃+ UHn

=

√
Es
MT

6s̃+ ñ (28)

where ỹ is the received signal vector of the r×1 dimensional
transform, and ñ is the zero-mean cyclic symmetric complex
Gaussian r × 1 transform noise vector whose covariance
matrix is ξ{ññH } = N0Ir . The vector s̃must satisfy ξ{s̃s̃H } =
MT to limit the total transmitted energy.

Then

ỹi =

√
Es
MT

√
λis̃i + ñi, i = 1, 2, . . . , r (29)

The channel capacity is given by following

C =
r∑
i=1

log2(1+
Esγi
MTN0

λi) (30)

where γi = ξ{|si|2}(i = 1, 2, . . . , r)) reflects the transmis-
sion energy of the i-th subchannel and satisfies

∑r
i=1 γi =

MT ,Es represents the channel gain on the sth subchannel, λi is
the Lagrange multiplier.

Variable energy can be allocated in the subchannel to max-
imize mutual information. Now the problem of maximizing
energy becomes

C = max∑r
i=1

yi = MT

r∑
i=1

log2(1+
Esγi
MTN0

λi) (31)

Maximizing by Lagrangian method. The Optimal energy
allocation policy is

γ
opt
i = max{(µ−

MTN0

Esλi
), 0} (32)

where
r∑
i=1

γ
opt
i = MT (33)

We compared the channel capacity based on IWF algo-
rithm and the equal gain algorithm. We will show the simu-
lations in section VI Simulations and Performance Analysis.

VI. SIMULATIONS AND PERFORMANCE ANALYSIS
A. SIMULATION PARAMETERS OF SIMULATED CHANNELS
Table 1 shows the simulation parameters we used for simu-
lated channels.

TABLE 1. Simulation parameters.

B. GRANGER CAUSALITY TEST OF TWO
RANDOM 5G CHANNELS
Table 2 shows the results of the Granger causality tests.

TABLE 2. Granger causality test results.

First, we do a Granger causality test of channel 1 on chan-
nel 2. In this simulation, the value of the F statistic is 20.9127,
where the critical value from the F-distribution is 0.229,
confidence level α is 0.95. Since the value of the F statistic is
larger than the critical value from the F-distribution, we reject
the null hypothesis that channel 2 does not Granger Cause
channel 1. So this test proves that channel 2 is Granger
cause of channel 1. Then we do the Granger causality test of
channel 2 on channel 1. In this case, the value of the F statistic
is 97.0205, where the critical value from the F-distribution is
still 0.229, confidence level α is 0.95. So this test proves that
channel 2 is also the Granger cause of channel 1.

So far, we verified the existence of Granger causality
between the two channels. Based on this result, we use trans-
fer entropy to forecast the two channels.

C. FORECASTED CHANNEL BASED ON
TRANSFER ENTROPY
In Fig.1 and Fig.2, we compare the real 5G channel coeffi-
cient with the predicted 5G channel coefficient. Observe that
the channels which are forecasted using the TE algorithm
has high accuracy. But we still need a mathematical method
to calculate the specific error between the two channels and
prove the accuracy. Therefore, for the comparison of real
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FIGURE 1. Forecasted 5G channel 1 based on transfer entropy.

FIGURE 2. Forecasted 5G channel 2 based on transfer entropy.

channels and prediction channels, we apply two metrics,
i.e., RMSE and CRLB.

D. RMSE
In Fig. 3, we purposed the Box Jenkin’s method and the
Transfer Entropy method to forecast the real channels and
compared their RMSE, which is the average RMSE of all
1000 pairs forecasted channels and 1000 pairs real 5G chan-
nels with different SNRs.

FIGURE 3. The average RMSE between the real 5G channel and
forecasted channel.

1) We can observe from Fig. 1 and Fig. 2 that the average
coefficient of the real 5G channel is about 1.5 × 10−8. And
in Fig. 3, the RMSE is really high when the SNR is low.
So we can conclude that we compare the TE method and
Box Jenkin’s method when the SNR is low, the accuracy is
insufficient.

2) However, with the SNR is increasing, the RMSE is going
to horizontally and stable at about 1×10−9. So this shows that
the true RMSE of the real 5G channel and forecasted channel
based on the TE algorithm is less than 6%. This result proves
that TE is feasible to forecast 5G channels.

3) From Figure 3 we can observe that under the same SNR,
the RMSE between the forecasted channel and real channel
by using the Box Jenkins method is larger than that of the
Transfer Entropy method, which means that the TE method
is more accurate in the forecasting under the same channel
status.

E. CRAMER-RAO LOWER BOUND
Simulations: For real and forecasted 5G channel1 and chan-
nel 2, we runMonte Carlo simulations at each SNR value and
applied θ̂ for total 4 channel respectively. In Fig. 4 and Fig. 5,
we plotted the variance of the estimator with different values
of SNRs. Observe the following.

FIGURE 4. Variance of forecasted channel 1 with different value of SNRs.

FIGURE 5. Variance of forecasted channel 2 with different value of SNRs.

1) The actual variance of θ̂ is almost mach with the CRLB
for different SNR value [25], which validate our result in
section A: Our forecasted 5G channel is close to real 5G
channel and TE is feasible to forecast 5G channels.

2) The actual variance of θ̂ reduces as SNR value increases,
and tends to stable and horizontally, which is as we have
shown the RMSE plots in section A.
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FIGURE 6. Forecasted 5G channel 1 power allocation based on inverse
water-filling.

FIGURE 7. Forecasted 5G channel 1 power allocation based on equal gain.

FIGURE 8. Forecasted 5G channel 2 power allocation based on inverse
water-filling.

F. CHANNEL POWER ALLOCATION
Simulations: We perform power allocation based on the IWF
algorithm and Equal Gain(EG) algorithm for the forecasted

FIGURE 9. Forecasted 5G channel 2 power allocation based on equal gain.

FIGURE 10. Average forecasted channel capacity comparison based on
inverse water-filling and equal gain.

5G channel 1 and channel 2 and plot part of the results
respectively. Since the row 5G channels are too long to plot,
we choose part of the forecasted channel randomly, so there
are some variations in the channel coefficients compared with
transfer entropy. Fig. 6- Fig. 9 shows the simulations. For
each simulation, the total power is 1 × 10−5w, which is
−20dBm to be allocated in the channel. And Fig. 10 proposed
the channel capacity comparison. Observe the following.

1) Fig. 6 and 8 shows power allocation using the IWF
algorithm. It can be seen from the figures that when the
subchannel state is good, the much power is allocated to the
subchannel, and when the subchannel is not good, the less
power is allocated. Some subchannels are very poor, and no
power is allocated to the channel. Compared with the power
allocation of the EG algorithm in Fig. 7 and Fig. 9, that is,
the energy is evenly distributed on each subchannel regardless
of the channel condition, and the IWF algorithm can greatly
improve the energy efficiency and avoid the waste of power.

2) From Figure 10, we can observe that at the same SNR,
the channel capacity of the IWF is greater than the EG,
where demonstrates the power allocation efficiency of the
IWF algorithm working on the forecasted 5G channels.
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VII. CONCLUSIONS AND FUTURE WORKS
In this paper, we have proposed the channel forecasting in 5G
Wireless Communication Based on Granger Causality and
Transfer Entropy, and the power allocation based on Inverse
Water-filling algorithm. Our work consists of four main parts:
Firstly, we performed the Granger causality test on two inde-
pendent, random and real 5G channels of the simulation,
ensuring the correlation between the two channels. Secondly,
we used the transfer entropy method to forecast the above
two 5G channels and obtain two forecasted 5G channels.
Third, we calculated the RMSE of the original channel and
the forecasted channel to ensure the high accuracy of the
forecasting. At the same time, we computed the CRLB of
the forecasted 5G channel and showed that the variance of
the forecasted parameters is close to the CRLB. Finally,
for the two forecasted 5G channels, we performed power
allocation and comparison based on the Equal Gain algorithm
and the Inverse Water-filling algorithm. Simulations further
validate these theoretical results.

The long-term concern has been to provide high throughput
and data transfer rates, but now we have realized that high
energy efficiency is equally important even with little or no
data transmission and processing. So in the future, we will
try to find more algorithms to achieve the power allocation
efficiency of 5G channels.
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