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ABSTRACT Attack path discovery plays an important role in protecting network infrastructure. Unfor-
tunately, previous attack path discovery algorithms are difficult for applying in reality because of the high
computational complexity problem. To achieve effective attack path discovery, we proposed a compact graph
planning algorithm to incorporate goal states related information into attack path discovery. Our model
extracts goal states related information by calculating closure of goal states, and then construct planning
graph structure given the closure, after which the backward search algorithm is used to extract the attack
path solution. The experiments were done on the typical enterprise network, comparing the effectiveness
of attack path discovery algorithms with existing known methods. The result turns out that our proposed
compact graph planning algorithm shows great improvement in discovering attack paths.

INDEX TERMS Attack path discovery, graph planning, functional dependency theory, cyber security.

I. INTRODUCTION
With the increasing size and complexity of computer net-
work, cyber security problem becomes more prominent than
ever. Community Emergency Response Team(CERT) points
out that global network security events increase exponentially
from 2003 to 2018 [1]. To cope with the problem, attack
paths discovery technology [2], which could discover hid-
den network vulnerabilities automatically, is widely adopted.
As shown in Figure 1, attack paths discovery technology
could not only find individual vulnerability existed in each
host, but combinational vulnerabilities existed in whole net-
work. Although tools like APT2 [3], Autosploit [4] and
MulVAL [5] etc. have been developed to improve efficiency
for discovering hidden attack paths, they are still far from
reality because of two limitations. The first is that most
of these tools, such as APT2, Autosploit and so on, aim
at discovering individual vulnerabilities and fail in finding
combinational vulnerabilities, and the second is that high
computational complexity problem makes it hard to apply in
large scale network.

The associate editor coordinating the review of this manuscript and
approving it for publication was Alba Amato.

FIGURE 1. Attack paths discovery in typical enterprise computer network
(Attack paths is the combination of individual vulnerability within each
host: 1© 2© 3©).

To overcome these problem and improve efficiency of
attack paths discovery, we propose a compact graph plan-
ning based attack paths discovery algorithm which could
utilize penetration testing goal related information to prune
redundant attack path branches based on a variant structure
called ‘‘compact planning graph’’[6]. The rest of this paper is
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FIGURE 2. Attack path discovery through attack graph technology (The first subgraph shows process of attack graph generation and the second
subgraph describes attack paths vulnerability analysis [7].).

organized as follows: Section 2 introduces some related
works about attack paths discovery technology, mainly
containing attack graph based methods and classical plan-
ning based methods. Section 3 describes some prelimi-
nary knowledge about functional dependency theory which
is the foundation of constructing compact planning graph.
Section 4 shows the details of our proposed compact graph
planning based attack paths discovery algorithm, containing
closure calculation of goal states set, compact planning graph
construction and attack paths extraction. Section 5 compares
our proposed algorithmwith existingmethods and gives some
explanations about the results. Section 6 concludes.

II. RELATED WORKS
A rich body of works have explored various ways to achieve
effective attack paths discovery, which could be divided into
two categories: attack graph based methods and classical
planning based methods.

Attack graph model, shorted in AG, was firstly introduced
by Sheyner et al. [7] to discover hidden network vulnerabil-
ities. Generally, attack graph could be represented as tuple
<H, C, T, I, IDS>, where H represents host information,
containing ip, services, softwares and vulnerabilities, C rep-
resents connectivity information, T represents trust informa-
tion among hosts, I represents initial network information
and IDS describes attack behaviors that could be detected.
As shown in Figure 2, there are two steps to discover attack
paths through attack graph model, namely attack graph gen-
eration and vulnerability analysis. Based on attack graph,
Swiler et al. adopted forward search strategy to discover
hidden attack paths [8]. As forward search strategy would
cause state space explosion problem, Zhang et al. shrinked
state space to accelerate attack path discovery through
backward search strategy on the basis of attack graph [9].
Singhal et al. combined attack graph model and probabil-
ity analysis, coming up with probabilistic model to eval-
uate security risk of enterprise network [10]. Rather than
state attack graph, Ou et al. proposed logical attack graph
that could find dependency relation between vulnerabili-
ties to avoid state explosion problem [11]. Though logical
attack graph shows great advantage in shrinking state space,
the result is hard to be interpreted. Sun et al. proposed a
probabilistic approach and implemented a prototype system

FIGURE 3. Classical planning based attack paths discovery (Transform
attack & defense knowledge into PDDL, and then use classical planner to
discover attack paths based on transformed PDDL.).

ZePro for zero-day attack paths identification [12]. Pan et al.
came up with a systematic and automated approach to build a
hybrid IDS to discovery attack paths for power systems [13].
Though this method improved efficiency a lot, they relied
on experts’ experience heavily, making it hard to apply in
large scale network. Ding et al. presented a method which
is based on the combination of finite state machine(FSM)
and model checking technology(NuSMV) to analyse system
safety [14]. To discover optimal attack path, Zhao et al. toke
advantage of ant colony algorithm to optimize global security
cost [15]. Wang et al. adopted heuristic search algorithm to
generate attack graph and divided it into two stages: matching
index table construction and attack graph construction [16].
Song et al. pruned branches of attack graph to discover attack
path through greedy search strategy [17].

Aside from attack graph based attack paths discovery
methods, classical planning provides another perspective for
discovering attack paths. Usually, classical planning algo-
rithms aim at discovering paths under deterministic, static,
finite, fully observable, discrete circumstance [18]. The appli-
cation of classical planning algorithms in cyber security
domain firstly appeared in 2008 international planning com-
petition(IPC), from which on, classical planning based attack
path discovery became mainstream research direction [19].
As shown in Figure 3, there are two steps to imple-
ment attack paths discovery based on classical planning
technology, first of which transformed the relevant network
information, such as network topology, host configuration,
vulnerability database et al. into planning domain definition
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language(PDDL) and the second toke advantage of classical
planning algorithms, such as partial planning, hierarchical
task network etc. to achieve attack paths discovery based on
transformed PDDL [20]. The famous attack path discovery
product that was developed based on classical planning is
Core Impact automated penetration testing systems devel-
oped by SecureAuth corporation [21]. Boddy et al. demon-
strated that the generation of attack paths for a simple but
realistic web-based document control system with classical
planning algorithms outperforms the prevailing state of the
art in this area [22]. Roberts et al. extend the attack graph
formalism by integrating user actions and supporting person-
alization that restrict the focus to those vulnerabilities present
in a particular user/system combination. The enhanced attack
graph was captured in PDDL with user specific attributes
being included as facts, and it helped identify interventions
that are most likely to reduce the system’s susceptibility to
attacks [23].

In spite of importance of previous studies, there are still
some limitations in existing attack paths discovery meth-
ods. For instance, the attack graph based method shows
simple way to discover attack paths, but the computational
complexity limits its application. Classical planning based
attack paths discovery avoids this by using well studied plan-
ning algorithms and achieves better result, but it does not
take deep consideration into penetration testing goal states
related information, which influences efficiency(time con-
sumption etc.) of discovering attack paths greatly. In order
to achieve effective attack paths discovery on the basis of
existing studies, there are three challenges: How to extract
essential information according to goal states? How to model
the process of attack paths discovery? How to incorporate
those information into model so as to achieve effective attack
paths discovery? To conquer these challenges, we proposed a
compact graph planning based attack paths discovery algo-
rithm. Firstly, a closure calculation algorithm is proposed
to extract all related states according to penetration testing
goals. Then a variant compact planning graph is proposed to
model process of attack paths discovery. Lastly, the extracted
information is incorporated into compact planning graph to
prune irrelevant states so as to achieve effective attack paths
discovery.

III. PRELIMINARY
A. FUNCTIONAL DEPENDENCY THEORY
Functional dependency theory [24] originates from relational
database theory, and it’s a kind of constraint relation between
sets of attributes from a database. In other words, functional
dependency is a constraint that describes the relationship
between attributes in a relation, which could help find all
dependency attributes in a database. The detailed formalism
of functional dependency theory is shown as follows:
Definition 1 (Relation pattern): Relation pattern R(U ) is

attributes tuple, where each u ∈ U is specific attribute. The
quantization of relation R is denoted as r , and r[u] represents
attribute value.

Definition 2 (Functional Dependency): A functional
dependency(FD) α → β holds if for all pairs of tuples t ,
u in any legal instance satisfy the following equation:

if t[α] = u[α] then t[β] = u[β] (1)

where α and β denote sets of attributes separately. α → β

is called attributes set α determined attributes set β or β is
determined by α.
Definition 3 (Logically Implied): A function dependency

α→ β is logically implied if all instances satisfying FD setF
also satisfy α → β. We denote the set of all function depen-
dency that logically implied by F as F+, namely closure of
functional dependency set F .
Definition 4 (Closure of a Set of Attributes): Closure of a

set of attributes X with respect to FD set F is the set X+ of
all attributes that are functionally determined by using F+.
Given that X , Y and Z are sets of attributes in a

relation R, there are several properties of functional depen-
dencies, among which there are three which are most impor-
tant, called Armstrong’s axioms [25]:

• Reflexivity. Functional dependency X → Y holds if
Y is subset of X .

• Augmentation. If X → Y , then XZ → YZ where
XZ = {e|e ∈ X or e ∈ Y } and YZ is similar.

• Transitivity. Functional dependency X → Z holds if
both X → Y and Y → Z hold.

These three rules are axiomatization of functional depen-
dencies that could be proved sound and complete, and any
other rules could be inferred based on these rules. Several
important secondary rules are introduced as follows:

• Union. Functional dependency X → YZ holds if both
X → Y and X → Z hold.

• Decomposition. If X → YZ , then functional depen-
dency X → Y and X → Z hold as well.

• Pseudotransitivity. Functional dependency WX → Z
holds if both X → Y and WY → Z hold.

• Composition. Functional dependency XZ → YW hold
if X → Y and Z → W hold separately.

As functional dependency theory could lay well foundation
for formalizing penetration testing process, we showed an
example for better understanding.

B. EXAMPLE
Given a relational pattern R(U)=R(SID, SNAME, CID,
GRADE, CNAME, TNAME, TAGE), where each attribute rep-
resents student ID, student name, class ID, grade, class name,
teacher name and teacher age separately. From attribute setU,
we could see that there are five obvious functional dependen-
cies that make up for functional dependency set F that are
shown as follows:

• SID→ SNAME: Student name is totally determined by
student ID.

• CID → CNAME: Class name is totally determined by
class ID.
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FIGURE 4. Formalism (The left one describes state spaces and the right
one describes exploitation action space.).

• CID→ TNAME: Class ID could determine teacher name
solely.

• TNAME→ TAGE: Teacher age is totally determined by
teacher’s name.

• (SNAME, CNAME)→GRADE: Student name and class
name could point out grade deterministicly.

Not only these obvious functional dependencies, there
are still some other functional dependencies that could be
inferred based on Armstrong’s axiom rules which are shown
as follows:
• (SID, CID) → GRADE. As GRADE is determined by
SNAME and CNAME, SNAME is determined by SID
and CNAME is determined by CID, Armstrong’s axiom
pseudotransitivity promises that GRADE is determined
by SID and CID.

• CID→ TAGE. Given CID→ TNAME and TNAME→
TAGE, it is easy to prove that TAGE is determined by
CID on the basis of Armstrong’s axioms transitivity rule.

The closure of functional dependencies is all functional
dependencies that hold in relational pattern R(U). For exam-
ple, the closure of attributes set {GRADE} is {GRADE, SID,
CID, CNAME}, denoted as {GRADE}+.

IV. METHODOLOGY
In this section, we proposed a compact graph planning based
algorithm to achieve effective attack paths discovery through
calculating closure of penetration testing goal states set.
There are three parts in this section: Formalism and closure
calculation, compact planning graph construction and solu-
tion extraction.

A. FORMALISM AND CLOSURE CALCULATION
Attack paths discovery could be formalized as tuple <
S,A,G >, where state space S is composed of host informa-
tion, network topology information and access privilege etc.
action space A is set of attack action, each of which contains
predicates, action name and effects, goal states set G is pene-
tration testing goals, satisfying G ⊆ S.
Figure 4 shows an example of state and action ele-

ment in PDDL representation, from which we could
see that there are 9 states on the left side and a
Joomla_SQL_Remote_Code_Execution action on the right
side. In order to transform attack paths discovery problem

into functional dependencies representation, state space S is
formalized as attribute set, where each element represents
specific state, action a ∈ A is formalized as functional
dependency x → y, where x = a.preconditions and y =
a.effects ⊆ S represent precondition and effect states of
action a separately. Goal states set G, where each element g
represents specific penetration testing goal, could be formal-
ized as subset of state set S. Given goal states set G, the first
step is to calculate closure set of G which contains all pos-
sible preconditions of g that satisfy functional dependencies
transformed from action space.

After formalizing attack paths discovery problem
into PDDL, PDDL parser will transform conceptual
states and actions into concrete actions and states,
which is a heavily time-consuming process. Taking
action Joomla_SQL_Remote_Code_Execution for example,
there will be 16 actions given object sets{192.168.1.2,
192.168.1.0/24, 192.168.4.2, 192.168.4.0/24} because the
action is composed of 2 parameters: ?srcIP and ?dstIP, whose
combinatorial number is 16. Each combination will turn
conceptual states into a new concrete action. And it is the
same to states space. After transformation, state space S
is composed of all transformed concrete states and the
same to action space A. It’s easy to find that there will be
many unreasonable states and actions, such as connectivity
192.168.1.2 192.168.1.0/24, isjoomla213 192.168.1.0/24 and
so on. As there are many irrelevant states in whole state and
action space, it’s essential to remove those irrelevant states
and actions so as to accelerate the efficiency of attack paths
discovery. Traditional graph planning algorithm does not take
deep consideration into pruning those irrelevant states, so that
the attack paths efficiency is relatively low. Further, as action
is totally determined by states, redundant states points out
redundant actions implicitly. What only need to be done is
pruning irrelevant states. In other words, it’s essential to pick
out those states that are relevant to goal states, namely closure
of goal states set. Functional dependency theory shows the
way to calculate closure of goal states set. There are two
steps for closure calculation, the first of which iterates func-
tional dependencies of action space to find the preconditions
of goal states and the second takes the preconditions as
new goals to calculate recursively until no new goal state
appears. The closure calculation method is summarized in
algorithm 1 which could promise the result closure set is
sound and complete, namely any states that are relevant to
goal states are all included in result closure set. The details of
sound and complete proof of closure set could be referenced
by [26], [27].

B. COMPACT PLANNING GRAPH CONSTRUCTION
After calculating closure of goal states set, compact plan-
ning graph is constructed layer by layer that is composed
of two kinds of nodes, proposition nodes and action nodes.
Proposition nodes describes available states currently, con-
taining host information, network topology information etc.
and action nodes describes available actions given current
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FIGURE 5. Example of compact planning graph extension (Graph starts from initial states and extends by iterating action and state space until reaching
goal states set or stabilizing.).

Algorithm 1 Closure Calculation Algorithm
Input:

S: state space, contains combination of host, network
topology and access privilege information
G: goal states set, satisfying g ∈ G ⊆ S
A: action space, satisfying β → γ ∈ A where β, γ ∈ S
represent preconditions and effects of specific action

Output:
closure of goal states set: G+

1: G+ = G
2: repeat
3: for each β → γ ∈ A:
4: if β ⊆ G+ : G+← G+ ∪ γ
5: until G+ not changed
6: return G+

states, containing scanning action, exploitation action etc.
As shown in Figure 5, compact planning graph starts from
L1 which represents the initial states containing compromised
25.20.188.160, connectivity 25.20.188.0/24 192.168.1.0/24,
isWindows7 192.168.4.2, isjoomla213 192.168.1.2 and so on.
Now consider iteration i where i ≥ 2, the action set Oi is
the set of all actions whose preconditions are subset of Li−1,
Joomla_SQL_Remote_Code_Execution in this case, and the
set Li is the newly extended layer that unions effects of all
actions in Oi, for example, compromised 192.168.1.2 in L3.
Also, all states in previous layer should be included in next
layer without modification because these states could be used
in further steps which is called maintenance action denoted
as e. The iteration continues until the compact planning graph
stabilizes, which means that Li+1 = Li or encountering
goal state set G. As complete state set iteration is a time-
consuming process, we use closure of goal state set G+

to prune those useless branches as so to achieve effective
compact planning graph construction.

While extending compact planning graph, it is of great
beneficial to record collision pairs within same layer. There
are two types of collision pairs, namely action collision pairs
and state collision pairs. Action collision pairs indicate that
two contradictory states hold within same layer, for exam-
ple, CVE-2017-7494 will crash samba service and any other
vulnerabilities of samba service could not be exploited in the
same layer. For each layer, a pair, o, o′ ∈ Oi, of actions is
defined to be collision if any of these conditions is met:
• Inconsistent effects: An effect of o is contradictory to an
effect of o′. For example, initial states set contains state
¬ connectivity 25.20.188.160 192.168.4.2, connectivity
25.20.188.160 192.168.4.2 holds through port forward
technology after compromising 192.168.1.2, which is
contradictory to maintenance action e.

• Interference: An effect of o interferes preconditions
of o′. For instance, samba_is_know_pipename vulner-
ability CVE-2017-7494 would crash normal service,
making it unavailable to other vulnerabilities.

Not only action pair, but state pair may collide as well.
Any pair, l, l ′ ∈ Li, of states is defined to be collision if the
following condition is met:
• Contradiction: l and l ′ form contradictory pair. For
example,¬ connectivity 25.20.188.160 192.168.4.2 col-
lides with connectivity 25.20.188.160 192.168.4.2.

Collision pairs appear within layer, and it is computed layer
by layer during compact planning graph construction process.
Though layer extending will be a multi-step process, attack
paths discovery will limit attack path length. Supposing there
are M IP address in a specific network, the maximum attack
path length will beM−1 at most because once an host is com-
promised there is no need to attack it again. We summarized
compact planning graph construction process in algorithm 2.

C. ATTACK PATHS EXTRACTION
As shown in Figure 6, the compact planning graph could be
searched for a solution at this point once compact planning
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FIGURE 6. Attack path extraction ((a) represents goal states in L3; (b) finds that one precondition for goal states could not be satisfied; (c) retries
another action in the same layer; (d) discovers attack paths successfully.).

Algorithm 2 Compact Planning Graph Extension
Input:

goal states set G, closure of goal states set G+, action
space A, host number M , old graph Graph, layer step

Output:
compact planning graph: newGraph

1: repeat
2: if step ≤ M − 1 then
3: for each a ∈ A:
4: if a.preconditions⊆ Li−1 and a.effects ⊆ G+ :
5: Oi.add(a);
6: Li.add(a.effects);
7: Li = Li ∪ Li−1
8: newGraph.add(Oi)
9: newGraph.add(Li)
10: else
11: return None
12: end if
13: until G ⊆ Li or Li−1 = Li
14: return newGraph

graph has been constructed up to Li. Here, depth-first based
backward search strategy [28] is adopted to extract solution
from graph. Given goal states set G, and there are three
conditions for solution extraction from Li which could be
described as follows:
• G * Li. In this case, there is no attack paths solution
given current network information because goal states
are not included in layer Li and no new state will appear
in further layers.

• G ⊆ Li and Li 6= Li+1. In this case, an attack paths
solution may exists. If backward search could not find
a solution, then it can be extended further by adding Oi
and Li+1. The extended graph can then be searched for
a solution plan recursively.

• G ⊆ Li and Li = Li+1. In this case, an attack paths
solution may exists. If backward search could not find a
solution, then there is no solution given current network
information because no new state will appear in further
layers.

Attack paths discovery algorithm derived from the graph
planning algorithm which interleaves graph extension and

solution search. Either a solution is reported at some
layer or the algorithm correctly reports that no available
attack path exists after the compact planning graph stabilizes.
Rather than a fully specified plan, the extracted solution is a
layered plan, which is a special form of partial plan [29]. All
of solution actions are distributed in some specific layers, and
the layered plan could be represented as follows:

(R1,R2, . . . ,Rk ) (2)

where each Ri is a set of available exploitation actions.Within
any specific Ri, the available actions are noncontradictory
and may be applied in any order without interfering the
implementation of final penetration testing goal states. The
only constraint is that every action in Ri must be applied
before any actions inRi+1 for each i from 1 to k in any specific
attack path solution.

Algorithm 3 Attack Paths Discovery Algorithm
Input:

goal states set G, state space S, initial states set I0, action
space A, Host number M .

Output:
attack paths:< R1,R2,R3, · · · ,Rk >

1: G+← Closure(G) /* closure calculation in alg.1 */
2: step← 1
3: while step ≤ M − 1 do
4: newGraph← extendGraph(G, A,M, graph, step, G+)

/* compact planning graph extension in alg.2 */
5: solution ← backwardSearch(newGraph) /* solution

extraction based on depth-first backward search */
6: if solution is None then
7: graph← newGraph
8: step← step+ 1
9: else
10: return solution
11: end if
12: end while
13: return None

In order to obtain a fully specified attack path, the layered
plan needs to be linearized by specifying a cause-effect order
for the actions that is consistent with layer constraints. For
example, weak password action(CVE-2018-0121) should be
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TABLE 1. Time consumption of attack path discovery algorithms over increasing host number on 50 separate experiments.

before eternal blue action(CVE-2017-0146) and after web
SQL injection action(CVE-2017-12615) in Figure 1. And
we summarize compact planning graph based attack path
discovery algorithm as follows, where Closure(G) stands
for closure calculation process for penetration testing goals,
extendGraph represents compact graph planning extension
process described in algorithm 2.

V. EXPERIMENT
A. EXPERIMENT SETUP
Experiment was carried out on typical enterprise network to
compare our algorithm against existing attack paths discovery
algorithms. As shown in Figure 7, the experiment network
structure is composed of three parts: DMZ area, workspace
area and inner service area that are connected by a firewall
and router. The firewall rules allows the internet host to visit
web server in DMZ area, but not workspace hosts and inner
services. Hosts in workspace could visit not only DMZ area
but inner service area. Given the network structure shown
above, the basic idea of penetration testing is composed of
three steps: First, the hacker breaks into the DMZ area via
SQL injection. Then, the hacker discovers the vulnerabilities
of the workspace hosts, and exploits them to get login user
and password of file server. And eventually hacker obtained

FIGURE 7. Experiment network.

sensitive information on file server based on achieved
information.

The baseline approaches we compare in the experiment
includes:

Forward search algorithm [30]: Forward search starts with
initial states and finds all available action successors until
resulting states contain goal states.
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FIGURE 8. Visualization of time consumption with attack path discovery algorithms over increasing host on 50 separate experiments (Box represents
mean value and standard deviation for individual attack paths discovery algorithms while discrete points represent outliers.).

Graph planning algorithm [31]: Graphplan is a general-
purpose planner for STRIPS-style domains. There are two
core steps in graph planning, containing planning graph con-
struction and solution extraction.

MulVAL [5]: MulVAL stands for ‘‘Multi-host, Multi-
stage Vulnerability Analysis Language’’. It is a research
tool for security practitioners and system administra-
tors to better manage the configuration of an enterprise
network such that the security risks are appropriately
controlled.

B. EXPERIMENT RESULT
As host number plays an important role in evaluating effec-
tiveness of attack paths discovery algorithms, Table 1 tells
the relationship between increasing host number and mean
value, standard deviation of attack paths discovery time con-
sumption after fixing vulnerability number to 5. Generally,
it is easy to find from Table 1 that the proposed compact
graph planning based attack paths discovery algorithm shows
great advantage in discovering hidden attack paths than graph
plan and forward search based algorithms. The mean value
of graph planning based attack paths discovery algorithm is
about 3s from the beginning and ends with 5.7s. Forward
search based attack paths discovery algorithms showed rel-
ative lower time consumption from 2.2s to 4s. However,
our proposed compact graph planning based attack paths
discovery algorithm shows average time consumption from
1.9s to 2.3s, which is less than graph planning, forward
search based attack paths discovery algorithms. The compact
graph planning based attack paths algorithm benefits from

FIGURE 9. Time consumption of attack paths discovery algorithms over
increasing vulnerability number.

eliminating useless states effectively at the very beginning
while the other algorithms could not eliminate those redun-
dant states, resulting in increasing time consumption. The
time consumption of MulVAL is the least because increased
host shows no effect on enlarging branches of attack graph,
so that the time consumption is limited. Even though the time
consumption of proposed algorithm is not as good as Mul-
VAL when host number increases, it shows great advantage
when vulnerability number increases which will be described
in detail later.

In order to describe the relationship between time con-
sumption and host number intuitively, the box relation dia-
gram of time consumption and host number is showed
in Figure 8. It is easy to find that both graph planning and
forward search based attack paths discovery algorithms show
linear increasing time consumption along with host number
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FIGURE 10. Time consumption of attack path discovery algorithms over increasing host and vulnerability number. (The performance of forward search,
graph planning, compact graph planning and attack graph based attack paths discovery algorithms are shown in subfigure (a)(b)(c)(d) sequentially.).

while compact graph planning and MulVAL share steady
time consumption no matter how host number changes. Also,
it turns out that graph planning based algorithm spends much
time discovering hidden attack paths than the other three
algorithms because there are many irrelevant states during
solution extracting process. For example, irrelevant state con-
nectivity 192.168.1.0/24 192.168.4.3 appears as precondi-
tion towards goal state compromised 192.168.4.3, but it has
no help for finding attack paths because state connectiv-
ity 192.168.1.0/24 192.168.4.3 will never be satisfied by ini-
tial conditions. Not only irrelevant state, but irrelevant action
would cause invalid time consumption as well, for example,
action Joomla_SQL_Remote_Code_Execution_2 makes no
sense in finding hidden attack paths because irrelevant state
connectivity 192.168.1.0/24 192.168.4.3 appears as precon-
dition for the action. Theoretically, supposing that there are
m objects, h goals, n actions and each action contains k
preconditions. There are totally hnmk actions which should
be traversed backward by graph planning based algorithm
within each layer. The longer attack path it is, the more
actions and states it would iterate, making it time wasting
process. And it is the same to forward search based algorithm.
However, compact graph planning based algorithm could
prune irrelevant actions and states according to dependency
relationship between goals and actions, so that there will only
be several relevant actions and states occurred in compact
planning graph structure, making solution extraction process
much more effective.

Fixing host number to 57, Figure 9 tells how time con-
sumption changed along with vulnerability number axis from
the view of respective approach in a general way. In Figure 9,
the green lines denote the time consumption of compact graph
planning based attack paths algorithm along with vulnerabil-
ity number axis, while blue, orange and red lines represent
time consumed by forward search, graph planning and attack
graph based attack paths algorithms. It is easy to tell that com-
pact graph planning based algorithm outperforms the other
three algorithms in discovering attack paths with increasing

size of vulnerability number. Forward search based and graph
planning based algorithms share similar development of time
consumption and increasing vulnerability number shows little
influence on performance of attack graph and the proposed
compact graph planning based algorithm at the very begin-
ning. But when vulnerability number reaches 12, the time
consumption of attack graph based algorithm grows exponen-
tially because of state space combinational explosion prob-
lem, limiting its application in large network scenario. How-
ever, compact graph planning based algorithm shows great
robustness than MulVAL over increasing size of vulnerabil-
ity number. This is because increasing vulnerabilities create
much irrelevant actions that would not lead to goal states,
and compact graph planning based algorithm do not need to
traverse those irrelevant actions while other algorithms do
not own the ability to prune those actions, so that increas-
ing vulnerability number shows much influence on time
performance.

Figure 10 tells the time consumption of all attack path
discovery algorithms on both vulnerability number and host
number. Performance of forward search, graph planning,
compact graph planning and attack graph based algorithm
are shown in subfigure (a)(b)(c)(d) separately, from which
we could see that host number shows much influence on
time performance than vulnerability number for both forward
search and graph planning based algorithms, especially for
graph planning based algorithm. Attack graph based attack
paths discovery algorithm shows good performance when
vulnerability number is less than 12, after which, time con-
sumption grows exponentially, making it hard to apply in
complicated network scenario. However, our proposed com-
pact graph planning based attack paths discovery algorithm
shows little reaction to increasing size of both action number
and vulnerability number because all of those irrelevant states
and actions are pruned before attack paths discovery process.
After pruning irrelevant states and actions, only few states and
actions will be left for attack paths discovery with compact
graph planning.
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TABLE 2. Precision of each attack path discovery algorithm for successful
penetration testing under experiment scenario.

Fixing host number to 57 and vulnerability number to 50,
we compare the precision of attack paths discovery by count-
ing tried penetration times for final successful penetration
testing through metasploit [32] under experiment scenario.
The result is shown in table 2, from which we could see
that attack graph, graph planing and compact graph planning
based attack paths discovery algorithms could achieve suc-
cessful penetration testing eventually, while forward search
based algorithm could not because it finds only one wrong
attack path during discovering process. The other three algo-
rithms achieve successful penetration by discovering all pos-
sible attack paths where each step matches preconditions
of specific vulnerability. However, as state space of attack
graph model is far large than graph plan and compact graph
planning based attack paths discovery algorithms, there are
much branches in attack graph, causing large tried penetra-
tion times, so that graph plan and compact graph planning
based algorithms show great advantage in discovering attack
paths. Even though graph plan based algorithm shares same
precision with compact graph planning based attack paths
discovery algorithm, it consumes much time than compact
graph planning based algorithm shown in figure 10, proving
the effectiveness of compact graph planing based attack paths
discovery algorithm.

VI. CONCLUSION
In this paper, we proposed a compact graph planning based
attack paths discovery algorithm to discover hidden attack
paths. Firstly, we formalized attack paths discovery problem
into PDDL and calculate the closure of goal states based
on functional dependency theory. Secondly, we construct
compact planning graph to describe attack paths discovery
process based on achieved goal states closure. Thirdly, solu-
tion is extracted through depth-first backward search algo-
rithm. Finally, the experimental results demonstrated that our
proposed compact graph planning based attack paths discov-
ery algorithm could discover hidden attack paths effectively
when compared with existing known attack paths discovery
algorithms. And we hope that our research work could con-
tribute to future studies.
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