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ABSTRACT Identity-based revocation (IBR) is a specific kind of broadcast encryption that can effectively
send ciphertext to a set of receivers. In IBR, a ciphertext is associated with a set of revoked users instead of a
set of receivers and the maximum number of users in the system can be an exponential value in the security
parameter. In this paper, we reconsider the general method of Lee et al. (ESORICS 2014) that constructs a
public-key revocation (PKR) scheme by combining the subset difference (SD) method of Naor, Naor, and
Lotspiech (CRYPTO 2001) and a single revocation encryption (SRE) scheme. Lee et al. left it as an open
problem to construct an SRE scheme under the standard assumption without random oracles. In this paper,
we first propose a selectively secure SRE scheme under the standard assumption without random oracles.
We also propose a fully secure SRE scheme under simple static assumptions without random oracles. Next,
we present an efficient IBR scheme that supports fast decryption by combining the SD method and our
SRE scheme. The security of our IBR scheme depends on that of the underlying SRE scheme. Finally,
we implemented our SRE and IBR schemes and measured the performance.

INDEX TERMS Broadcast encryption, identity-based revocation, subset cover framework, bilinear maps.

I. INTRODUCTION
Public-key broadcast encryption (PKBE) is a special type of
public-key encryption (PKE) such that any user can create a
compact ciphertext for a dynamic changing set of receivers.
PKBE can be used for secure group communication systems,
pay-TV systems, content distribution systems, and secure file
systems. Public-key revocation (PKR) is a variation of PKBE
where a ciphertext is associated with a set R of revoked users
instead of a set S of receivers and a user can decrypt the
ciphertext if he is not revoked in the ciphertext. PKBE can
be extended to identity-based broadcast encryption (IBBE)
where a user is mapped to any identity string and the total
number of users in the system can be an exponential value
in the security parameter. We also can define identity-based
revocation (IBR) by associating a ciphertext with a set of
revoked users R instead of a set of receivers S.

The associate editor coordinating the review of this manuscript and
approving it for publication was Cristina Rottondi.

One method to build a collusion-resistant PKBE scheme
is to use bilinear groups. Boneh et al. [1] proposed the first
PKBE scheme with short ciphertexts in bilinear groups and
proved its selective security under q-type assumption. After
their work, other PKBE, IBBE, and IBR schemes were pro-
posed in bilinear groups [2]–[6]. Another method to build a
secure PKBE scheme is to combine the subset cover frame-
work of Naor et al. [7] and an identity-based encryption (IBE)
scheme [8]. Naor et al. [7] showed that a PKR scheme can
be obtained from the complete subtree (CS) method and an
IBE scheme and Dodis and Fazio [9] showed that an efficient
PKR scheme can be derived from the subset difference (SD)
method and an hierarchical IBE (HIBE) scheme. Recently,
Lee et al. [10] showed that an improved PKR scheme can be
derived by combining the SDmethod with a single revocation
encryption (SRE). An SRE scheme allows to broadcast to
a group of users labeled by a group label GL, but it has
the option of revoking a single user ML from that group.
Compared to PKR schemes that are directly built on bilin-
ear groups, PKR schemes derived from the subset cover
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framework provide short public parameters and efficient
operations in the decryption algorithm.

The PKR scheme of Lee et al. [10] that combines the SD
method with an SRE scheme is interesting since it achieves
the asymptotically optimal bound in the SD method and it
supports fast decryption. The SD method is one instance of
the subset cover framework of Naor et al. [7] and it can be
used to build an efficient revocation system where a cipher-
text is associated to a set of subsets that covers all receivers
by excluding revoked users. In SD, a subset is defined by a
subtree Ti,j that is related with two nodes vi and vj in a binary
tree. That is, Ti,j is defined as a set of leaf nodes in Ti but not
in Tj where the root node of Ti, Tj is vi, vj respectively. In SRE,
a ciphertext is associated with labels (GL,ML) and a private
key is associated with labels (GL ′,ML ′) and a ciphertext can
be decrypted if GL = GL ′ andML 6= ML ′ [10]. To construct
an improved PKR scheme, Lee et al. [10] observed that a
subset Ti,j in the SD method can be directly mapped to labels
(GL,ML) in the SRE scheme. Although the PKR scheme of
Lee et al. can reduce the size of public keys and private keys
compared to the PKR scheme of Dodis and Fazio, their SRE
scheme is proven to be secure under q-type assumption in
the random oracle model. Thus, they left it as an interesting
problem to build an SRE scheme under standard assumptions
without random oracles.

A. OUR CONTRIBUTIONS
In this paper, we give affirmative answers to the above inter-
esting problem. We obtain the following results:

1) SRE WITH SELECTIVE SECURITY
We first propose an SRE scheme in prime-order bilinear
groups and prove its selective security under a standard
assumption without random oracles. In SRE, a ciphertext
and a private key are associated with labels (GL,ML) and
(GL ′,ML ′) respectively and the ciphertext can be decrypted
if GL = GL ′ and ML 6= ML ′. Previously, Lee et al. [10]
attempted to derive an SRE scheme by carefully modifying
the IBR scheme of Lewko et al. [6]. However, this directly
derived SRE scheme essentially used random oracles to sup-
port the equality of labels. The main idea of our SRE scheme
under the standard assumption is that we can combine an
IBE scheme and a simple IBR scheme since the IBE scheme
can be directly used to support the equality GL = GL ′ and
the simple IBR scheme can be directly used to support the
inequality ML 6= ML ′. In this case, an SRE can be proven
to be secure under the standard assumption since both an
IBE scheme and a simple IBR scheme can be proved to be
secure under the decisional bilinear Diffie-Hellman (DBDH)
assumption.

2) SRE WITH FULL SECURITY
Our first SRE scheme is just secure in the selective model in
which an adversary should submit the target labels before it
receives public parameters. To construct an SRE scheme with
full security, we propose an SRE scheme in composite-order

bilinear groups and prove its full security under simple
static assumptions. The structure of our second SRE scheme
is similar to that of our first scheme except that it uses
composite-order bilinear groups to use the dual system
encryption technique of Waters [11], Lewko andWaters [12].
To prove the full security of our second SRE scheme, we care-
fully analyze our SRE scheme and shows that the information
theoretic argument of the dual system encryption technique
still holds in our SRE scheme.

3) IBR FROM SUBSET DIFFERENCE
To construct an IBR scheme by combining the SD method
with an SRE scheme, we follow the design principle of
Lee et al. [10]. As mentioned before, an SRE scheme can
be integrated with the SD method since a subset Ti,j in
SD can be directly mapped to the labels (GL,ML) in SRE.
Lee et al. only proposed a PKR scheme in which the max-
imum number of users is fixed to be a polynomial value
in the security parameter since their SRE scheme is proven
under a q-type assumption where q is related to the maximum
number of users in the systems. However, our scheme can
be identity-based one by extending the depth of a binary
tree since our SRE scheme can support any label strings.
Additionally, our IBR scheme provides better efficiency since
it adopts the hybrid approach that encrypts a session key by
using an SRE scheme and encrypts a message by using a
symmetric-key encryption scheme. The security of our IBR
scheme follows that of the underlying SRE scheme. Our
IBR scheme can be also integrated with the efficient layered
SD (LSD) scheme [13]. The detailed comparisons of IBR
schemes are given in Table 1. We also implemented our SRE
and IBR schemes in Charm and measured the performance
these implementations.

B. RELATED WORK
Broadcast encryption, introduced by Fiat and Naor [15],
is symmetric-key encryption where a trusted center which
knows all private keys of all users can create a ciphertext for a
set of receivers. Fiat and Naor proposed broadcast encryption
schemes in the bounded collusion security model. The full
literature of broadcast encryption is extensive and it is beyond
the scope of this paper. We will only review some papers
that are relevant to our work. Naor et al. [7] proposed the
general methodology named the subset cover framework for
revocation systems. The complete subtree (CS) and subset
difference (SD) methods in binary trees are two important
instances of the subset cover framework. The subset cover
framework can be extended to trace-and-revoke by incor-
porating the tracing functionality that can trace a traitor of
the system. After their work, other improved method was
proposed [13], [16].

In public-key broadcast encryption (PKBE), any user can
create a ciphertext for a set of receivers S by using a public key
whereas only the center can create a ciphertext in (symmetric-
key) broadcast encryption. As mentioned before, public-key
revocation (PKR) is a variation of PKBEwhere a ciphertext is
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TABLE 1. Comparisons of identity-based revocation schemes.

associated with a set of revoked users R. Naor and Pinkas [17]
introduced revocation systems and proposed a PKR scheme
by using a polynomial-based secret key sharing method in
the bounded collusion model. Boneh et al. [1] proposed a
fully collusion-resistant PKBE scheme in bilinear groups that
achieves short ciphertexts. After that, many PKBE scheme
in bilinear groups were presented [2], [5], [6], [18]–[20].
The subset cover framework also can be used to build a
PKR scheme by combining it with an IBE, HIBE, or SRE
scheme [7], [9], [10].

Identity-based broadcast encryption (IBBE) is a special
type of PKBE where the maximum number of users in the
system can be an exponential value in the security parameter
since the size of public parameters is not linearly dependent
on the number of users. Delerablée [3], Sakai, and Furukawa
[4] independently proposed the first IBBE schemes with short
ciphertexts and keys, but the maximum size of a receiver set
should be fixed in public parameters. After that, ideal IBBE
schemes that have constant size ciphertexts and keys with
short public parameters were proposed in multilinear maps
[21], [22], but many multilinear map candidates were broken.

Identity-based revocation (IBR) is a variation of IBBE
where a set of revoked users R is specified in a ciphertext
instead of a set of receivers S. Although a PKBE scheme can
be easily converted to a PKR scheme, an IBBE scheme cannot
be converted to an IBR scheme since themaximum number of
users is an exponential value. Lewko et al. [6] proposed IBR
schemes with ciphertext size O(r) and short keys in bilinear
maps where r is the number of revoked users and proved their
selective security under standard assumptions. Attrapadung
and Libert [14] proposed an a non-zero inner-product encryp-
tion (NIPE) scheme with constant size ciphertexts and a
generalized NIPE scheme for IBR. Recently, Chen et al. [23]
proposed improved NIPE schemes with short ciphertexts and
short keys. However, all IBR schemes directly derived from
NIPE schemes have limitations that the maximum number of
revoked users in ciphertexts is bounded.

II. PRELIMINARIES
In this section, we define single revocation encryption (SRE)
and identity-based revocation (IBR) and their security
models.

A. SINGLE REVOCATION ENCRYPTION
Before we define IBR, we first define SRE. The concept
of SRE was introduced by Lee et al. [10] and this SRE
scheme is a new public-key encryption scheme that can be
combined with the subset difference method to construct an
efficient IBR scheme. In SRE, each user is associated with
a group label GL ′ and a member label ML ′ and he is given
a private key for the labels (GL ′,ML ′). A sender can create
a ciphertext for a specific group label GL excluding one
revoked member label ML. A receiver who has a private key
for labels (GL ′,ML ′) can decrypt the ciphertext for (GL,ML)
if he belongs to the same group but he is not revoked. That is,
GL ′ = GL and ML ′ 6= ML. The formal syntax of SRE is
given as follows:
Definition 1 (Single Revocation Encryption): An SRE

scheme for group and member labels consists of four algo-
rithms Setup, GenKey, Encrypt, and Decrypt, which are
defined as follows:

• Setup(1λ). The setup algorithm takes as input a security
parameter 1λ. It outputs a master key MK and public
parameters PP.

• GenKey((GL,ML),MK ,PP). The key generation algo-
rithm takes as input labels (GL,ML), the master key
MK, and public parameters PP. It outputs a private key
SK for the labels (GL,ML).

• Encrypt((GL,ML),M ,PP). The encryption algorithm
takes as input labels (GL,ML), a message M ∈ M,
and public parameters PP. It outputs a ciphertext CT
for (GL,ML) and M.

• Decrypt(CT , SK ,PP). The decryption algorithm takes
as input a ciphertext CT for labels (GL,ML), a private
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key SK for labels (GL ′,ML ′), and public parameters PP.
It outputs an encrypted message M or ⊥.

The correctness property of SRE is defined as follows:
For all MK ,PP generated by Setup, all (GL,ML), any
SK(GL ′,ML ′) generated by GenKey, and any M, it is required
that
• If (GL = GL ′) ∧ (ML 6= ML ′), Decrypt(Encrypt
((GL,ML),M ,PP), SK(GL ′,ML ′),PK) = M.

• If (GL 6= GL ′) ∨ (ML = ML ′), Decrypt(Encrypt
((GL,ML),M ,PP), SK(GL ′,ML ′),PK) = ⊥.

The security model of SRE was defined by Lee et al. [10]
and we follow their definition of chosen-plaintext
attack (CPA) security of SRE. In the CPA security, an adver-
sary can adaptively obtain a private key for labels (GL,ML)
many times. In the challenge step, the adversary submits
challenge labels (GL∗,ML∗) with some restrictions and
two challenge messages and then he receives a challenge
ciphertext that is an encryption of one of the challenge
messages. The adversary may obtain additional private keys
and finally outputs a guess of the challenge ciphertext.
The detailed description of the security model is given as
follows:
Definition 2 (IND-CPA Security): The security of SRE is

defined in terms of the indistinguishability under chosen
plaintext attacks (IND-CPA). The security game is defined
as the following game between a challenger C and a PPT
adversary A:
1) Setup: C runs Setup(1λ) to generate a master key MK

and public parameters PP. It keeps MK to itself and
gives PP to A.

2) Query 1: A adaptively requests private keys for labels
(GL1,ML1), . . . , (GLq1 ,MLq1 ). In response, C gives
the corresponding private keys SK1, . . . , SKq1 to A by
running GenKey((GLi,MLi),MK ,PP).

3) Challenge: A submits challenge labels (GL∗,ML∗)
and two messages M∗0 ,M

∗

1 with the equal length sub-
ject to the restriction: for all (GLi,MLi) of private key
queries, it is required that (GLi 6= GL∗) or (GLi =
GL∗)∧(MLi = ML∗). C flips a random coinµ ∈ {0, 1}
and gives the challenge ciphertext CT ∗ toA by running
Encrypt((GL∗,ML∗),M∗µ,PP).

4) Query 2: A may continue to request private keys for
labels (GLq1+1,MLq1+1), . . . , (GLq,MLq).

5) Guess: A outputs a guess µ′ ∈ {0, 1} of µ, and wins
the game if µ = µ′.

The advantage of A is defined as AdvSREA (λ) =
∣∣Pr[µ =

µ′] − 1
2

∣∣ where the probability is taken over all the ran-
domness of the game. A SRE scheme is secure under chosen
plaintext attacks if for all PPT adversary A, the advan-
tage of A in the above game is negligible in the security
parameter λ.
Remark 3: The selective security of SRE is a weaker

security model in which an adversary initially submits
the challenge labels (GL∗,ML∗) before receiving public
parameters.

B. IDENTITY-BASED REVOCATION
IBR is a special type of PKBEwhere a ciphertext is associated
with a revoked setR of users instead of a receiver set S of users
and each user is specified by a unique identifier string ID.
In IBR, a center generates a private key for a user ID by using
his master key and gives it to the user. A sender can create a
ciphertext for receivers that excludes the set of revoked users
R and a receiver with ID can decrypt the ciphertext if ID /∈ R.
The formal syntax of IBR is given as follows:
Definition 4 (Identity-Based Revocation): An identity-

based revocation (IBR) scheme for the identity I consists of
four algorithms Setup,GenKey,Encrypt, andDecrypt, which
are defined as follows:
• Setup(1λ). The setup algorithm takes as input a security
parameter 1λ. It outputs a master key MK and public
parameters PP.

• GenKey(ID,MK ,PP). The key generation algorithm
takes as input an identity ID ∈ I, the master key MK,
and the public parameters PP. It outputs a private key
SKID.

• Encrypt(R,M ,PP). The encryption algorithm takes as
input a revoked set R of users, a message M ∈ {0, 1}m,
and the public parameters PP. It outputs a ciphertext
CTR for R and M.

• Decrypt(CTR, SKID,PP). The decryption algorithm
takes as input a ciphertext CTR for a revoked set R,
a private key SKID for an identity ID, and the public
parameters PP. It outputs a message M or ⊥.

The correctness property of IBR is defined as follows: For all
MK ,PK generated by Setup, all ID,R, any SKID generated
by GenKey, and any M, it is required that
• If ID /∈ R,Decrypt(Encrypt(R,M ,PP), SKID,PP) = M.
• If ID ∈ R, Decrypt(Encrypt(R,M ,PP), SKID,PP) = ⊥.
The securitymodel of IBR is similar to that of IBBE andwe

follow the security definition of Lewko et al. [6]. In the CPA
security, an adversary can request a private key of a user with
IDmany times. In the challenge step, the adversary submits a
challenge revoked set R∗ and two challenge messages with
some restrictions and receives a challenge ciphertext that
is the encryption of one challenge message. The adversary
further can request private keys of other users and finally
outputs the guess of the challenge message. The detailed
description of the security is described as follows:
Definition 5 (IND-CPA Security): The indistinguishabil-

ity property of IBR under a chosen plaintext attack is defined
in terms of the following game between a challenger C and a
PPT adversary A:
1) Setup: C runs Setup(1λ) to generate a master key MK

and public parameters PP. It keeps MK to itself and
gives PP to A.

2) Query 1: A may adaptively request private keys for
users ID1, . . . , IDq1 ∈ I. In response, C gives the
corresponding private keys SKID1 , . . . , SKIDq1 to A by
running GenKey(IDi,MK ,PP).

3) Challenge: A submits a challenge revoked set R∗ of
users and two messages M∗0 ,M

∗

1 with the equal length
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subject to the restriction: for all IDi of private key
queries, IDi ∈ R∗. C flips a random coin µ ∈ {0, 1}
and gives the challenge ciphertext CT ∗ toA by running
Encrypt(R∗,M∗µ,PP).

4) Query 2: A may continue to request private keys for
users IDq1+1, . . . , IDq ∈ I.

5) Guess: A outputs a guess µ′ ∈ {0, 1} of µ, and wins
the game if µ = µ′.

The advantage of A is defined as AdvIBRA (λ) =∣∣Pr[µ = µ′] − 1
2

∣∣ where the probability is taken over
all the randomness of the game. An IBR scheme is secure
under chosen plaintext attacks if for all PPT adversary A,
the advantage of A in the above game is negligible in the
security parameter λ.
Remark 6: The selective security of IBR is a weaker

security model in which an adversary initially submits the
challenge revoked set R∗ before receiving public parameters.

III. SRE WITH SELECTIVE SECURITY
In this section, we propose a selectively secure single revoca-
tion encryption (SRE) scheme in prime-order bilinear groups
and prove its security under the standard assumption.

A. BILINEAR GROUPS OF PRIME ORDER
Let G and GT be multiplicative cyclic groups of prime
order p. Let g be a generator of G. The bilinear map
e : G×G→ GT has the following properties:

1) Bilinearity: ∀u, v ∈ G and ∀a, b ∈ Zp,
e(ua, vb) = e(u, v)ab.

2) Non-degeneracy: ∃g such that e(g, g) has order p, that
is, e(g, g) is a generator of GT .

We say thatG,GT are bilinear groups if the group operations
in G and GT as well as the bilinear map e are all efficiently
computable.

B. COMPLEXITY ASSUMPTIONS
To prove the security of our SRE scheme, we use
the well-known standard DBDH assumption. The DBDH
assumption was introduced by Boneh and Franklin [8] and
widely used to prove the security of IBE, HIBE, and ABE
schemes.
Assumption 7 (Decisional Bilinear Diffie-Hellman,

DBDH): Let (p,G,GT , e) be a description of the bilinear
group of prime order p with the security parameter λ. Let g
be a generator of G. The DBDH assumption is that if the
challenge values D = ((p,G,GT , e), g, ga, gb, gc) and T
are given, no PPT algorithm B can distinguish T = T0 =
e(g, g)abc fromT = T1 = e(g, g)d withmore than a negligible
advantage. The advantage of B is defined as AdvDBDHB (λ) =∣∣Pr[B(D,T0) = 0]−Pr[B(D,T1) = 0]

∣∣where the probability
is taken over the random choice of a, b, c, d ∈ Zp.

C. CONSTRUCTION
The previous SRE scheme of Lee et al. [10] was proven
to be secure under q-type assumption in the random

oracle model. To construct an SRE scheme that is secure
under the standard assumption without the random ora-
cle model, we inspect the correctness property of SRE.
In SRE, a ciphertext is associated with group and mem-
ber labels (GL,ML) and a private key is associated with
labels (GL ′,ML ′). The correctness property requires that
the group labels should be equal but the member labels
should be not equal to decrypt the ciphertext by using
the private key. That is, GL = GL ′ and ML 6= ML ′.
We observe that an IBE scheme can be used for equality
and a simple IBR scheme where the number of revoked
users is just one can be used for inequality. More specifi-
cally, the IBE (BB-IBE) scheme of Boneh and Boyen [24]
can be used to support the equality of group labels where
a private key is structured as (gα(uGLh)r , g−r ). The simple
IBR (LSW-IBR) scheme of Lewko et al. [6] can be used
to support the inequality of member labels and a private
key is described as (gαwr , (wMLv)r , g−r ). By combining the
BB-IBE scheme and the simple LSW-IBR scheme, we can
derive an SRE scheme with the private key structure of
(gα(uGLh)r1wr2 , (wMLv)r2 , g−r1 , g−r2 ).
Let H be a family of collision resistant hash function H .

Our SRE scheme in prime-order bilinear groups is described
as follows:

SRE.Setup(1λ): It first generates a bilinear group G of
prime order p. Let g be a generator of G. It chooses a
random α ∈ Zp and random u, h,w, v ∈ G. It also
chooses a random hash function H from H. It outputs
MK = α and PP = ((p,G,GT , e), g, u, h,w, v,H ,
� = e(g, g)α).

SRE.GenKey((GL,ML),MK ,PP): It selects random r1,
r2 ∈ Zp and outputs a private key SK(GL,ML) =(
K0 = gα(uGLh)r1wr2 ,K1 = (wMLv)r2 ,K2 = g−r1 ,
K3 = g−r2

)
.

SRE.Encrypt((GL,ML),M ,PP): It chooses a random
t ∈ Zp and outputs a ciphertext CT(GL,ML) =

(
C =

H (�t )⊕M ,C0 = gt ,C1 = (uGLh)t ,C2 = (wMLv)t
)
.

SRE.Decrypt(CT(GL,ML), SK(GL ′,ML ′),PP): If (GL = GL ′)
∧ (ML 6= ML ′), then it computes A = e(C0,K0) ·
e(C1,K2) ·

(
e(C0,K1) · e(C2,K3)

)−1/(ML ′−ML) and out-
puts a message M = C ⊕ H (A). Otherwise, it
outputs ⊥.

D. CORRECTNESS
The correctness of the above SRE scheme is easily verified
by the following equation.

e(C0,K0) · e(C1,K1) · (e(C0,K2) · e(C2,K3))−1/(ML
′
−ML)

= e(gt , gα(uGLh)r1wr2 ) · e((uGLh)t , g−r1 )

·

(
e(gt , (wML

′

v)r2 ) · e((wMLv)t , g−r2 )
)−1/(ML ′−ML)

= e(gt , gαwr2 ) ·
(
e(g,w)tr2·(ML

′
−ML)

)−1/(ML ′−ML)
= e(g, g)αt .
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E. SECURITY ANALYSIS
To prove the security of our SRE scheme in the selective
model, we use the partitioning method that was used in the
security proof of IBE and its extensions. Since our SRE
scheme is derived from the BB-IBE scheme and the simple
LSW-IBR scheme [6], [24], wemay try to use the partitioning
proof method of BB-IBE and LSW-IBR schemes. However,
the original LSW-IBR scheme is proven under a complex
q-type assumption. To prove the security under the standard
assumption, we observe that a simple variant of the LSW-IBR
scheme such that a ciphertext is associated with a single
ID instead of a set of revoked users R is enough for SRE.
In this case, we can prove the simple LSW-IBR scheme
under the standard DBDH assumption. Therefore, we have
the following result.
Theorem 8: The above SRE scheme is selectively secure

under chosen plaintext attacks if the DBDH assumption
holds.

Proof: Suppose there exists an adversary A that breaks
the security game of SRE with a non-negligible advantage.
A simulator B that solves the DBDH assumption using A
is given: a challenge tuple D = ((p,G,GT , e), g, ga, gb, gc)
and T where T = e(g, g)abc or T = e(g, g)d . ThenB interacts
with A as follows:

Init: A initially submits challenge labels (GL∗,ML∗).
Setup: B selects random exponents yu, yh, yw, yv ∈ Zp
and creates public parameters implicitly setting α = ab as
PP =

(
(p,G,GT , e), g, u = gagyu , h = (ga)−GL

∗

gyh ,
w = gagyw , v = (ga)−ML

∗

gyv , � = e(ga, gb)
)
.

Query 1: A may adaptively request a private key query for
labels (GL,ML). If (GL = GL∗) ∧ (ML 6= ML∗), then it
aborts since it cannot create a private key. Otherwise, it han-
dles this query as follows:
• Case GL 6= GL∗: It selects random exponents r ′1,
r2 ∈ Zp and creates a private key by implicitly setting
r1 = −b/(GL − GL∗)+ r ′1 as

K0= (gb)−(yuGL+yh)/(GL−GL
∗)(uGLh)r

′

1wr2 ,

K1= (gb)1/(GL−GL
∗)g−r

′

1 , K2= (wMLv)r2 , K3=g−r2 .

• Case GL = GL∗ and ML = ML∗: It selects random
exponents r1, r ′2 ∈ Zp and creates a private key by
implicitly setting r2 = −b+ r ′2 as

K0 = (uGLh)r1 (gb)−ywwr
′

2 , K1 = g−r1 ,

K2 = (gb)−(ywML+yv)(wMLv)r
′

2 , K3 = gbg−r
′

2 .

Challenge: A submits two messages M∗0 ,M
∗

1 . B flips a ran-
dom coin µ ∈ {0, 1} internally. Next, it implicitly sets t = c
and creates a challenge ciphertext as

C = H (T ) ·M∗µ, C0 = gc, C1 = (gc)yuGL
∗
+yh ,

C2 = (gc)ywML
∗
+yv .

Query 2: Same as Query 1.
Guess: Finally,A outputs a guess µ′. If µ = µ′, B outputs 0.
Otherwise, it outputs 1. �

F. DISCUSSIONS
1) EFFICIENCY ANALYSIS
In our SRE scheme, a private key and a ciphertext
consist of four group elements respectively. The decryption
algorithm requires four pairing operations and one expo-
nentiation. To improve the efficiency, we can reduce one
pairing operation by restating e(C0,K0) ·e(C0,K1)1/(ML

′
−ML)

to e(C0,K0 K
1/(ML ′−ML)
1 ). Compared to the SRE scheme of

Lee et al. [10] that is secure in the random oracle model,
our SRE scheme requires one additional group element in the
private key and the ciphertext, but our SRE scheme is secure
under the standard assumption without random oracles.

2) CCA SECURITY
Although we proved the CPA security of our SRE scheme,
the CPA security is weaker than the chosen-ciphertext attack
(CCA) security. In CCA security, an adversary additionally
requests the decryption of a ciphertext adaptively chosen by
the adversary. To prove the CCA security, we can use the
generic CHK transformation of Canetti et al. [25]. That is,
we can use a two-level HIBE scheme instead of an IBE
scheme and a one-time signature scheme to construct an
SRE scheme since the two-level HIBE scheme can be con-
verted to a CCA-secure IBE scheme by the CHK transform.
To construct a CCA-secure SRE scheme with better effi-
ciency, we may use the technique of Boyen et al. [26], but
we should modify our SRE scheme to be a key encapsulation
mechanism (KEM).

IV. SRE WITH FULL SECURITY
In this section, we propose a single revocation encryp-
tion (SRE) scheme in composite-order bilinear groups and
prove its full-model security under simple assumptions.

A. BILINEAR GROUPS OF COMPOSITE ORDER
Let N = p1 p2 p3 where p1, p2, and p3 are distinct prime
numbers. Let G and GT be two multiplicative cyclic groups
of same composite order N and g be a generator of G. The
bilinear map e : G×G→ GT has the following properties:

1) Bilinearity: ∀u, v ∈ G and ∀a, b ∈ ZN ,
e(ua, vb) = e(u, v)ab.

2) Non-degeneracy: ∃g such that e(g, g) has order N , that
is, e(g, g) is a generator of GT .

We say that G is a bilinear group if the group operations in
G and GT as well as the bilinear map e are all efficiently
computable. Furthermore, we assume that the description of
G and GT includes generators of G and GT respectively.
We use the notationGpi to denote the subgroups of order pi of
G respectively. Similarly, we use the notationGT ,pi to denote
the subgroups of order pi of GT respectively.

B. COMPLEXITY ASSUMPTIONS
To prove the security of our SRE scheme, we introduce simple
static assumptions that were used by Lewko and Waters [12]
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to prove the full model security of ABE schemes by using the
dual system encryption technique.
Assumption 9 (SubgroupDecision, SD): Let (N ,G,GT , e)

be a description of the bilinear group of composite order
N = p1 p2 p3. Let g1, g2, g3 be generators of subgroups
Gp1 ,Gp2 ,Gp3 respectively. The SD assumption is that if the
challenge tuple D = ((N ,G,GT , e), g1, g3) and T are given,
no PPT algorithm A can distinguish T = T0 = X1 ∈
Gp1 from T = T1 = X1 R1 ∈ Gp1 p2 with more than
a negligible advantage. The advantage of A is defined as
AdvSDA (λ) =

∣∣Pr[A(D,T0) = 0] − Pr[A(D,T1) = 0]
∣∣ where

the probability is taken over random choices of X1 ∈ Gp1 and
R1 ∈ Gp2 .
Assumption 10 (General Subgroup Decision, GSD): Let

(N ,G,GT , e) be a description of the bilinear group of
composite order N = p1 p2 p3. Let g1, g2, g3 be
generators of subgroups Gp1 ,Gp2 ,Gp3 respectively. The
GSD assumption is that if the challenge tuple D =

((N ,G,GT , e), g1, g3,X1 R1,R2 Y1) and T are given,
no PPT algorithm A can distinguish T = T0 = X2 Y2 ∈
Gp1 p3 from T = T1 = X2 R3 Y2 ∈ Gp1 p2 p3 with more
than a negligible advantage. The advantage ofB is defined as
AdvGSDA (λ) =

∣∣Pr[A(D,T0) = 0]−Pr[A(D,T1) = 0]
∣∣ where

the probability is taken over random choices of X1,X2 ∈ Gp1 ,
R1,R2,R3 ∈ Gp2 , and Y1,Y2 ∈ Gp3 .
Assumption 11 (Composite Diffie-Hellman, ComDH): Let

(N ,G,GT , e) be a description of the bilinear group
of composite order N = p1 p2 p3. Let g1, g2, g3
be generators of subgroups Gp1 ,Gp2 ,Gp3 respectively.
The ComDH assumption is that if the challenge tuple
D = ((N ,G,GT , e), g1, g2, g3, ga1R1, g

b
1R2) and T are

given, no PPT algorithm A can distinguish T = T0 =
e(g1, g1)ab from T = T1 = e(g1, g1)c with more than
a negligible advantage. The advantage of A is defined as
AdvComDHA (λ) =

∣∣Pr[A(D,T0) = 0] − Pr[A(D,T1) = 0]
∣∣

where the probability is taken over random choices of
a, b, c ∈ ZN , and R1,R2 ∈ Gp2 .

C. CONSTRUCTION
To construct a fully secure SRE scheme, we build our
SRE scheme in composite-order bilinear groups instead of
prime-order bilinear groups. To prove the security of SRE,
we use the dual system encryption technique of Lewko and
Waters [12]. Our fully secure SRE scheme has the similar
structure with that of the selectively secure SRE scheme in
prime order groups. Let H be a family of collision resistant
hash function H . Our SRE scheme in composite-order bilin-
ear groups is described as follows:

SRE.Setup(1λ): It first generates a bilinear group G of
composite order N = p1 p2 p3 where p1, p2, and
p3 are random primes. Let g1 be a generator of Gp1 .
It chooses random α ∈ ZN and random u, h,w, v ∈ Gp1 ,

Y ∈ Gp3 . It also chooses a random hash function H
from H. It outputs MK = α and PP =

(
(N ,G,GT , e),

g = g1,Y , u, h,w, v,H , � = e(g1, g1)α
)
.

SRE.GenKey((GL,ML),MK ,PP): It selects random r1,
r2 ∈ ZN , Y0,Y1,Y2,Y3 ∈ Gp3 and outputs a pri-
vate key SK(GL,ML) =

(
K0 = gα(uGLh)r1wr2Y0,

K1 = (wMLv)r2Y1,K2 = g−r1Y2,K3 = g−r2Y3
)
.

SRE.Encrypt((GL,ML),M ,PP): It chooses random
t ∈ ZN and outputs a ciphertext CT(GL,ML) =

(
C =

H (�t )⊕M ,C0 = gt ,C1 = (uGLh)t ,C2 = (wMLv)t
)
.

SRE.Decrypt(CT(GL,ML), SK(GL ′,ML ′),PP): If (GL = GL ′)
∧ (ML 6= ML ′), then it computes A = e(C0,K0) ·
e(C1,K2) ·

(
e(C0,K1) · e(C2,K3)

)−1/(ML ′−ML) and out-
puts a message M = C ⊕ H (A). Otherwise, it
outputs ⊥.

D. SECURITY ANALYSIS
For the security proof of our SRE scheme, we use the dual
system encryption technique [11], [12] that was success-
fully used to prove the full security of IBE, HIBE, and
ABE schemes. In dual system encryption, a private key and
a ciphertext can be normal type or semi-functional type.
In the security proof, we use hybrid games such that a
challenge ciphertext is changed from the normal type to the
semi-functional type and then each private key is changed
from the normal type to the semi-functional type one by one.
In the final game, it is hard for an adversary to obtains the
encrypted message since semi-functional private keys given
to the adversary are not related with the semi-functional chal-
lenge ciphertext. The technical difficulty of the dual system
encryption technique is to define nominal semi-functional
private key in order to solve the paradox in the proof and
to show the information theoretic argument between the
nominal semi-functional private key and the semi-functional
private key.
We may directly try to use the dual system encryp-

tion technique for the security proof of our SRE scheme.
However, we encounter a problem to show the information
theoretic argument between a nominal private key and a
semi-functional private key. The main reason of the prob-
lem is that an adversary can query a private key for labels
(GL,ML) such that (GL = GL∗) and (ML = ML∗) where
(GL∗,ML∗) is the challenge ciphertext labels. In IBE (or
HIBE), it is relatively easy to show the information theoretic
argument by using a pair-wise independent hash function
and the restriction of an adversary such that ID 6= ID∗ is
only allowed in private key queries. To solve this problem,
we carefully analyze our SRE scheme and show that the infor-
mation theoretic argument still holds even though the adver-
sary queries (GL,ML) such that (GL = GL∗) and (ML =
ML∗). The security proof of our SRE scheme is described as
follows:
Theorem 12: The above SRE scheme is fully secure under

chosen plaintext attacks if the SD, GSD and ComDH assump-
tions hold.

Proof: We first define the semi-functional type of pri-
vate keys and ciphertexts. For the semi-functional type, we let
g2 denote a fixed generator of the subgroup Gp2 .
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SRE.GenKeySF. It first creates a normal private key
SK ′GL,ML = (K ′0,K

′

1,K
′

2,K
′

3) by using MK . It chooses a
random R ∈ Gp2 and outputs a semi-functional SKGL,ML =(
K0 = K ′0 R,K1 = K ′1,K2 = K ′2,K3 = K ′3

)
.

SRE.EncryptSF. It first creates a normal ciphertext
CT ′GL,ML = (C ′,C ′0,C

′

1,C
′

2). It chooses random τ, η1, η2,

θ1, θ2 ∈ ZN and outputs semi-functional CTGL,ML =
(
C0 =

C ′0 g
τ
2,C1 = C ′1 g

(η1 GL+η2)τ
2 ,C2 = C ′2 g

(θ1 ML+θ2)τ
2

)
. Note

that η1, η2, θ1, θ2 are randomly chosen once and fixed to be
used in other types of private keys that will be defined later.

Note that if a semi-functional private key is used to decrypt
a semi-functional ciphertext, then the decryption fails since
an additional random element e(gτ2,R) is left.

The security proof consists of the sequence of hybrid
games: The first game is the original security game and the
last one is a game such that the adversary has no advantage.
We define the games as follows:
Game G0. This game is the original security game. In
this game, all private keys and the challenge ciphertext are
normal.
Game G1. In the game G1, all private keys are still normal,
but the challenge ciphertext is semi-functional.
Game G2. Next, we define a new game G2. In this
game, all private keys are semi-functional. For the secu-
rity proof, we additionally define a sequence of sub-games
G1,1, . . . ,G1,k , . . . ,G1,q where G1 = G1,0 and q is the max-
imum number of private keys. In the gameG1,k , the challenge
ciphertext is semi-functional, all jth private keys such that
j ≤ k are semi-functional, and the remaining jth private keys
such that k < j are normal. It is obvious that G1,q = G2.
Game G3. In the final game G3, all private keys and the
challenge ciphertext are semi-functional, but the challenge
ciphertext component C is random.
Let Adv

Gj
A be the advantage of A in the game Gj. We have

AdvSREA (λ) = AdvG0
A , AdvG1

A = Adv
G1,0
A , AdvG2

A = Adv
G1,q
A ,

and AdvG3
A = 0. Through the following Lemmas 13, 14,

and 18, we obtain the following equation

AdvSREA (λ) ≤ AdvSDB (λ)+ 2qAdvGSDB (λ)+ AdvComDHB (λ).

where q is the maximum number of private key queries. This
completes our proof. �
Lemma 13: If the SD assumption holds, then no

polynomial-time adversary can distinguish between G0 and
G1 with a non-negligible advantage.

Proof: Suppose there exists an adversary A that distin-
guishes between G0 and G1 with a non-negligible advantage.
A simulatorB that solves the SD assumption usingA is given:
a challenge tuple D = ((N ,G,GT , e), g1, g3) and T where
T = X1 ∈ Gp1 or T = X1 R1 ∈ Gp1 p2 . Then B that interacts
with A is described as follows:
Setup: B first chooses random exponents u′, h′,w′, v′, z′,
α ∈ ZN . It sets MK = α and publishes
PP =

(
(N ,G,GT , e), g = g1,Y = g3, u = gu

′

1 ,

h = gh
′

1 ,w = gw
′

1 , v = gv
′

1 H , � = e(g1, g1)α
)
.

Query 1: To response private key queries, B creates
normal private keys since it knows MK . Note that it can-
not create semi-functional private keys since it does not
know gp2 .
Challenge:A submits challenge labels (GL∗,ML∗) and chal-
lengemessagesM∗0 ,M

∗

1 .B flips a random coinµ ∈ {0, 1} and
creates a challenge ciphertext CT ∗ by implicitly setting gt to
be the Gp1 part of T as

(
C = H (e(T , g)α) ·M∗µ, C0 = T , C1 = (T )u

′GL∗+h′ ,

C2 = (T )w
′ML∗+v′).

If T = X1, this is a normal ciphertext. If T = X1 R1,
this is a semi-functional ciphertext since τ ≡ logg2 (R1)
mod p2, η1 ≡ u′ mod p2, η2 ≡ h′ mod p2, θ1 ≡ w′

mod p2, θ2 ≡ v′ mod p2 are not correlated with their values
modulo p1 by CRT.
Query 2: Same as Query 1.
Guess: A outputs a guess µ′. If µ = µ′, then B outputs 1.
Otherwise, it outputs 0. �
Lemma 14: If the GSD assumption holds, then no

polynomial-time adversary can distinguish between G1,k−1
and G1,k with a non-negligible advantage.

Proof: We additionally define two additional
semi-functional private keys. Let g2 denote a fixed generator
of the subgroup Gp2 .
SRE.GenKeyNSF. It first creates a normal private key
SK ′GL,ML = (K ′0,K

′

1,K
′

2,K
′

3) by using MK . Next, it
chooses random γ1, γ2 ∈ ZN and outputs a nominal semi-
functional SKGL,ML =

(
K0 = K ′0 g(η1 GL+η2)γ1+θ1γ22 ,

K1 = K ′1 g
(θ1 ML+θ2)γ2
2 ,K2 = K ′2 g

−γ1
2 ,K3 = K ′3 g

−γ2
2

)
.

SRE.GenKeyTSF. It first creates a normal private key
SK ′GL,ML = (K ′0,K

′

1,K
′

2,K
′

3) by using MK . Next, it chooses
a random R ∈ Gp2 and outputs a temporary semi-functional
SKGL,ML =

(
K0 = K ′0 R,K1 = K ′1 g(θ1 ML+θ2)γ22 ,

K2 = K ′2 g
−γ1
2 ,K3 = K ′3g

−γ2
2

)
.

We also define hybrid games Hk−1,0,Hk−1,1,Hk−1,2, and
Hk−1,3. The games are formally defined as follows: The game
Hk−1,0 is equal to the game G1,k−1. That is, the kth private
key is normal. The gameHk−1,1 is almost the same asG1,k−1
except that kth private key is nominal semi-functional. The
game Hk−1,2 is almost the same as G1,k−1 except that kth
private key is temporary semi-functional. The game Hk−1,3
is equal to the game G1,k . That is, the kth private key is semi-
functional.

Let Adv
Hj
A be the advantage of A in the game Hj. Through

the following Lemmas 15, 16 and 17, we obtain the following
equation

∣∣AdvG1,k−1
A − Adv

G1,k
A

∣∣ = ∣∣AdvHk−1,0A − Adv
Hk−1,3
A

∣∣
≤ AdvGSDB (λ)+ AdvGSDB (λ).

This completes our proof. �
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Lemma 15: If the GSD assumption holds, then no
polynomial-time adversary can distinguish between Hk−1,0
and Hk−1,1 with a non-negligible advantage.

Proof: Suppose there exists an adversary A
that distinguishes between Hk−1,0 and Hk−1,1 with a
non-negligible advantage. A simulator B that solves the
GSD assumption using A is given: a challenge tuple D =
((N ,G,GT , e), g1, g3,X1 R1,R2 Y1) and T where T = X2 Y2
or T = X2 R3 Y2. Then B that interacts with A is described
as follows:
Setup: B first chooses random exponents u′, h′,w′, v′,
α ∈ ZN . It setsMK = α and publishes PP =

(
(N ,G,GT , e),

g = g1,Y = g3, u = gu
′

1 , h = gh
′

1 ,w = gw
′

1 , v = gv
′

1 ,

� = e(g1, g1)α
)
.

Query 1: To response the jth private key query, B proceeds
as follows: If j < k , then it creates a semi-functional private
key since it knowsMK and R2 Y1 is given in the assumption.
If j > k , then it creates a normal private key since it knows
MK . If j = k , then it selects random r ′1, r

′

2, r
′

3 ∈ ZN ,
Y ′0,Y

′

1,Y
′

2,Y
′

3,Y
′

4 ∈ Gp3 and creates a private key SK(GL,ML)
as

K0 = gα(T )(u
′GL+h′)r ′1+w

′r ′2+z
′r ′3Y ′0, K1 = (T )(w

′ML+v′)r ′1Y ′1,

K2 = (T )−r
′

1Y ′2, K3 = (T )−r
′

2Y ′3.

If T = X2 Y2, this is a normal private key. If
T = X2 R3 Y2, this is a nominally semi-functional private
key since γ1 ≡ logg2 (R3)r

′

1 mod p2, γ2 ≡ logg2 (R3)r
′

2
mod p2, γ3 ≡ logg2 (R3)r

′

3 mod p2, η1 ≡ u′ mod p2,
η2 ≡ h′ mod p2, θ1 ≡ w′ mod p2, and θ2 ≡ v′ mod p2.
Challenge: B flips a random coin µ ∈ {0, 1} and creates
a semi-functional ciphertext by implicitly setting gt = X1
and gτ2 = R1 as CT ∗ =

(
C = H (e(X1 R1, g)α) · M∗µ,

C0 = X1 R1, C1 = (X1 R1)u
′GL∗+h′ , C2 = (X1 R1)w

′ML∗+v′
)
.

Query 2: Same as Query 1.
Guess: A outputs a guess µ′. If µ = µ′, then B outputs 1.
Otherwise, it outputs 0. �
Lemma 16: No polynomial-time adversary can distin-

guish between Hk−1,1 and Hk−1,2 with a non-negligible
advantage.

Proof: To argue that any adversary cannot dis-
tinguish the nominally semi-functional private key from
the semi-functional private key, we show that even an
unbounded adversary cannot distinguish the type of private
keys.

Suppose there exists an unbounded adversary. Let β be a
random exponent in Z∗p2 and x ∈ {0, 1}. This adversary can
gather xβ+ (η1 GL+η2)γ1+ θ1γ2 mod p2, (θ1 ML+ θ2)γ2
mod p2,−γ1 mod p2,−γ2 mod p2 from the kth private
key and τ mod p2, (η1 GL∗ + η2)τ mod p2, (θ1 ML∗ +
θ2)τ mod p2 from the challenge ciphertext. Note that the
k-the private key is nominally semi-functional if x =
0, otherwise it is semi-functional by implicitly setting
logg2 (R) = β + (η1 GL + η2)γ1 + θ1γ2 mod p2. These
values can be restated as a linear equation MEu = Ev such

that
x GLγ1 γ1 γ2 0
0 0 0 MLγ2 γ2
0 GL∗τ τ 0 0
0 0 0 ML∗τ τ



β

η1
η2
θ1
θ2



=


xβ + (η1GL + η2)γ1 + θ1γ2

(θ1ML + θ2)γ2
(η1GL∗ + η2)τ
(θ1ML∗ + θ2)τ

.
To distinguish whether the kth private key is nominally
semi-functional or semi-functional, the adversary should
decide whether x = 0 or x = 1 by solving the above linear
equation. Let RowSpace(M ) be a vector space that has the
row vectors of M as basis vectors. If E1> = (1, 0, 0, 0, 0) 6∈
RowSpace(M ), then the adversary cannot distinguish the type
of the kth private key.
For further analysis, we divide the behavior of an adversary

as two types: Type-A and Type-B. Let (GL∗,ML∗) be the
challenge labels. An adversary is Type-A if it queries a private
key for labels (GL,ML) such that GL 6= GL∗. An adversary
is Type-B if it queries a private key for labels (GL,ML) such
that GL = GL∗ and ML = ML∗. First, we show that a
Type-A (unbounded) adversary cannot distinguish the type
of private keys. From the above MEu = Ev, we have another
linear equation M2,3Eη = Ev′ by just taking second and third
columns of M as follows(

GLγ1 γ1
GL∗τ τ

)(
η1
η2

)
=

(
(η1GL + η2)γ1
(η1GL∗ + η2)τ

)
.

To show that E1> 6∈ RowSpace(M ), it is enough to show that
E0> = (0, 0) 6∈ RowSpace(M2,3). For contradiction, if we
suppose that E0 ∈ RowSpace(M2,3), then there exists Ez such
that EzM2,3 = E0> and Ez 6= E0. However we have Ez = E0>M−12,3 =

E0 sinceGL 6= GL∗ by the restriction of the Type-A adversary.
Thus, we have E0> /∈ RowSpace(M2,3).
Next, we show that a Type-B (unbounded) adversary can-

not distinguish the type of private keys. From the above
MEu = Ev, we have another linear equation M4,5 Eθ = Ev′′ by
just taking forth and fifth columns of M as follows(

γ2 0
MLγ2 γ2

)(
θ1
θ2

)
=

(
θ1γ1

(θ1ML∗ + θ2)γ2

)
.

Note that the forth row vector of M can be removed since
the forth row vector is a linear span of the second row vector
of M if ML = ML∗. Similar to the analysis of the Type-A
adversary, we can easily show that E0> 6∈ RowSpace(M4,5)
since M4,5 is invertable if γ2 6= 0 mod p2. This completes
our proof. �
Lemma 17: If the GSD assumption holds, then no

polynomial-time adversary can distinguish between Hk−1,2
and Hk−1,3 with a non-negligible advantage.

Proof: The proof of this lemma is almost the same as
that of Lemma 15 except the generation of the kth private
key. The kth private key for (GL,ML) is generated as follows:
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If j = k , then it selects random r ′1, r
′

2, a
′
∈ ZN ,

Y ′0,Y
′

1,Y
′

2,Y
′

3 ∈ Gp3 and creates a private key SK(GL,ML) as

K0 = gα(T )(u
′GL+h′)r ′1+w

′r ′2 (R2 Y1)a
′

Y ′0,

K1 = (T )(w
′ML+v′)r ′1Y ′1,

K2 = (T )−r
′

1Y ′2, K3 = (T )−r
′

2Y ′3.

Note that the kth private key is no longer correlated with CT ∗

since K0 is re-randomized by (R2 Y1)a
′

. If T = X2 Y2, this
is a semi-functional private key. If T = X2 R3Y2, this is a
temporary semi-functional private key. �
Lemma 18: If the ComDH assumption holds, then no

polynomial-time adversary can distinguish between G2 and
G3 with a non-negligible advantage.

Proof: Suppose there exists an adversary A that distin-
guishG2 fromG3 with a non-negligible advantage. A simula-
tor B that solves the ComDH assumption using A is given: a
challenge tuple D = ((N ,G,GT , e), g1, g2, g3, ga1R1, g

b
1R2)

and T where T = e(g1, g1)ab or T = e(g1, g1)c. Then B that
interacts with A is described as follows:
Setup: B chooses random exponents u′, h′,w′, v′, z′ ∈ ZN
and implicitly sets α = a from the term ga1R1. It pub-
lishes the public parameters PP =

(
(N ,G,GT , e), g = g1,

Y = g3, u = gu
′

1 , h = gh
′

1 ,w = gw
′

1 , v = gv
′

1 ,H ,
� = e(g1, ga1R1)

)
.

Query 1: To response private key queries, B creates semi-
functional private keys since ga2R1 and g2 are given. Note that
it cannot create normal private keys since it does not know
ga1 ∈ Gp1 .
Challenge: B first flips a random coin µ ∈ {0, 1} and
creates a challenge ciphertext CT ∗ =

(
C = H (T ) · M∗µ,

C0 = gb1R2, C1 = (gb1R2)
u′GL∗+h′ , C2 = (gb1R2)

w′ML∗+v′
)
.

Query 2: Same as Phase 1.
Guess: A outputs a guess µ′. If µ = µ′, then B outputs 1.
Otherwise, it outputs 0. �

V. IDENTITY-BASED REVOCATION FROM SD
In this section, we propose an identity-based revocation (IBR)
scheme by combining the subset difference (SD)method with
a single revocation encryption (SRE) scheme and prove its
security. For the construction of an IBR scheme, we follow
the design principle of Lee et al. [10]. Compared to the
scheme of Lee et al., our scheme is an identity-based one
whereas their scheme is a public-key based one.

A. SUBSET DIFFERENCE SCHEME
The subset difference (SD) scheme is one instance of the
subset cover framework proposed by Naor et al. [7]. The
subset cover framework is a general method to construct a
revocation system for a set of users N . In this framework,
a collection S of subsets is defined for the system and each
user is assigned to a private set PV that is a subset of S
where each subset is associated with a unique key. When a
center broadcasts an encrypted message for all users except
a revoked set R of users, it first finds cover CV that is

a set of subsets that can cover all users N \ R and cre-
ates ciphertexts for each subset by using their unique key.
A receiver can decrypt the ciphertext if he is not revoked
in R.
Before we describe the SD scheme, we define some nota-

tion. Let BT be a perfect binary tree and vi be a node in BT .
The depth di of a node vi is the length of a path from the
root node to the node vi where the root node is at depth zero.
A level of BT is a set of all nodes at given depth. For any
node vi ∈ BT , Ti is defined as a subtree that is rooted at vi.
For any two nodes vi, vj ∈ BT such that vj is a descendant
of vi, Ti,j is defined as a subtree Ti − Tj, that is, all nodes
that are descendants of vi but not vj. For any node vi ∈ BT ,
Si is defined as the set of leaf nodes in Ti. Similarly, Si,j is
defined as the set of leaf nodes in Ti,j, that is, Si,j = Si \ Sj.
For any node vi ∈ BT , we let Li be a fixed and unique label
of vi. The label Li of a node vi is assigned as follows: Each
edge in the tree is assigned with 0 or 1 depending on whether
it is connected to its left or right child node. The label Li of
vi is the bitstring obtained by reading all the bits of edges in
the path from the root node to the node vi. For a subtree Ti,
we define the label of Ti as the label Li of vi where vi is the
root node of Ti. For a subtree Ti,j, we also define the label of
Ti,j as (Li,Lj) where Li,Lj are labels of vi, vj of Ti,j. Similarly,
we can define the label of Si as the same as that of Ti and the
label of Si,j as the same as that of Ti,j.
As mentioned before, the SD scheme is one instance of

the subset cover framework. To describe the SD scheme,
we use the abstraction of Lee et al. [10] since their abstrac-
tion of SD is independent of a key assignment method.
They defined the SD scheme as four algorithms: Setup,
Assign, Cover, andMatch. The setup algorithm first defines
a binary tree BT and the collection S of subsets where
each subset Si,j is associated with a subtree Ti,j. The assign
algorithm first assigns a user to a leaf node of BT and
defines a private set PV for the user where any two nodes
vi, vj in the path nodes from the root node to the leaf node
defines a subtree Ti,j in PV . The cover algorithm takes as
input a revoked set R of users and finds a cover set CV
that can cover the set of receivers N \ R. The final match
algorithm takes as input a private set PV and a cover set
CV and finds two matching subsets in PV and CV respec-
tively. The detailed description of the SD scheme is given
as follows:
SD.Setup(N ): Let N = 2n for simplicity. It first sets a

perfect binary tree BT of depth n. Each user is assigned
to a different leaf node in BT . The collection S of SD is
the set of all subsets {Si,j} where vi, vj ∈ BT and vj is a
descendant of vi. It outputs the tree BT .

SD.Assign(BT , ID): Let vID be the leaf node of BT that is
assigned to the user ID. Let (vk0 , vk1 , . . . , vkn ) be the
path from the root node vk0 to the leaf node vkn = vID.
It first sets a private set PVID as an empty one. For all
i, j ∈ {k0, . . . , kn} such that vj is a descendant of vi,
it adds the subset Si,j defined by two nodes vi and vj in the
path into PVID. It outputs the private set PVID = {Si,j}.
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SD.Cover(BT ,R): It first sets a subtree T as ST (R), and
then it builds a covering set CVR iteratively by removing
nodes from T until T consists of just a single node as
follows:

1) It finds two leaf nodes vi and vj in T such that
the least-common-ancestor v of vi and vj does not
contain any other leaf nodes of T in its subtree.
Let vl and vk be the two child nodes of v such
that vi is a descendant of vl and vj is a descendant
of vk . If there is only one leaf node left, it makes
vi = vj to the leaf node, v to be the root of T and
vl = vk = v.

2) If vl 6= vi, then it adds the subset Sl,i to CVR;
likewise, if vk 6= vj, it adds the subset Sk,j to CVR.

3) It removes from T all the descendants of v and
makes v a leaf node.

It outputs the covering set CVR = {Si,j}.
SD.Match(CVR,PVID): LetCVR = {Si,j} and PVID = {Si,j}.

It finds two subsets Si,j ∈ CVR and Si′,j′ ∈ PVID such that
(vi = vi′ ) ∧ (dj = dj′ ) ∧ (vj 6= vj′ ) where dj is the depth
of vj. If it found two subsets, then it outputs (Si,j, Si′,j′ ).
Otherwise, it outputs ⊥.

B. CONSTRUCTION
The general method that combines the SD scheme with an
SRE scheme for the construction of a revocation system was
introduced by Lee et al. [10]. The basic idea of their method
is that there exists a one-to-one mapping between a subset Si,j
in the SD scheme and labels (GL,ML) in the SRE scheme.
That is, we can set GL = Li‖dj and ML = Lj where (Li,Lj)
is the labels of a subtree Ti,j and dj is the depth of the node vj
since the subtree Ti,j is associated with the subset Si,j. Thus,
we can derive a public-key revocation system by using an
SRE scheme instead of using a pseudo-random generator.
We follow the designmethod of Lee et al. [10], but we slightly
modify it to use a symmetric key encryption scheme in order
to improve the efficiency.

Let SD = (Setup, Assign, Cover, Match) be the SD
scheme and SKE = (Gen, Enc, Dec) be a symmetric key
encryption scheme. Our IBR scheme for the identity space
I = {0, 1}n is described as follows:
IBR.Setup(1λ): It define a perfect binary tree BT by run-

ning SD.Setup(2n). Next, it obtains MKSRE and PPSRE
by running SRE.Setup(1λ). It outputs MK = MKSRE
and PP = (BT ,PPSRE ).

IBR.GenKey(ID,MK ,PP): It obtains a private set PVID =
{Si,j} by running SD.Assign(BT , ID). Note that we
assign ID to the leaf node where the label of the leaf
node is equal to ID. Let dj be the depth of a node
vj associated with a label Lj. For each Si,j ∈ PVID,
it derives (Li,Lj) from Si,j and obtains SKSRE,Si,j by run-
ning SRE.GenKey((Li||dj,Lj),MKSRE ,PPSRE ). It out-
puts SKID =

(
PVID, {SKSRE,Si,j}Si,j∈PVID

)
.

IBR.Encrypt(R,M ,PP): It finds a covering set CVR =
{Si,j} by running SD.Cover(BT ,R). Let dj be the depth

of a node vj associated with Lj. Next, it chooses a session
key K ∈ {0, 1}λ. For each Si,j ∈ CVR, it derives two
labels (Li,Lj) from Si,j and obtains CTSRE,Si,j by run-
ning SRE.Encrypt((Li||dj,Lj),K ,PPSRE ). It obtains C
by running SKE.Encrypt(K ,M ). Finally, it outputs
CTR =

(
CVR,C, {CTSRE,Si,j}Si,j∈CVR

)
.

IBR.Decrypt(CTR, SKID,PP): If ID 6∈ R, it finds a match-
ing tuple (Si,j, Si′,j′ ) by running SD.Match(CVR,PVID)
and obtains K by running SRE.Decrypt(CTSRE,Si,j ,
SKSRE,Si′,j′ ,PPSRE ). Otherwise, it outputs ⊥. Finally,
it outputs M by running SKE.Decrypt(K ,C).

Remark 19: Our revocation scheme is identity-based one
whereas the revocation scheme of Lee et al. [10] is public-key
one since the SRE scheme of Lee et al. is proven under a
q-type assumption where q is depends on the number of
users.
Remark 20: In our IBR scheme, an SRE scheme is inte-

grated with the SD scheme. It is relatively straightforward to
integrate an SRE scheme with the LSD scheme instead of the
SD scheme. The detailed description of the LSD scheme is
given in [13].

C. SECURITY ANALYSIS
The security model of our IBR scheme in the proof depends
on the security model of the underlying SRE scheme. That is,
if the underlying SRE scheme is fully (or selectively) secure,
then our IBR scheme is also fully (or selectively) secure.
Theorem 21: The above IBR scheme is selectively (or

fully) secure under chosen plaintext attacks if the SRE scheme
is selectively (or fully) secure under chosen plaintext attacks
and the SKE scheme is secure under chosen plaintext attacks.

Proof: LetR∗ be the set of revoked users in the challenge
ciphertext and CVR∗ be the covering set where the number of
subsets in CVR∗ is `. The challenge ciphertext is described as
CT ∗ = (CVR∗ ,C∗, {CT ∗SRE,Sik ,jk

}
`
k=1). For the security proof,

we define hybrid games G0,G1,G2,G3 as follows:
Game G0. This game is the original security game defined
in the security model except that the challenge bit µ is fixed
to 0. In this game, all componentsCT ∗SRE,j are encryption on a
correct session keyK∗ and the componentC∗ is an encryption
on the message M∗0 by using the session key K∗.
Game G1. In this game, all components CT ∗SRE,j in the chal-
lenge ciphertext CT ∗ are encryption on a random session
key Z that is not related to the correct one K∗. However,
the component C∗ is still an encryption on the message M∗0
by using the correct one K∗. For the security proof, we addi-
tionally define hybrid gamesG0,0, . . . ,G0,ρ, . . . ,G0,` where
G0,0 = G0 andG0,` = G1. The gameG0,ρ is almost identical
to the game G0,ρ−1 except that CT ∗SRE,ρ is an encryption on a
random session key Z . Specifically, each componentCT ∗SRE,k
for k ≤ ρ is an encryption on a random session key Z and
each component CT ∗SRE,k for ρ < k is an encryption on the
session key K∗.
GameG2. This game is similar to the gameG1 except that the
component C∗ is an encryption on the message M∗1 by using
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the session key K∗. That is, the challenge ciphertext CT ∗ is
an encryption on the message M∗1 .
Game G3. In this game, all components CT ∗SRE,j in the chal-
lenge ciphertext CT ∗ are encryption on the correct session
key K∗ instead of the random session key Z . Thus, this game
is the original security game in the definition except that the
challenge bit µ is fixed to 1. For the security proof, we also
define additional hybrid games G2,0, . . . ,G2,ρ, . . . ,G2,`
where G2,0 = G2 and G2,` = G3. The game G2,ρ is
almost identical to the game G2,ρ−1 except that CT ∗SRE,ρ is
an encryption on the correct session key K∗. Specifically,
each component CT ∗SRE,k for k ≤ ρ is an encryption on the
session key K∗ and each component CT ∗SRE,k for ρ < k is an
encryption on the random session key Z .

Let SGiA be the event that A outputs 0 in Gi. From
Lemmas 22, 23 and 24, we obtain the following result

AdvIBRA (λ) ≤
1
2

∣∣∣Pr[SG0
A ]− Pr[SG3

A ]
∣∣∣

≤ `AdvSREB (λ)+ AdvSKEB (λ)+ `AdvSREB (λ).

This completes our proof. �
Lemma 22: If the SRE scheme is secure under chosen

plaintext attacks, then no polynomial time adversary can
distinguish between G0,ρ−1 and G0,ρ with non-negligible
advantage.

Proof: Suppose there exists an adversary A that distin-
guishes betweenG0,ρ−1 andG0,ρ with non-negligible advan-
tage. A simulator B that breaks the security game of the SRE
scheme is given: challenge public parameters PPSRE . Then B
that interacts with A is described as follows:

Setup: B first sets a perfect binary tree BT by running
SD.Setup(2n) and gives PP = (BT ,PPSRE ) to A.
Query 1: If A adaptively requests a private key query for a
user ID, then B proceeds this query as follows: It first obtains
a private set PVID = {Si,j} by running SD.Assign(BT , ID).
For each Si,j ∈ PVID, it sets labels (GL,ML) from
Si,j and requests SK ′SRE,Si,j for labels (GL,ML) to the
key generation oracle that simulates SRE.GenKey. It sets
SKID = (PVID, {SK ′SRE,Si,j}) and gives this to A.
Challenge: A submits a challenge revoked set R∗ and two
challenge messagesM∗0 ,M

∗

1 subject to the restrictions. It sets
µ = 0 and proceeds as follows: It obtains two session keys
K∗ and Z by running SKE.GenKey(1λ) and computes C∗ by
running SKE.Encrypt(M∗µ,K

∗). Next, it obtains a covering
set CVR∗ = {Si1,j1 , . . . , Si`,j`} by running SD.Cover(BT ,R∗)
and obtains each component CTSRE,Sik ,jk as follows:
1) For 1 ≤ k ≤ ρ − 1, it computes CT ∗SRE,Sik ,jk

by
running SRE.Encrypt((Lij‖djk ,Ljk ),Z ,PPSRE ) where
(Lik ,Ljk ) is the label of Sik ,jk and djk is the depth of the
node vjk .

2) For k = ρ, it submits challenge labels
GL ′ = Liρ‖djρ ,ML

′
= Ljρ and two challenge mes-

sages M ′0 = K∗,M ′1 = Z to the challenge oracle
of SRE and receives a challenge ciphertext CT ′SRE .
It simply sets CT ∗SRE,ρ = CT ′SRE .

3) For ρ + 1 ≤ k ≤ `, it computes CT ∗SRE,Sik ,jk
by run-

ning SRE.Encrypt((Lik‖djk ,Ljk ),K
∗,PPSRE ) where

(Lik ,Ljk ) is the label of Sik ,jk and djk is the depth of the
node vjk .

It gives CT = (CVR∗ ,C∗, {CT ∗SRE,Sik ,jk
}
`
k=1) to A.

Query 2: Same as Query 1.
Guess: Finally, A outputs a bit µ′. B also outputs µ′. �
Lemma 23: If the SKE scheme is secure under chosen

plaintext attacks, then no polynomial time adversary can dis-
tinguish between G1 and G2 with non-negligible advantage.

Proof: Suppose there exists an adversary A that distin-
guishes between G1 and G2 with non-negligible advantage.
A simulator B that breaks the security game of the SKE
scheme is described as follows:

Setup: B first obtainsMK and PP by running IBR.Setup(1λ)
and gives it to A.
Query 1: If A adaptively requests a private key query for a
user ID, then B creates the private key by using the master
key MK .
Challenge: A submits a challenge revoked set R∗ and two
challenge messages M∗0 ,M

∗

1 . It also submits two challenge
messages M ′0 = M∗0 ,M

′

1 = M∗1 and receives a challenge
ciphertextCT ′ of SKE. It setsC∗ = CT ′. It chooses a random
session key Z and prepare all componentsCT ∗SRE,Sik ,jk

that are
encryption on the random session key Z . It gives a challenge
ciphertext CT = (CVR∗ ,C∗, {CT ∗SRE,Sik ,jk

}
`
k=1) to A.

Query 2: Same as Query 1.
Guess: Finally, A outputs a bit µ′. B also outputs µ′. �
Lemma 24: If the SRE scheme is secure under chosen

plaintext attacks, then no polynomial time adversary can
distinguish between G2,ρ−1 and G2,ρ with non-negligible
advantage.
The proof is almost similar to that of Lemma 22.

D. COMPARISONS
In this section, we compare our IBR scheme to previous
IBR schemes. IBR schemes can be categorized as tree-based
schemes that combine a tree data structure with an IBE or
HIBE scheme [7], [9] or pairing-based schemes that directly
are built from bilinear groups [6], [14].
Naor et al. [7] proposed an IBR scheme (NNL-IBR) by

combining the tree-based CS revocation scheme with the
Boneh-Franklin IBE scheme [8] to reduce the size of public
parameters. The NNL-IBR scheme is secure under standard
assumption in the random oracle model, but a ciphertext
is consists of O(r logN/r) group elements where r is the
number of revoked users and N is the number of maximum
users. Dodis and Fazio [9] proposed an improved IBR scheme
(DF-IBR) by combining the SD (or LSD) scheme with an
HIBE scheme. If the DF-IBR scheme is instantiated with
the Boneh-Boyen-Goh HIBE scheme [27], then the size of
ciphertexts can be reduced to have O(r) group elements.
However, the private key of this DF-IBR scheme consists of
O(log2.5 N ) group elements.
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TABLE 2. Benchmarks of basic group operations.

TABLE 3. Benchmarks of our SRE scheme.

Lewko et al. [6] proposed IBR schemes that are directly
built from bilinear groups. They presented a simple IBR
scheme under q-type assumption and another IBR scheme
under standard assumption. In their two IBR schemes,
a ciphertext is consists of O(r) group elements and a pri-
vate key is consists of just O(1) group elements. However,
the number of pairing or exponentiation operations increases
proportional to the number of revoked users r . Thus their IBR
schemes are only appropriate in a situation where the number
of revoked users is very small. Attrapadung and Libert [14]
proposed an improved IBR scheme. They showed that the size
of ciphertexts and the cost of decryption can be reduced if the
size of public parameters and private keys increases.

Our IBR schemes are built by combining the SD (or LSD)
revocation scheme and our SRE schemes instead of IBE
or HIBE schemes. In our IBR schemes that use the LSD
scheme, public parameters are consists of O(1) group ele-
ments because of the underlying SRE scheme, a ciphertext
and a private key are consists of O(r) and O(log1.5 N ) group
elements respectively. Additionally the decryption algorithm
of our IBR scheme only requires three pairing and two expo-
nentiation operations. Thus our IBR scheme in prime-order
groups provides efficient decryption compared to those of
LSW-IBR and AL-IBR schemes.

VI. IMPLEMENTATION
We implemented our identity-based revocation (IBR)
schemes by using Charm [28], which is a framework for
rapidly prototyping public-key cryptographic schemes by
using the Python language. Charm provides three mathemat-
ical groups: integer group, elliptic curve group, and pairing
group by using OpenSSL, GMP, PBC, RELIC, and MIRACL
libraries that are written in the C language. Additionally,
it also provides a bunch of public-key schemes and proto-
cols. To measure the performance of our implementation,
we used a desktop with Intel Core i5-4590 3.3GHz CPU and
16.0GB RAM that runs Windows 7 with Python-3.2.5.

To implement our IBR schemes, we selected two pairing
groups: SS512 and MNT159. The SS512 pairing group is

a super-singular elliptic curve group where the base field
size is 512 bits and the embedding degree is two. In this
SS512 group, the bit size of a group element in G1 and
G2 is 512 bits and the bit size of a group element in GT
is 1024 bits. The MNT159 pairing group is an asymmetric
group created byMiyaji, Nakabayashi, and Takano where the
base field size is 159 bits and the embedding degree is six. In
this MNT159 group. the bit size of a group element G1 is
159 bits and the bit size of a group element in G2 and GT is
954 bits. The details of these groups can be found in [29]. The
benchmark result of basic group operations in these pairing
groups is given in Table 2. In the MNT159 group, the basic
operations in G1 is very efficient compared with operations
in G2 and GT .

By using the selected pairing groups, we implemented
our SRE scheme with selective security and measured the
performance of our construction. Although our SRE scheme
is originally built on a symmetric pairing group, it can be
easily translated to an asymmetric pairing group. In our SRE
scheme, theGenKey algorithm requires four group exponen-
tiations inG2 if additional elements are stored in amaster key,
the Encrypt algorithm requires five group exponentiations in
G1 and one exponentiation inGT , and theDecrypt algorithm
requires four pairing operations and one group exponenti-
ation in GT . The benchmark result of our SRE scheme in
SS512 and MNT159 groups is given in Table 3. Note that the
Encrypt algorithm is two-times fast in the MNT159 group,
but the GenKey and Decrypt algorithms are slow in the
MNT159 group.

For our IBR schemes, we implemented (tree-based) SD
and LSD schemes that belong to the subset cover framework
of Naor et al. [7] and compared their performance with that
of the CS scheme. A simple way to represent a binary tree is
to assign a unique node number i to each node vi by using
the depth-first search tree traversal. In this case, the root
node is assigned to 1, the child node vL of a parent node v
with a number i is assigned to 2i and the right child of vR is
assigned to 2i+ 1. The detailed algorithms of the SD scheme
is given in Section V-A and the details of the LSD scheme is
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TABLE 4. Benchmarks of CS, SD, and LSD schemes.

TABLE 5. Benchmarks of our IBR schemes.

given in [13]. To measure the performance of SD and LSD
schemes, we set the depth d of a binary tree as 15. In this
case, the number N of leaf nodes is 215 = 3.2 ∗ 104. Let R
be a set of revoked nodes and r be the size of R. In the SD
scheme, the size of a covering set CV for a revoked set R
is theoretically bounded by 2r − 1, but it is approximately
1.25r if revoked leaf nodes are randomly selected. In the
LSD scheme, the size of CV is bounded by 4r − 2, but it
is about 1.98r on average. The benchmark result of SD and
LSD schemes is given in Table 4. In SD and LSD schemes,
the performance of the Cover algorithm that finds CV for a
non-revoked set is relatively slow. If the SD.Cover algorithm
of Naor et al. [7] is naively implemented, then the running
time of this algorithm isO(r4 log2 N ) where r is the size of R.
For our IBR scheme, we optimized the SD.Cover algorithm
and obtained an improved one with O(r2 log2 N ) running
time. Note that the running time of the CS.Cover algorithm
is just O(r logN ).
By combining the implementation of our SRE scheme and

that of the SD (or LSD) scheme, we implemented our IBR-SD
(or IBR-LSD) scheme and measured the performance on
different pairing groups. The benchmark result of our IBR
schemes is given in Table 5. First, the running time of the
Setup algorithm is the same as that of the SRE.Setup algo-
rithm. The running time of theGenKey algorithm is indepen-
dent of the number r of revoked users, but it is dependent on
the depth d = logN of a binary tree whereN is the number of
maximum users. The IBR-SD.GenKey algorithm performs

O(log2 N ) number of the SRE.GenKey algorithm, but the
IBR-LSD.GenKey algorithm performs O(log1.5 N ) number
of the SRE.GenKey algorithm. Thus, the IBR-LSD.GenKey
algorithm is approximately two-times faster than the IBR-
SD.GenKey algorithm according to the Table. The running
time of the Encrypt algorithm increases depending on the
size of CV . Additionally, the Encrypt algorithm should find
CV by running the Cover algorithm of the SD (or LSD)
scheme. The running time of the Decrypt algorithm is very
efficient since it just requires one SRE.Decrypt algorithm
after finding a matching tuple of the SD (or LSD) scheme.

VII. CONCLUSION
In this paper, we solved the problem of Lee et al. [10] to
construct an SRE scheme under the standard assumption
without random oracles. The main insight of our solution
is that an SRE scheme can be built by combining an IBE
scheme and a simple IBR scheme that are secure under the
standard assumption. We first proposed an SRE scheme in
prime-order bilinear groups and proved its selective security
under the DBDH assumption. We next proposed another
SRE scheme in composite-order bilinear groups and proved
its full security under simple static assumptions. We expect
that our composite-order SRE scheme can be converted into
a prime-order one by following the conversion method of
Lewko [30]. We proposed an IBR scheme by combining the
SD (or LSD) method and our SRE scheme and proved its
security. Finally, we implemented our IBR-SD and IBR-LSD
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schemes in Charm and measured the performance of our
implementations.
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