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ABSTRACT By associative memory, people can remember a pattern in microseconds to seconds. In order to
emulate human memory, an artificial neural network should also spend a reasonable time in recalling matters
of different task difficulties or task familiarities. In this paper, we study the recall time in a memristive
Hopfield network (MHN) implemented with memristor-based synapses. With the operating frequencies
of 1–100 kHz, patterns can be stored into the network by altering the resistance of the memristors, and the
pre-stored patterns can be successfully recalled, being similar to the associative memory behavior. For the
same target pattern (the same familiarity), recall time of the MHN varies with the inputs, which is similar to
the effect in the human brain that recall time depends on task difficulty. On the other hand, for the same input
(i.e., the same initial state), the recall timemay be different for different target patterns, which is similar to the
effect in the brain that recall time depends on the familiarity. In addition, the effect of stimulation (updating
frequency) on recall time may be complicated: a higher stimulation frequency may not always lead to a faster
recall (it may even slow the recalling process in some circumstances). Our memristive Hopfield network
shows good potential in mimicking the characteristics of human associative memory.

INDEX TERMS Memristors, associative memory, Hopfield neural networks, neuromorphics.

I. INTRODUCTION
Memory, which permits an organism to bridge the past with
the present, is a critical and integral part of our cognitive
functions [1]. As one type of memory, declarative memory
comprises memory for personal experiences and for facts
and concepts. It is essentially associative, linking components
(e.g., aroma and flower) either directly or via spatial, temporal
or other kinds of relationships [2]. Associative memory, as a
particular form of declarative memory, is defined as memory
for the relationship between initially unrelated items [3].
It is well established that the hippocampus and surround-
ing medial temporal lobe cortices play an essential role in
associative memory [2]–[4]. And it is widely believed that
modification of the strength/weight of connections between
neurons (i.e., synapses) is the mechanism underlying learn-
ing and memory [5]–[8]. One of the most viable theories
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of cortical associative memory is Hebb’s theory of cell
assemblies [9], which have inspired many attractor-memory
models of cortex. One of the most studied attractor-memory
models is the Hopfield network [10]–[13], which is
a recurrent network and has been proved useful in
content-addressable memories [14] and combinatorial opti-
mization problems [12]. Recall time (or recall speed) varies
from person to person, and depends on many factors, such
as the difficulty of task [15] and spatial contextual familiar-
ity [16]. Typically, the recall time ranges from microseconds
to seconds [15]–[19]. Hardware implementation of artificial
neural networks (ANNs) is necessary for realizing associa-
tive memories as well as studying the recall time. Recently,
memristor has been considered as a promising candidate
for implementing the basic element of ANNs, the elec-
tronic synapses, due to its excellent scalability, continuously
adjustable resistance, nonvolatility, low-operating voltage,
low-power consumption, and good compatibility with stan-
dard complementary metal oxide semiconductor (CMOS)
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technology [20]–[23]. Memoristor integrates the function
of storage and computing. Synaptic behaviors have been
demonstrated in memristors at single-device or circuit
level [24]–[29], and also some ANNs based on memris-
tors have been demonstrated [30]–[35]. In our previous
work, associative memory has been realized in a mem-
ristive Hopfield network, which has inspired some other
researchers [36]. However, none of them have studied the
recall time of the memristive associative memory.

In this work, the recall time of thememristive Hopfield net-
work is studied. Different patterns are stored into and recalled
from the Hopfield network at the frequencies of 1-100 kHz.
The effects of task familiarity, difficulty and stimulation fre-
quency on the recall time are studied. The result shows that
the MHN is promising in mimicking the characteristics of
human associative memory.

II. METHODS
Different from back propagation neural networks, the weight
matrix of the Hopfield network is calculated according to
certain rules. The state of the network changes over time, but
the weight matrix remains the same. The output state of each
neuron at time t + 1 is related to the state of the network at
time t, according to the following rule [36]

X (t + 1) = sign(X (t) ·W − T ) (1)

where t denotes the number of updating cycles; X = (x1,
x2, x3); and X (0) denotes the initial state vector. Detailed
updating mechanism can be found in our previous work [36].
The weight of the network does not change throughout the
network iteration. In other words, there is no ‘‘training’’
process to optimize the weight matrix of the network. How-
ever, the Hopfield network does need a ‘‘energy function’’ to
ensure its stability. Since the weight of the network remains
constant throughout the iteration, the energy function of the
network must converge to a limited number of stable states
over time. In this study, the output state of the network
converges to a preset state.

The memristor used to implement the Hopfield network
has a metal-insulator-metal (MIM) structure based on HfO2
thin films. The detail for the memristor fabrication was
reported in our previous work [36]. The Hopfield network
was constructedwith sixmemristors and commercial IC chips
including four transmission gates, seven operational ampli-
fiers and one comparator. Resistance of the memristors was
modified off-line with a Keithley-4200 semiconductor char-
acterization system. A field programming gate array (Model
No. ALTERA EP2C8Q208C8) was used to generate clock
signals, and a RIGOL oscilloscope (Model No. DS4024) was
used to record the waveforms of the clock signals and outputs.

III. RESULTS AND DISCUSSIONS
As shown in Fig. 1(a), the Hopfield network consists of three
neurons and nine synapses. The circuit implementation of the
synapses and neurons is illustrated in Fig. 1(b). The detailed

FIGURE 1. The memristive Hopfield network. (a) Architecture of the
Hopfield network consisting of nine synapses (filled circles) and three
neurons (triangles); (b) circuit implementation of the block (including
three synapses and one neuron) enclosed by the dotted lines in (a).
Switch SA0 is used for initial states input into the network.

working mechanism of the network can be found in our
previous work [36].

A. WEIGHT MATRIX IMPLEMENT
To store a single pattern into the Hopfield network, the weight
matrix of the Hopfield network can be determined based on
the modified Hebbian learning rule or the scheme used in our
previous work [37].

When given a target state, the synaptic weight matrix must
be symmetric, and the neurons must have no self-feedback,
then 

ω11 = ω22 = ω33 = 0
ω12 = ω21

ω23 = ω32

ω31 = ω13

(2)

To store pattern ‘‘101’’ into the Hopfield network, Equa-
tion (1) gives an output state of ‘‘101’’, when the initial state
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FIGURE 2. Waveforms of x1, x2, and x3 in the process of recalling
pre-stored ‘‘101’’ starting from different initial states. (a) ‘‘000’’; (b) ‘‘001’’;
(c) ‘‘010’’; (d) ‘‘011’’; (e) ‘‘100’’; (f) ‘‘101’’; (g) ‘‘110’’; (h) ‘‘111’’. The control
clock is 5 kHz.

is ‘‘101’’ already. Then the weight and thresholdmatrix meets
the following relationship


1 ∗ ω11 + 0 ∗ ω21 + 1 ∗ ω31 − T1 ≥ 0
1 ∗ ω12 + 0 ∗ ω22 + 1 ∗ ω32 − T2 < 0
1 ∗ ω13 + 0 ∗ ω23 + 1 ∗ ω33 − T3 ≥ 0

(3)

The state converge order of the network in this study was
set as Fig. 2. Then more relationships between weight and
threshold matrix similar to Equation (3) can be obtained.

FIGURE 3. Recall time for different initial states for the same target
pattern ‘‘101’’. The control clock is 5 kHz.

Since the actual resistance matrix has a limited range of
values, the weight matrix was then set as

W =

 0 0.01755 0.07715
0.01755 0 −0.077377
0.07715 −0.077377 0

 (4)

The threshold voltage was set to

T = (−0.033 −0.033 −0.033) (5)

And the resistance matrix was set to

M =

 0.1 53.6 250.8
53.6 0.1 −251.6
250.8 −251.6 0.1

 k�. (6)

B. STUDY OF TASK DIFFICULTY
Figure 2 shows the waveforms of neuron states (x1, x2 and
x3) in the process to recall the pre-stored ‘‘101’’ for different
initial states. In Fig. 2, the output low voltage (around 0 V)
and high voltage (around 2V) are normalized to ‘‘0’’ and ‘‘1’’,
respectively. Three clocks with the frequency of 5 kHz and
the duty ratios of 1/3 were used to control the switches SA1,
SA2 and SA3 (Fig. 1(b)), respectively. As can be observed
in Fig. 2, starting from any initial state, the Hopfield network
eventually stabilizes at ‘‘101’’, i.e., it successfully recalls
‘‘101’’, which can be used to emulate associative memory.
Taking Fig. 2(a) as an example, starting from ‘‘000’’, in the
updating cycles, neuron states were updated asynchronously
from x1, x2 and x3, respectively, according to the following
rule [36] as Equation (1). Detailed updating mechanism can
be found in our previous work [36].

Similarly, starting from the other seven initial states,
the Hopfield network can successfully recall the pre-stored
‘‘101’’ by experiencing some intermediate states as shown
in Fig. 2. The recall time is defined as the duration from
the updating state to the final state at which the network
stabilizes. The time required for recalling ‘‘101’’ at 5 kHz
ranges from 33.3 µs to 300 µs depending on the initial state
(Fig. 3). The target pattern ‘‘101’’ for all of the different initial
states means that the MHN has the same familiarity for the
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FIGURE 4. Waveforms of x1, x2, and x3 in the process of recalling
different target patterns of (a) ‘‘111’’; (b) ‘‘101’’; (c) ‘‘110’’ and (d) ‘‘011’’.
The initial state is ‘‘001’’ for all the target patterns. The control clock is
5 kHz.

target, while the different initial states lead to different task
difficulties in memorization. In the associative memories,
there are some simple tasks such as convergences from ‘‘001’’
to ‘‘101’’ (Fig. 2(b)), and from ‘‘111’’ to ‘‘101’’ (Fig. 2(h)),
which cost a shorter time to recall. There are also difficult
tasks, e.g. the convergence from ‘‘000’’ to ‘‘101’’, which take
much longer time to recall. The difficulty level depends on
the initial state, the Hopfield matrix, the threshold and the
updating sequence [36].

C. STUDY OF FAMILIARITY
Figure 4 shows the waveforms of recalling (a) ‘‘111’’,
(b) ‘‘101’’, (c) ‘‘110’’ and (d) ‘‘011’’ for the same initial state
of ‘‘001’’ at a control frequency of 5 kHz. Different final
states (i.e. the patterns) as shown in Fig. 4 can be considered
as tasks with different familiarities. In human memory, tasks
of different familiarities may lead to different recall time also.
Indeed, as can be observed in Fig. 5, recalling ‘‘101’’ is a
familiar task (the recall time is 33.3 µs), while retrieving
‘‘011’’ is an unfamiliar task (the recall time is 233.3 µs).

D. STUDY OF STIMULATION EFFECT
Varying the updating frequency is a simple way to study
the stimulation effect. In human memory, stimulation may
be a ‘‘double-edged sword’’. Normally, a high frequency of
stimulation (updating) may lead to a faster recall. However,
in some circumstances, when a stimulation with a very high
frequency is applied to our brain, we might, on the contrary,
recall a thing slowly. The MHN also exhibited such behavior.
Figure 6 shows the evolution of neuron states during recall

FIGURE 5. Recall time for different target patterns but the same initial
state of ‘‘001’’. The control clock is 5 kHz.

process at the operating frequency of 50 kHz. As can be
observed in Fig. 6 (a), (c), (e), and (g), the network can
recall the pre-stored state ‘‘101’’ starting from ‘‘000’’, ‘‘010’’,
‘‘100’’, and ‘‘110’’ in the same recalling sequence as that at
the frequency of 5 kHz (Fig. 2 (a), (c), (e), and (g)). However,
the recall time at the frequency of 50 kHz is shorter than that
at the frequency of 5 kHz. The recall time for different initial
states but the same target pattern ‘‘101’’ at the frequency
of 50 kHz extracted from Fig. 6 is summarized in Fig. 7.
As can be observed in the figure, the recall time is the same
for different initial states.

On the other hand, as shown in Fig. 6(b), (d), (f) and (h),
to recall state ‘‘101’’ from initial states ‘‘001’’ and ‘‘101’’
at the frequency of 50 kHz, more updating cycles are expe-
rienced than in the operations at the frequency of 5 kHz
(Fig. 2(b), (d), (f) and (h)). Taking initial state ‘‘001’’ for
example, in Fig 2(b), in the 1st updating cycle, the neuron
states evolved from ‘‘001’’ to ‘‘101’’, and then it remained
unchanged following Eq. (4); while in Fig. 6(b), in the 1st

updating cycle, the Hopfield network evolved from ‘‘001’’ to
‘‘101’’, and then it changed to ‘‘111’’, not following Equa-
tion (1); in the 2nd updating cycle, the neuron states evolved
from ‘‘111’’ to the final state ‘‘101’’. Similarly, additional
‘‘111’’ appeared in Fig. 6(f) as compared to Fig 2(f). And
in Fig. 6(d) and (h), the intermediate state ‘‘111’’ experienced
one more updating cycle compared with that in Fig. 2(d)
and (h), respectively. Fortunately, although some additional
states may be experienced and more updating cycles may be
needed at the operating frequency of 50 kHz, the Hopfield
network can retrieve the pre-stored ‘‘101’’ from all initial
states, i.e., recall correctly. The additional states and more
updating cycles are induced by the high operating frequency.
When the Hopfield network works at a high frequency, there
is no enough time for capacitor Ci of Neuron i (Fig. 1(b))
to completely charge or discharge. That means there may
be not enough time to update the state of a neuron. And
thus the recall process may not exactly follow Equation (1).
However, as the network can converge to some states that do
not need switching between charging and discharging states,
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FIGURE 6. Waveforms of x1, x2, and x3 in the process of recalling
pre-stored ‘‘101’’ starting from different initial states. The control clock is
50 kHz.

like ‘‘111’’, it can finally recall the target state. There are two
characteristics in the MHN that can be used to emulate the
human memory: (1) as discussed early, a higher stimulation
frequency may not lead to a faster recall in some circum-
stances; and (2) in many cases recalling follows a recall rule
like Eq. (4) step by step, but in other cases intermediate
states or more updating cycles that cannot be predicted are
experienced.

As the recall process may be influenced by updating
frequency, the number of updating cycles needed to recall
the pre-stored patterns ‘‘111’’, ‘‘101’’, ‘‘110’’ and ‘‘011’’
are summarized in Fig. 8 (a)-(d), respectively, for different

FIGURE 7. Recall time for different initial states but the same target
pattern ‘‘101’’. The control clock is 50 kHz.

FIGURE 8. Number of updating cycles required to recall the pre-stored
states of (a) 000; (b) 111; (c) 110 and (d) 101 from different initial states;
Recalling time from different initial states to pre-stored states of (e) 000;
(f) 111; (g) 110 and (h) 101.

operating frequencies. And the recall time are shown
in Fig. 8(e)-(h), correspondingly. As shown in Fig. 8(a)-(d),
at low frequencies (1 kHz and 5 kHz), the recall process from
any initial states follows Eq. (4) perfectly; i.e., the sequen-
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tial states shown in the figures can be calculated accord-
ing to Eq. (4). The number of updating cycles required to
recall ‘‘111’’ ‘‘101’’, ‘‘110’’ and ‘‘011’’ does not change
with frequency when the frequency is low (1 kHz and
5 kHz). However, at the higher frequencies (10 kHz, 50 kHz
and 100 kHz), the recall process shows some complexi-
ties. As shown in Fig. 8(a) and (e) for recalling ‘‘111’’,
the number of updating cycles for recalling ‘‘111’’ is the
same for different operation frequencies. And thus the recall
time only depends on the frequency, i.e., a high updating
frequency leads to a short recall time. In recalling ‘‘111’’
from other initial states, only charging of capacitor Ci was
required to achieve the state of ‘‘1’’. No discharging of Ci at
high frequencies results in the converging process following
Eq. (4), i.e., no additional intermediate states were experi-
enced. As one example of such scenario, recalling ‘‘111’’ at
the frequency of 100 kHz is shown in Supplementary Fig. 1 in
supplementary material. Similar situation is observed for
recalling ‘‘000’’ at the frequency of 100 kHz as shown in
Supplementary Fig. 2 in supplementary material. On the
other hand, for recalling other patterns of ‘‘101’’, ‘‘110’’, and
‘‘011’’, switching between ‘‘1’’ and ‘‘0’’ were experienced,
i.e., switching between charging and discharging of Ci is
necessary. And thus at high operation frequencies, additional
updating cycles are needed.

There are two factors that affect the recall time: one is
the number of updating cycles; and the other is the updating
frequency (or stimulation frequency). Therefore, as observed
in Fig. 8(e)-(h), in many cases the recall time is shorter at a
higher frequency. However, in some cases the recall durations
may be larger at a higher operation frequency; for example,
as shown in Fig. 8 (g), for initial state ‘‘010’’, the recall time
at 50 kHz (∼70 µs) is longer than that at 5 kHz (33.3 µs)
and 10 kHz (16.7 µs). This situation is interesting, and it
could emulate the complex reaction of human brain when
a matter has the same familiarity and same initial input.
For example, sometimes someone pushes us at a high fre-
quency to remember something; however, we may, on the
contrary, take it in mind more slowly.

In [15]–[19], associative memory recall time ranges from
microseconds to several seconds. The recall durations in this
work seem to be shorter. Delay circuits or a larger Ci can
be used to realize millisecond memorizations or slower sit-
uation. In order to realize a network that can work even faster
than our human brain, a quick associative memorization is
necessary. In this case, a smaller Ci or high speed operational
amplifiers could be employed.

E. NETWORK STABILITY STUDY
Effect of the variations in the Hopfield threshold and matrix
element on the recall time has been studied also. The details
can be found in Supplementary Notes 1 and 2, Supplementary
Tables 1 and 2, and Supplementary Figures 3-6 in the sup-
plementary materials. The results show that the variations in
threshold and matrix element take effect on the recall time of
the MHN: In many cases the recall time remains unchanged

and in some cases the variations in threshold and matrix
elements prolong the recall time.

IV. CONCLUSION
The recall process of a memristive Hopfield network consist-
ing of nine synapses and three neurons has been studied. The
recall time shows dependence on both task familiarity and
difficulty. In addition, the stimulation effect on recall has also
been investigated. The result shows that stimulationmay have
a complex effect on recall. In many cases, a high stimulation
frequency leads to a fast recall; but in some cases it slows
down the recall process.
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