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ABSTRACT With recent advances in robotics along with sensor technologies, robots have richer features
and can be used in more diverse applications. However, onboard microcontrollers in robots often take
full responsibility for processing data acquired from sensors, controlling actuators, and other tasks. This
prohibits us from implementing complex algorithms in microcontrollers. To address this issue, we present
a novel design of a network robotic framework using a smartphone-based robotic platform. The design was
implemented using a smartphone as a network bridge to distribute computationally burdensome tasks into
multiple networked computational resources, as well as, a sensor package that allows the mobile robot to
navigate. One of the most practical benefits derived from the outsourced computations is the simplicity in
a robot’s design. This provides a sturdy robot that consumes less power. With interaction capabilities to
networked resources, more diverse robotic applications can be developed. To demonstrate the feasibility of
the proposed network robotic framework, several experiments were conducted for indoor localization and
navigation using a novel smartphone-based robotic platform.

INDEX TERMS Network robot, mobile robot, robotic framework, smartphone-based platform, localization,
navigation, Bluetooth.

I. INTRODUCTION
Recent advances in robotics and sensor technologies have
provided robots with richer features and allow them to par-
ticipate in diverse applications. Onboard microcontrollers
in standalone robots, however, take a full responsibility for
processing acquired sensor data and controlling actuators,
in addition to providing some level of decision making. This
prohibits robotics researchers from using complex, enhanced
algorithms in small mobile robots in which the microcon-
trollers cannot computationally afford the algorithms. Using
the particle filters algorithm for localization of a mobile robot
is an example of this unaffordability [1]. Bayesian recur-
sion equations must be implemented for the particle filters
algorithm. The recursive property of this approach is com-
putationally expensive in that all particles must be updated
every time new sensor measurements arrive and re-sampling
processes are required.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yingxiang Liu.

Networked robotics has emerged to overcome these restric-
tions in standalone robots [2]–[10]. A networked robotics
system is defined as an integrated single system where
the resources at identified network locations can be con-
nected together and used to perform robotic tasks [2]–[7].
Researchers have designed systems with multiple robots that
harmoniously work together to accomplish tasks [8]–[10].
Google’s object recognition engine has been used in a cloud-
based robot to grasp objects [7], and practical implementation
research has been conducted by a research group working
with Google’s Cloud Robotics application program interfaces
(APIs) for Java andAndroid using the Personal Robot 2 (PR2)
Willow Garage robot. As a cloud-based robotic platform,
RoboEarth has been proposed for sharing knowledge between
robots [8], where bold claims have beenmade such as aWorld
WideWeb for robots. Several architectures for cloud robotics
were proposed for both machine-to-machine and machine-to-
cloud communications [9].

A smartphone has many tools that aid a mobile
robot, such as processors, sensors, cameras, and wireless
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communications. Using the high-end microprocessors and
a wide variety of accurate, expensive sensors to provide
a robot with computational power and sensor package is
not novel in mobile robotics [11]–[15]. A smartphone-based
Bluetoothwireless robot control systemwas proposed in [11].
Quick Response (QR)-code based robot navigation using a
smartphone was successfully demonstrated in [12]. With the
assistance of a QR-code, an inertial measurement unit (IMU)-
based robot localization method was introduced in [13]. The
quality of communication was analyzed for remote control of
a robot using an iPhone in [14]. An Android-based mobile
robotic platform was proposed and demonstrated using a real
research problem [15]. However, most of the aforementioned
approaches simply used a smartphone to add a simple feature,
such as a remote controller [11], [14], an additional comput-
ing tool [13], [15], and a sensor package [12] to remove the
necessity of additional expensive sensors.

Note that none of the aforementioned results is a practical
solution for small mobile robots to free up limited resources
in onboard microcontrollers in terms of memory, storage,
and execution speed. Network robotics often refers to studies
regarding either interconnected multiple robots that work
together or a single robot that is network-connected to uti-
lize remote resources. Because there are different definitions
regarding network robotics, we would like to clarify that
our network robotic framework is not intended for multiple
robots, but for a small single robot that has a network connec-
tion through a smartphone. Connectivity liberates the robot
from the limitations of the onboard microcontroller.

The design of a novel network framework using a
smartphone-based robotic platform is presented in this paper.
The design was implemented with a smartphone as a network
bridge to distribute computationally burdensome tasks into
multiple networked computational resources and as a part of
sensors for themobile robot to navigate. Practical benefits can
be derived from outsourced computation. The robot design
can be made much simpler, even with wireless capabilities
and messaging protocols. This simplicity reduces power con-
sumption and extends battery life, which is often a critical
issue for mobile robots.

The proposed robotic framework allows multiple net-
worked computational resources to share the computational
burden. These capabilities of interacting with networked
resources allow the development of more diverse robotic
applications. To show the feasibility of the proposed frame-
work, several experiments for indoor localization and naviga-
tion using a novel smartphone-based mobile robotic platform
will be described.

II. PLATFORM STRUCTURE
Fig. 1 shows the overall design of the proposed network
robotic framework. A two-layer control structure is designed
for navigation. The lower layer is responsible for rela-
tively simple tasks that are mostly conducted in the onboard
microcontroller (e.g., Arduino [16], Raspberry Pi [17], or
Beagle [18]). Such tasks include processing sensor readings

FIGURE 1. Schematic diagram of the overall system.

and controlling motors. The higher layer is in charge of pro-
cessing tasks that require heavy-duty computational power
that must be executed in the outside task server.

The robot communicates data, such as sensor and move-
ment data, with a smartphone through Bluetooth connection.
A smartphone, as a bridge between the mobile robot and a
main personal computer (PC), sends sensor readings gener-
ated by the robot to the task server via the Message Queuing
Server (MQS) so that a main processor in the task server
performs complex computations (e.g., the particle filters).
If necessary, the task server distributes tasks to task clusters
that act as sub-processors. All the computation results from
the task clusters are collected by the task server. To determine
a proper course of action (e.g., direction of rotation or dis-
tance to advance), the final output from the task server is
sent to the smartphone, which generates the movement values
(e.g., actuator control signals). Finally, these signals are trans-
ferred to the robot via the Bluetooth connection.

A. HARDWARE DESIGN
Hardware components in the mobile robot, including the
chassis, a microcontroller, a smartphone, a Bluetoothmodule,
and four ultrasonic sensors with a servo motor, are presented
with design details in this section.

A Rover 5 Robot Platform was used for the robot chas-
sis. The Rover 5 is driven by a motor controller board.
An Arduino MEGA was used for the microcontroller, which
handles the four ultrasonic sensors and servo motor. A smart-
phone was used to provide communication between the
microcontroller and the main PC as a bridge and to act
as a sensor that aids navigation. Four ultrasonic sensors
were used to measure distances for the particle filters and
to detect obstacles for navigation of the mobile platform.
Bluetooth was used for serial communication between the
Arduino MEGA and the smartphone (see Table 1 for details).
Figs. 2 and 3 show the mobile robot design and photographs
of the implemented mobile robot, respectively.

Fig. 4 shows the overall schematic diagram of the hard-
ware in the mobile robot. The Rover 5 is a small robotic
platformwith four independent DCmotors and two encoders.
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FIGURE 2. Design of the mobile robot.

FIGURE 3. Lateral view (left) and top view (right) of the mobile robot.
(a) Rover 5 with (b) motor encoder, (c) motor controller board
(ROB-11593), (d) Arduino MEGA, (e) servo motor, (f) smartphone,
(g) ultrasonic sensors, and (h) Bluetooth module.

TABLE 1. Hardware specifications.

Four motors are connected to the output channels of the
motor controller, respectively. The direction (DIR) and pulse
width modulation (PWM) pins of the motor controller are
connected to digital pins on the Arduino MEGA. The direc-
tion and the speed of the motors were determined from the
input directions with a value ranging from 0 to 1 (i.e., Low
and High) and PWM signals ranging from 0 to 255 from
the Arduino MEGA. Each encoder was connected to the
input channel A and B pins of the motor controller. The
Arduino MEGA can obtain the output values from the
encoder from the encoder output channel (A and B pins on

the motor controller). Both encoders calculate the left and
right wheel revolution using an XOR logic operation. There-
fore, the mobile robot can be moved as much as required by
using the wheel revolution.

An ultrasonic sensor was used to measure distance. The
sensor’s trigger and echo pins were connected to the digital
pins of the Arduino MEGA and the sensor uses the time
difference between outgoing and incoming acoustic signals
to calculate distance. The measurement angle of one ultra-
sonic sensor is approximately 30◦. To develop a compact
mobile robot, instead of using twelve sensors to cover 360◦,
we used a servomotor with four ultrasonic sensorsmounted at
90◦ intervals. As a result, all directions can be scanned by
rotating the servo motor from 0◦ to 90◦ with 30◦ intervals
with a much smaller number of sensors.

Nowadays, various high quality, high performance sen-
sors are integrated in most smartphones. The sensors in the
Nexus 4 include a proximity sensor, gyroscope, compass,
ambient light sensor, accelerometer, temperature sensor, and
pressure sensor. In this work, the smartphone mounted on
the mobile robot was used as a sensor for navigation, as a
processor for complex computations, and as a bridge to com-
municate data between the Arduino MEGA and the MQS.
A Bluetooth module was connected to the Arduino MEGA
to communicate serial data between the Arduino MEGA and
the smartphone, such as rotation, distance, and motion data.

B. SOFTWARE DESIGN
Fig. 5 shows the overall design of the software for the mobile
robot. In this work, there are two types of the applications
in the Android smartphone. One application, called Script-
ing Layer for Android (SL4A) [25], was used to execute
the main code for navigation and localization of the mobile
robot on the smartphone. Most microcontrollers in a small
mobile robot cannot afford to calculate complex algorithms
(e.g., the particle filters [26]) for navigation and localization.
One method is to use a smartphone with a better processor
than a small microcontroller. In this work, the main code
to navigate the mobile robot was written in Python. The
SL4A application was used to interpret Python scripts. The
smartphone communicates the sensing and motion data with
the Arduino MEGA through the Bluetooth module. The
Arduino MEGA in the mobile robot provides simple pro-
cessing (e.g., operatingmotors andmeasuring distances). The
Arduino is programmed in C.

The other application, called Bridge, was used to com-
municate data between the mobile robot and the MQS,
and to rotate the mobile robot using sensors in the smart-
phone. In this application, a geomagnetic sensor and an
accelerometer in the smartphone were used to rotate the
mobile robot [27]. When the smartphone with SL4A was
utilized as a main processor, it is sometimes impractical to
process much more complex algorithms, although it has a
better processor compared to the microcontroller in the robot.
Computers with higher performance can be used to solve this
problem. A RabbitMQ [28], which is one of the advanced
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FIGURE 4. Hardware schematic diagram of the mobile robot.

message queuing protocols (AMQPs) [29], was used for
communication between the computers and the smartphone.
The smartphone and the task server send and receive data,
such as distance and motion data, through the MQS. Even
after distributing the computational burden, task clusters can
be added if significant computation time is required. All
software, including the Python and Arduino code for the
mobile robot, is available at [30].

III. EXPERIMENTAL RESULTS
A. MOTION PLANNING
The use of the encoders in the Rover 5 creates inherent prob-
lems in the mobile robotic platform in some situations where
surface flatness, friction between wheels and ground, and
remaining battery power affect the accuracy of the encoders.
These factors create uncertainties in the control of the mobile
robots. In particular, the uncertainties become problematic
when the mobile robot is rotated with low-cost encoders.
To solve these innate problems, orientation sensor readings
from a smartphone were used to change direction. Conse-
quently, the mobile robot can reduce errors in consecutive
movements [27]. The orientation sensor in the smartphone
obtains data using a geomagnetic sensor combined with an
accelerometer. Using these two sensors, the smartphone gen-
erates orientation values in a three-dimensional space. Then,
these rotation direction data are sent to the Arduino MEGA
through Bluetooth communication. The mobile robot begins
to rotate until it receives a stop signal from the smartphone.

1) PATH PLANNING
We used the A* algorithm [31], [32], which calculates the
shortest path in a grid-based map, to navigate the mobile
robot. The A* algorithm is a combination of Dijkstras algo-
rithm [33], which finds the shortest path, and the greedy

FIGURE 5. Software schematic diagram of the mobile robot.

best-first-search algorithm [34], which uses heuristics to
guide a mobile robot. Taking the advantages of both algo-
rithms, as shown in Fig. 6, the A* algorithm requires
less computational time than Dijkstras’s algorithm and
determines a better path than the greedy best-first-search
algorithm.

The A* algorithm uses heuristics (h) to search for a path
considered that leads to a goal point. Using the cost (g) from
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FIGURE 6. The A* algorithm with obstacles (gray color), calculated grids
(yellow color), and uncalculated grids (white color). The brown dotted line
shows the calculated path.

the departure point to the current point, it allows the mobile
robot to find the best path without having to search the entire
map, and to make the algorithm much faster. Each point will
have 3 values f , g, and h associated with it, as shown in (1).

f = g+ h. (1)

If f of the next position is larger than that of the current
position, it is excluded to reduce the calculation time. The
algorithm examines the position with the lowest f value
during each iteration through the main loop.

2) SMOOTH PATH
Once the shortest path is calculated, this path is smoothed
with a smoothing algorithm [35]. Let x0, x1, and x2 be
three sequential positions. The smoothing algorithm itera-
tively calculates a new path point y1 until the variation in y1
approaches 0. This process is shown in (2).

y1 = y1 + α(x0 + x2 − 2y1),

y1 = y1 + β(x1 − y1) (2)

where α and β control the level of smoothness. Note that the
initial value of y1 is the value of x1 and the smoothing algo-
rithm iteratively applies the updating equations to the way-
point on the mobile robot path. The extent of the smoothed
path depends on the movement accuracy of the mobile robot
because a mobile robot with the incorrect encoder may
encounter and collide something, such as wall or obstacles.
From Fig. 7, one can see that the smoothing algorithm can
reduce the total travel distance (Original path: 10.05 m,
Smooth path: 8.37 m, and Smoother path: 7.59 m).

3) PATH RE-PLANNING
An autonomous mobile robot should cope with unexpected
situations because the real world is not a static environment.
The mobile robot in this work navigates dynamic environ-
ments where people or unexpected objects are present. The
ultrasonic sensors measure the distance from the current
position to the next position before the mobile robot moves

FIGURE 7. Smooth path planning with the original path (blue line),
smooth path (red line, α = 0.4, β = 0.1), and smoother path
(green line, α = 0.1, β = 0.1).

FIGURE 8. Obstacle avoidance and path re-planning in the presence of an
obstacle (yellow square) with the original path (blue line) and new path
(red line).

to next position. If the distance measured by the ultra-
sonic sensors is shorter than distance from the current
position to the next position, the mobile robot is aware
that there are some objects. As a result, the path of our
mobile robot is re-searched to avoid obstacles, as shown
in Fig. 8.
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FIGURE 9. Comparison of the rotation performance between orientation
sensors in a smartphone and an encoder.

FIGURE 10. Comparison of the path trajectories between orientation
sensors in a smartphone and an encoder. (a) Smartphone. (b) Encoder.

4) RESULTS
Figs. 9 and 10 show the rotation and navigation results for
a mobile robot through the use of an orientation sensor in
a smartphone and an encoder, respectively. Comparisons of
experimental results for the robot’s rotation using two meth-
ods are presented in Fig. 9. The bars in the figure show the
average errors from five trials. This figure shows that errors
from the smartphone sensor are smaller than errors from
the encoder. In addition, the fact that the smaller standard
deviation provided by the smartphone sensor compared to the
encoder shows that the smartphone sensor provides consistent
outputs.

Fig. 10 shows path trajectories as the mobile robot
navigates using two methods. The size of the area
is 3m× 5m. Themobile robot reaches its destination through
eight rotations from the starting point. The black line shows
an actual reference trajectory. The experimental results show
that the sensor in a smartphone produces trajectories that are
closer to the reference trajectory than those obtained with the
encoder. Furthermore, the experimental results in Fig. 10 (a)
show that five destination points are closely distributed,
whereas they are widely distributed in Fig. 10 (b). Therefore,
using the smartphone sensor can be considered as being more
accurate than using the encoder to navigate the robot.

FIGURE 11. Four ultrasonic sensors with one servo motor for particle
filters. Each sensor covers from 0◦ to 90◦ in 30◦ intervals.

B. LOCALIZATION
Localization is one important problem related to autonomous
mobile robots. In particular, in the proliferation of navi-
gation technologies, the location information and the pose
information of a mobile robot in a given environment
are indispensable. Researchers have been solving local-
ization problems of autonomous mobile robots introduc-
ing many methods, such as using a landmark and external
sensors [36]–[39]. In particular, owing to the lack of a global
positioning system (GPS) or other reliable technologies,
indoor robot localization is considered to be a challeng-
ing problem in mobile robotics. To solve these problems,
we investigate a probabilistic approach, known as the particle
filters [1], with four ultrasonic sensors and one servo motor.

1) PARTICLE FILTERS
In the past decades, the particle filters or sequential Monte
Carlo (SMC) have been used for localization of a mobile
robot [26]. The particle filters estimate the posterior proba-
bilities of the unobservable state variables from sensor mea-
surements. This consists of three phases; movement update,
measurement update, and resampling. These three methods
are repeated every time the mobile robot moves from the
current position to the next position. Each particle is assigned
weights, which are the likelihood of the statistics approxi-
mated by the particle filter. After motion and measurement
are updated, the particles are resampled by its own weight
value. Repeated resampling causes all particles to converge
into one cluster. As a result, the mobile robot can predict
its own position based on the locations of the particles. All
complex processes, such as calculating the number of par-
ticles, are handled by the smartphone in the mobile robot.
Then, the smartphone sends commands such as themeasuring
distance and motion of the robot to the Arduino MEGA
through the Bluetooth connection.

2) SENSOR DEPLOYMENT FOR MEASUREMENT UPDATE
OF PARTICLE FILTERS
Four ultrasonic sensors are attached to a servo motor for
measurement update with the particle filters. The servo motor
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rotates from 0 to 90◦ in 30◦ intervals, as shown in Fig. 11.
Thereby, it is possible to cover 360◦. This reduces the
required scanning time as well as the number of required sen-
sors. Note that the scanning time will increase if the number
of sensors is decreased, and vice versa. In this work, 30◦ was
chosen to reduce interference from neighboring ultrasonic
sensors. Because the servo motor rotates in 30◦ intervals,
twelve distance values from the four ultrasonic sensors were
obtained, where each sensor reads three times per scanning
session.

When the ultrasonic sensor does not receive its own
reflected sound signal after emitting the sonar beam, the sen-
sor reading is absolutely not reliable. In this case, the wrong
data were excluded from the measurement data. The reason is
that these incorrect readings will disturb the particle resam-
pling process because the weight of a particle is calculated
based on the difference between the actual sensor readings
and the map data.

3) FEASIBILITY OF ULTRASONIC RANGE SENSORS
The sensor was tested in various environmental situations to
verifywhether the sensor reading is reliable enough to be used
in measurements for the localization algorithm. An ultrasonic
sensor, called HC-SR04 [40], was chosen because the mea-
surement accuracy fits the requirements in this work. The
sensor distances ranged from 2 to 400 cm. The sonar beam
angle of the ultrasonic sensor was approximately 30◦.
Ultrasonic range sensors use the time difference between

an incident sonar beam and the reflected beam to calculate
distance. If the angle of reflection with respect to the normal
line from the reflector is too large, then the sound wave
receiver in the sensor fails to receive the reflected sound
wave. In other cases, reflected sonar beams can arrive at
the sensor after multiple reflections. These cause incorrect
distance readings.

Based on this concern, the feasibility of using ultrasonic
sensors in localization with the particle filters was tested.
Walls with five different shapes were designed for the test,
as shown in Fig. 12. The distances were measured from
0 to 180◦ in 2◦ intervals. The measurements will be com-
pared to reference values acquired with a parallax laser range
finder [41]. The experiments for distance measurements
were conducted to validate the number of ultrasonic sensors
required to read the correct values in 5 different environments,
as shown in Fig. 12. The results shown in Fig. 13 reveal
that the ultrasonic sensors occasionally read incorrect values
owing to reflection of outgoing sound signals. However, this
problem does not affect localization of the mobile robot.
Hence, one can conclude that the sensor readings with the
ultrasonic sensor have sufficient accuracy to localize the
robot using the particle filters so that the mobile robot can
be successfully maneuvered.

4) LOCALIZATION OF THE MOBILE ROBOT
The mobile robot cannot identify its own location with high
certainty during the early steps because the probability of

FIGURE 12. Five different experimental environments to test the
feasibility of the ultrasonic sensor. (a) Environment 1. (b) Environment 2.
(c) Environment 3. (d) Environment 4. (e) Environment 5.

determining the location is evenly spread throughout the
state-space. The variances of particles with position (x, y) and
heading (θ ) are compared with a certain threshold to localize
the mobile robot. When the variance of particles is smaller
than the threshold, the mobile robot adjusts its position to the
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FIGURE 13. Distance measurements from 0◦ to 180◦ in 2◦ intervals with
the ultrasonic sensor (blue triangles) and the laser range finder
(red circles) for five different experimental environments in Fig. 12.
(a) Environment 1. (b) Environment 2. (c) Environment 3.
(d) Environment 4. (e) Environment 5.

position predicted by the particles. The position of the mobile
robot changes to a predicted position every four cycles, where
each cycle includesmovement, measurement, and resampling
of all particles. If the error in movement or measurement
caused by the encoder or sensors increases, the number of
cycles should be reduced to avoid unexpected situations,

FIGURE 14. Map for navigating and localizing the mobile robot. (a) Actual
map. (b) Grid map.

such as collision with a wall or other obstacles. An actual
environment and its two-dimensional occupancy grid map
generated with the particle filter routine in this work are
shown in Fig. 14. The size of the environment is 4.69 m ×
7.37 m. The space is divided into a 0.67 m × 0.67 m grid,
which requires 7 grids in each row and 11 grids in each
column. To navigate the mobile robot, a starting point and
a goal point are given to the mobile robot.

Fig. 15 shows that the mobile robot smoothly navigates to
the goal point with the shortest path and localizes its own
position using the particle filter. The mobile robot localizes
its own position to an ideal position when the variances of
particles are smaller than a threshold (set to 0.1 in this study).
This means that most particles congregate at one cluster.
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FIGURE 15. Experimental localization results using random particle filters with the actual trajectory (red line),
particles (blue circles), ideal position (green circle), actual robot position (magenta diamond), and robot
position predicted from particles (yellow square). (a) P0-Start. (b) P1. (c) P2. (d) P3. (e) P4. (f) P5. (g) P6.
(h) P7. (i) P8. (j) P9. (k) P10. (l) P11. (m) P12. (n) P13 (o) P14. (p) P15.
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TABLE 2. LG nexus 4 and mac mini resolution.

At first, a number of particles are spread in the map, as shown
in Fig. 15 (a). Each particle has a different weight after
motion and measurement update of the ultrasonic sensors
and movements of the mobile robot. New particles are subse-
quently resampled with weights. All particles converge to one
cluster after multiple iterations of motion, measurement, and
resampling updates, as shown in Fig. 15 (p). Consequently,
the mobile robot can safely reach the goal position with
continuous localization.

C. NETWORK
When the smartphone is used as a computational proces-
sor, the mobile robot spends a lot of time performing com-
plex computations, such as the particle filters. Consequently,
the mobile robot seems to have stopped for a long time.
To solve this problem, desktop computers with higher perfor-
mance than a smartphone are used as computational proces-
sors. In this case, the smartphone acts as a bridge to commu-
nicate between the mobile robot and the desktop computers
using RabbitMQ. A smartphone and Mac mini were used to
compare the calculation times between the devices, as listed
in Table 2.

Experiments were performed in five different environ-
ments to compare the calculation time for the particle filters
algorithm as follows:

• Using a smartphone as a computing resourcewith SL4A;
• Using a smartphone as a broker and one task server as a
main processor with RabbitMQ;

• Using a smartphone as a broker, one task server, and two
task clusters as sub-processors;

• Using a smartphone as a broker, one task server, and four
task clusters as sub-processors;

• Using a smartphone as a broker, one task server, and
eight task clusters as sub-processors.

10,000 particles were used in each environment. Although
a large number of particles were intentionally used to see the
difference clearly in heavy calculation tasks, using 1,000 par-
ticles would be a good choice in such a real environment.

In the second experiment, one smartphone and one task
server were utilized as a broker and a main processor, respec-
tively. The main processor runs the complex computations,
such as the movement and particle measurement updates, and
sends simple commands to the MQS, such as the movement
of a mobile robot or the signal for measuring distance. Then,
the smartphone mounted on a mobile robot receives this
command from theMQS and passes it to the Arduino through
Bluetooth such that the mobile robot can move or measure

FIGURE 16. Comparison of the average step time and total travel time in
five cases. (a) Average step time. (b) Total travel time.

distance. Afterward, the Arduino sends the distance data and
the movement completion signal to the smartphone, which
passes them to the MQS. Finally, the main processor in the
task server receives data from the MQS and starts executing
complex computations. This cycle is repeated until themobile
robot reaches the destination.

In the third to fifth experiments, task clusters were added to
aid computation. For instance, when using two task clusters,
5000 particles were assigned to each task cluster, 2500 parti-
cles were assigned in the fourth case, and 1250 particles were
assigned in the fifth case. After receiving particles, the sub-
processors conduct measurement and movement update of
the particles. Meanwhile, the task server sends data to the
smartphone as mentioned in the second experiment. Updated
particles are sent to the main processor through the MQS.
Once the task server receives all values of the particles,
the main processor starts resampling particles. This cycle is
repeated until the mobile robot reaches its destination.

The calculation time results in the five different cases are
shown in Fig. 16. One calculation step is defined as one cycle
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involving movement, measurement, and resampling update
as the mobile robot navigates. When only the smartphone is
utilized as the main processor, the calculation time is signifi-
cantly longer than that with the other methods. For example,
the average step time in using a smartphone is 80.41s longer
than using one task server, which means the task server can
process nearly eight steps while the smartphone processes
one step. Note that the computation time decreases as the
number of task clusters increases. However, the calculation
time with eight task clusters was longer than that with four
task clusters. The reason is that network communication
requires more time than the complex computations. Hence,
one can see that the calculation time depends on the number
of particles and task clusters. Thus, according to the cir-
cumstances, the number of task clusters should be carefully
chosen.

The following sites show the calculation time results when
one smartphone, one PC, three PCs, five PCs, and nine PCs
were used, respectively.

• with a smartphone and without MQS:
https://www.youtube.com/watch?v=HBgq8bRK140

• with one PC (one task server):
https://www.youtube.com/watch?v=ZZd1gfv_ANw

• with three PCs (one task server and two task clusters):
https://www.youtube.com/watch?v=qQuSzpsTS_0

• with five PCs (one task server and four task clusters):
https://www.youtube.com/watch?v=HwsYpSrMy90

• with nine PCs (one task server and eight task clusters):
https://www.youtube.com/watch?v=fgEMLI0LVpw

The following site shows an autonomousmobile robot with
1000 particles.

• A networked smartphone-based mobile robot:
https://www.youtube.com/watch?v=GKOWgfqClsA

IV. CONCLUSIONS
A networked mobile robot with a smartphone-based robotic
platform was presented in this paper. Rotating the ultrasonic
range sensor package is quite cost-effective in that sufficient
sensor readings can be obtained for navigating the robot and
the number of required sensors can be reduced. It goes with-
out saying that the scanning time also decreases. We showed
that the orientation sensor in a smartphone provided better
performance for rotating the robot than using an encoder.
This approach demonstrates robustness in conditions where
the friction of a surface is inconsistent. Furthermore, a load on
themobile robot can be distributed bymounting a smartphone
on it. We propose using a smartphone as a bridge and PCs
as a robots’ brain, in which all heavy-duty computations are
executed through theMQS. The practicality and effectiveness
of the proposed approaches were thoroughly verified in mul-
tiple experiments with the corresponding real mobile robot
platform. The concept and design of the proposed network
robotic platform in this work can be widely adopted in indoor
autonomous mobile robots.
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