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ABSTRACT With the widespread use of smart technologies, graphics processing unit (GPU)
power-optimization issues are becoming increasingly important. Many researchers have tried to use dynamic
voltage and frequency scaling (DVFS) technology to optimize a GPU’s internal energy consumption. How-
ever, DVFS energy management often has difficulty balancing GPU performance and energy efficiency. This
paper aims to implement a DVFS energy management strategy. We constructed a new type of neural network
to a GPU-based energy management scheme, implemented the global-based DVFS model, and explored its
implementation details. Using a master-slave model, we built a global energy control solution strategy. This
strategy performs global collaborative DVFS adjustments on the GPU’s energy consumption module based
on task characteristics. Through the software construction and implementation of the global-based DVFS
model, we proved that the strategy improves the GPU performance while improving the GPU’s energy
efficiency. We conducted performance and energy tests on three GPUs on the Tesla, Fermi, and Kepler
platforms. The experiments showed that this strategy improved the performance and power consumption of
GPUs based on each of the platforms.

INDEX TERMS Collaborative control, DVFS method, global-based energy optimization, task feature.

I. INTRODUCTION
High-performance computing is evolving in clustering and
massive parallelization, especially involving machine learn-
ing, which increases the computational complexity and dra-
matically increases the power consumption of the entire
graphics processing unit (GPU). Therefore, how to improve
the energy consumption performance of a GPU so that it
can adapt to this increasing power consumption is especially
important. Dynamic voltage and frequency scaling (DVFS)
energy management technology is one of the most promising
GPU power-management strategies. DVFS is an efficient way
to manage energy by dynamically adjusting the voltage and
frequency parameters of the GPU for energy management.
With specific tools, researchers can continuously adjust the
core voltage and frequency in the GPU [1].

DVFS has proven to be an effective CPU power-saving
method [2]. While DVFS technology is still in its early
stages, compared to the mature CPU voltage- and frequency-
adjustment technology, the DVFS strategy of GPU energy
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consumption is still relatively less mature. DVFS for GPUs
is often based on simple strategies such as defining four
P-states [3] on the GeForce GTX 980, each a specific com-
bination of GPU operating voltage and frequency. According
to the working environment parameters of the GPU, i.e. the
task load in the GPU, the GPU is set to work in a certain
state, and the energy consumption can be directly controlled.
However, due to differences in GPU operating mechanisms,
the energy management parameters in GPUs are insufficient
compared to those within GPUs. Thus, it is not possible to
simply transplant the DVFS energy management strategy in
a CPU to a GPU. This creates a dilemma for DVFS manage-
ment in GPUs, specifically, to increase productivity, youmust
increase power consumption, and vice versa. For example,
in the P-state management policy just mentioned, the four
P states are P0, P2, P5, and P8. P8 is an idle state in which
energy consumption and work efficiency are low. P2 provides
the highest voltage and frequency, and the GPU in this state
is very efficient, but it consumes much energy. Therefore,
how to improve the GPU’s work efficiency while reducing
its energy consumption is particularly meaningful.
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Recently, researchers have conducted a lot of research
based on DVFS GPU energy consumption. For example,
Kim et al. [4] scaled the frequency of the GPU with various
matrix multiplications on the NVIDIA Fermi platform to save
energy. Abe et al. [5] combined the core andmemory frequen-
cies of GPUs based on Tesla, Fermi, and Kepler platforms to
try to improve the performance and power consumption of
the GPU. The experimental results showed that the frequency
combinations had different energy consumption effects on
different platforms. Currently, GPU DVFS energy optimiza-
tion research faces the following challenges. First, a certain
DVFS strategy may produce different results on GPUs on
different platforms. Second, GPU hardware and power man-
agement information is very limited. Finally, experiments
have lacked accurate quantitative power estimation.

The purpose of this paper is to analyze the causes of
this phenomenon, and to use DVFS technology based on
the new neural network to solve this dilemma, so as to
achieve a management strategy that simultaneously improves
GPU efficiency and reduces energy consumption. In this
paper, we built a real DVFS measurement environment and
obtained more accurate GPU performance data compared
to software simulation method. At the same time, we com-
pared the effects of GPU implementation energy optimization
strategies on different platforms, and analyzed the effects of
the energy optimization strategies proposed in this paper on
different platforms.

In addition, current GPU energymanagement models often
use neural networks to overcome the nonlinear relationship
between GPU modules, but the traditional neural network is
fully connected, which is complex. This is not conducive to
real-time computing, andwe need to establish better real-time
control strategies for GPUs. This strategy is necessary to build
an efficient GPU energy management system.

Through analysis, we have summarized two important
strategies related to GPU energy management. The first is
task-feature control; the task feature is highly correlated
with the GPU’s power consumption [6]. The task feature
in the GPU can be used for energy consumption adaptive
control. The second is based on a global collaborative energy
management strategy. We use a proportional-integral-
derivative neural network (PIDNN) with high real-time
processing to realize the coordinated control of the GPU
energy management modules with efficient real-time com-
puting. We combine these two strategies to form a global-
based PIDNN collaborative energy control strategy, i.e.
the global-based PIDNN, and we use the CUDA pro-
gramming environment to build a code framework. Hence,
we increase GPU performance while reducing power
consumption.

Our work incorporates the following two innovations.
1) A multi-variable, global-based DVFS energy manage-

ment model is constructed. The model has the advan-
tage of real-time control and has a task-tracking feature
to realize the coordinated energy consumption control
of each energy module in the GPU.

FIGURE 1. Architecture of GPU energy consumption modules.

2) We use the existing GPU software-implementation
framework CUDA model to build a new energy opti-
mization model called a master-slave-based model.
We designed the model based on the idea of modular-
ization and realized the code framework of the GPU
energy management system through system-function
division.

The remainder of this paper is organized as follows.
In the next part, we describe the overall energy consump-

tion model in the GPU, analyze the dilemma faced by the
DVFS energy management strategy, and propose to build a
new energy management model with PIDNN. In the third
part, we use the PIDNNmodel to construct the energy control
module through the task feature. We use PIDNN to build a
DVFS energy management solution for the GPU and, at the
same time, build a master-slave model to implement a global-
based energy optimization model. Then we train the model
and elaborated on the algorithm process and the code imple-
mentation framework. In the fourth part, we carried out exper-
imental simulations and verify the performance and energy
optimization characteristics of the global-based DVFS model
for three different GPU platforms.The fifth part of this paper
summarizes our work and discusses possible future work.

II. BACKGROUND AND PRELIMINARY CONSIDERATIONS
A. GPU OVERALL ENERGY CONSUMPTION MODEL
The dynamic energy consumption of the GPU has multiple
parts, as shown in Fig. 1. The GPU has three main energy
consumption modules. These are the stream multiprocessor
(SM), memory (MEM), and interconnection network (ICNT)
modules. Each of these modules is explained below.

The SM module is composed of multiple stream proces-
sors (SMs) and L1 cache. The SM is the core component
for calculation, and it includes several high-speed pipelines
to complete high-speed calculations. From the perspective of
energy consumption, because the module is responsible for
high-speed computing functions, it consumes about 40% of
GPU power [7].

The MEM module is a standalone global memory-
management module composed of off-chip L2 cache. This
module interacts with the SM calculation results, and proba-
bly uses more than 30% of GPU power.

The ICNT module is connected to the calculation and
MEM modules; it is responsible for communication between
the SM and MEM modules. It uses a cross-switch circuit
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to achieve high-speed communication bandwidth between
modules. This module uses 20% of GPU power.

Based on the analysis of the global energy architecture,
a GPU’s total energy consumption consists of static energy
consumption and dynamic energy consumption. The static
energy consumption can be expressed by (1).

Pstatic = Istatic · Vdd . (1)

In the above formula, Pstatic represents the static power
consumption of the GPU, Vdd is the power supply voltage,
and Istatic is the total current flowing through the CMOS
circuit. Static power is usually very low, so its impact is
neglected in this article.

A GPU’s dynamic energy consumption is the sum of
the energy consumption of the three modules. The dynamic
energy consumption of the GPU is represented by (2).

Pdynamic =
∑3

i=1
ai · Ci · V 2

i · fi. (2)

In the above formula, ai is the active factor of each module;
Ci is the capacitance parameter of each module; Vi is the
voltage parameter of each energy consumption module; and
fi is the operating frequency of each module, whose three
working frequencies are expressed as fSM , fMEM , and fICNT .
Our goal is coordinated control over the operating frequencies
of these three modules.

B. DVFS ENERGY MANAGEMENT STRATEGY DILEMMA
The DVFS energy management strategy is based on two
energy consumption prediction models. One strategy is to
build a power-consumption regression model for the GPU,
which will be used to predict and manage GPU energy con-
sumption. For example, a task feature model was built for the
GPU, using DVFS control to predict and reduce the power
consumption of the GPU [8]. An analysis based on kernel
coarse-grained granularity and optimized GPU energy con-
sumption was established [9]. The energy limitation method
was used to perform DVFS control on the GPU to increase
throughput [10].

We model GPU power consumption linearly as:

P = a0 + a1∗x1 + a2∗x2 + · · · + an∗xn, (3)

where P is the power consumption, x1, x2, . . . , xn are the
n input variables, and a0, a1, . . . , an are the output contri-
butions. This strategy assumes that the energy consumption
modules in the GPU are linear. The problem with this model
is its inability to accurately predict nonlinear GPU energy
systems.

Another method is to use an artificial neural net-
work (ANN) to build a predictive model. Li et al. [11] used
five system parameters to establish an energy consumption
model for the GPU, and used DVSF technology to adjust its
operating voltage. The advantage of modeling with the ANN
method is its facility with the nonlinear relationship between
variables. However, it requires a large amount of training data
to build the model, and the output model has high complexity.

FIGURE 2. PIDNN controller microarchitecture.

The prediction error of the GPU regression model is often
large. For energy consumption systems that require more
efficient real-time features, the prediction accuracy of this
modeling method is relatively low, and it is not possible to
cooperatively control multiple energy consumption modules
in a system. To achieve coordinated global management of
multiple energymodules of the GPU requires amore effective
prediction model.

C. PIDNN COLLABORATIVE CONTROL MODEL
Regarding the decoupling problem, Shu [12] and Liu and
Song [13] proposed a proportional-integral-derivative neural
network (PIDN) and demonstrated its cooperative control
characteristics.

PIDNN is a special multivariable collaborative controller
composed of a neural network and PID. Its network struc-
ture is shown in Fig. 2. Putting the PID neurons into the
multi-layer forward network constitutes a univariate PIDNN
controller that can serve as the basic control unit for the GPU.
The basic form of the PIDNN controller is 2-3-1. It consists of
two input-layer neurons, three hidden-layer neurons, and one
output-layer neuron. The hidden-layer neurons are composed
of proportional, differential, and integral elements.

The PIDNNcontroller works as follows. First, the output of
the signal r1 (k) , r2 (k) input-layer neurons enters the hidden
layer through the first-level network W and the three neu-
rons of the hidden layer. The element performs proportional,
integral, and differential processing on the input signal. Then
the input of the hidden layer enters the output layer through
the second-level network V, and the neurons of the output
layer complete the output y of the entire network with the
proportional neurons. The PIDNN can complete the single-
variable control task. The hidden-layer neuron functions of
PIDNN are both static and dynamic. Their state functions are
as follows:

P : u1 (k) = x1 (k)
I : u2 (k) = q2 (k − 1)+ x2 (k)
D : u3 (k) = x3 (k)+ x3 (k − 1)

(4)

In the formula, the P neurons are static neurons, and the
I and D neurons are dynamic neurons. The PIDNN controller
incorporates the PID control law in the neural network. This
causes the controlled parameters to only be related to the
given control parameters, and has nothing to do with other
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FIGURE 3. GPU global-based energy system architecture.

control parameters, so that the PIDNN has good cooperative
control characteristics. In addition, PIDNN is not a fully
connected network structure. Compared with ANN, the net-
work parameter adjustment of this structure has better real-
time performance [14].

III. METHODOLOGY
A. ENERGY MANAGEMENT MODEL BASED ON THE TASK
FEATURE
The main energy-consumption modules of the GPU are the
stream multiprocessor module (SM module), memory mod-
ule (MEM module), and ICNT module. We abstract the
energy module in the GPU and use Fig. 3 to illustrate it.

The operating frequencies of the three energy-consumption
modules are independent. If we set the operating frequencies
of the SM, MEM, and ICNT modules to be fSM , fMEM , and
fICNT , respectively, the clock frequencies of the modules can
be independently adjusted, and individual frequency control
of the three modules is possible.

When the task access in the SM module fails, the task
queue TQCM will be formed in the SM module. The length
of the queue reflects the size of the SM workload. Similarly,
when multiple SMs communicate with the MEM module,
the ICNT module’s task load will increase, and a task queue
TQICNT will be formed. The larger the load, the longer the
task queue. By the same token, when the task of sending
ICNT modules to the MEMmodule increases, the task queue
of theMEMmodule TQMEM is also increased.When theGPU
system has amemory-access request, if the cache-access fails,
then the request queue is written to the miss status holding
register (MSHR). The GPU can obtain the task queues of the
three energy-consumption modules from the MSHR parame-
ters, TQSM , TQMEM , and TQICNT , and use them as parameters
to control the operating frequency of the energy-consumption
module.

Based on the above observations, we constructed a collabo-
rative optimization method for the GPU energy-consumption
module using the system-control characteristics of the

FIGURE 4. Global-based DVFS energy model.

PIDNN network. The system framework of this method is
shown in Fig. 4.

At the heart of the global-basedDVFS energy-management
model is a global controller consisting of three sets of
PIDNN networks. We input the task queue parameters TQSM ,
TQMEM , and TQICNT , and the operating frequency parame-
ters fSM , fMEM , and fICNT of the three energy-consumption
modules to this global decoupling controller. The controller
decouples the three sets of parameter signals TQSM , TQMEM ,
and TQICNT , and outputs three working-frequency control
signals C1, C2 and C3 for real-time control of the oper-
ating frequency of the three modules, thereby realizing
energy-consumption optimization. From Fig. 4, we can see
that this control method comprehensively considers the con-
trol modules, and the energy-consumption optimization of
the modules is independently related to each other. Since the
method utilizes task-queue parameters TQSM , TQMEM , and
TQICNT to generate corresponding control signals, this adjust-
ment has attributes based on task characteristics. We call
this energy-management model the global-based DVFS
energy-management
model.

B. GLOBAL-BASED DVFS MODEL TRAINING PROCESS
The global-based DVFS energy optimization model is based
on the PIDNN controller, which consists of three sets of
PIDNN controllers (Fig. 2). The core of each group of con-
trollers is the P-I-D neuron function of the hidden layer. These
three sets of controllers form a global-based energy optimiza-
tion model through the V and W networks. Global-based
DVFS adjusts the weight parameters of the V andW accord-
ing to the gradient descent method, and gives the training
results. The V andW weight parameters adjustment equation
is the mean square error of the input signal:

J =
∑3

n=1
En =

1
l

∑3

n=1

∑l

k=1
[rn1 (k)−rn2 (k)]2, (5)

where J represents the mean square error of the input sig-
nal; rn1 and rn2 represent the input signals; l is the number
of points used per batch; n represents the subnet number.
Since the global-based DVFSmodel consists of three PIDNN
subnets, n = 1, 2, 3.
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FIGURE 5. Global-based model training process.

FIGURE 6. V, W network parameter weight adjustments.

The convergence of the PIDNN depends on the choice
of the learning step size η, and the learning step size η is
calculated according to (6).

0 < η <
1
ε2
, (ε = −

1

2
√
J

∂J
∂W∂V

). (6)

Here, η is the learning step size; J is the input signal
mean square error; V and W are network of the two-level
PIDNN. The global-based model has three pairs of inputs
and three outputs. The W network is a 6 × 9 matrix,
and the V network is a 9 × 3 matrix. We set the initial
value of V, W, set the number of sampling points l = 50
according to the backpropagation formula, and set η =
0.002. The weight parameters of the V and W are adjusted
according to the weight adjustment function, and 300 iter-
ations are performed. The weights of the V and W net-
works are then adjusted to obtain a relatively stable PIDNN
controller.

Fig. 5 shows the training error of the network. The required
accuracy is obtained after 63 iterations. After training, the
weight parameters of the V and W are adjusted, as shown
in Fig. 6.

C. IMPLEMENTATION FRAMEWORK OF GLOBAL-BASED
DVFS ENERGY MANAGEMENT MODEL
To realize the collaborative control of the global-based DVFS
energy management model, we constructed a block diagram
of the master-slave model, as shown in Fig. 7.
In the master-slave-based model, we use the master GPU

run a decoupled neural network in and produce control signals
to optimize the energy consumption of the slave GPU. Their
communication with the CPU goes through the motherboard
system bus. There are two GPUs in the model, and they
communicate through the CPU. The description of each func-
tional module in the block diagram is as follows.
1) Master GPU module: This is the master GPU, which

runs the global decoupling network and generates three
sets of control signal numbers,CSM ,CICNT , andCMEM ,
for global energy-control of another GPU.

2) Slave GPU module: We call this the controlled GPU.
Its energy consumption module also consists of three
groups: the SM, MEM, and ICNT modules. The three
sets of control signals generated by the master GPU
will control the frequency of these modules in real
time.
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FIGURE 7. Master-slave model energy optimization implementation framework.

FIGURE 8. Global-based-DVF energy management model pseudo-code framework.

3) CPU module: In this model, the CPU is responsi-
ble for communication between the master and slave
GPUs. It extracts feature signals from the slave GPU,
{TQSM ,TQMEM ,TQICNT and fSM , fMEM , fICNT }, and
hands them over to the master GPU, which pro-
duces real-time control. The signal, which is respon-
sible for handing over the control signal to the slave
GPU, optimizes the power consumption of the slave
GPU.

The master-slave model works in three steps. First,
the CPU obtains three sets of characteristic signals from
the energy consumption modules from the GPU in real
time, {TQSM ,TQMEM ,TQICNT } and {fSM , fMEM , fICNT }, and
transfers them through the system bus to the master GPU.
Second, the master GPU accepts the three sets of charac-
teristic signals, and uses the PIDNN nerve running inside
it to generate three sets of control signals,CSM , CMEM , and
CICNT , in real time according to the control law and weight-
correction algorithm of the PIDNN network. Third, the CPU
acquires three sets of control signals through the function, and
the CPU calls the interface to perform real-time control on the
operating frequency of the GPU.

D. GLOBAL-BASED DVFS ENERGY MANAGEMENT
PSEUDO-CODE FRAMEWORK
We used the energy optimization implementation
architecture of the master-slave model to implement an
energy optimization strategy based on the NVIDIA CUDA
programming model [15]. Communication between the CPU
and GPU is performed in master-slave model. Fig. 8 shows
a schematic block diagram of the code implementation of
the master-slave model, which is used to achieve energy
optimization.

The architecture consists of the host thread in the CPU and
the devices in themaster and slave GPUs. The following three
functional modules in Fig. 8 are described.

1) Host Thread: This runs in the CPU, and it has three
tasks. The first task is to send a start signal to the
Master GPU to inform it to enter the working state.
The second task is to be responsible for signal trans-
mission in the two GPUs, which includes obtaining
three sets of characteristic signals from the Slave_GPU,
obtaining control signals from the Master_GPU, and
transmitting them to the Slave_GPU. The third task
is to use the obtained control signal to change the
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operating frequency of the three energy modules inside
the Slave_GPU to achieve energy optimization.

2) Master_GPU Thread: The master GPU process is
mainly responsible for initializing the PIDNN neural
network and for generating three sets of control signals
through calculation.

3) Slave_GPU Thread: This controlled GPU process is
mainly responsible for running the benchmark pro-
gram. It is also responsible for receiving control signals
from the CPU and using them to change their working
status.

Next, we describe the process of energy optimization,
which is completed in three steps.

First, all work starts when the Slave_GPU runs the test pro-
gram.When the Slave_GPU starts running the process, it will
notify the CPU with the function Run_Benchmarks(). The
CPU receives the notification and uses Start_Master_GPU()
to inform the Master_GPU to start working. The Mas-
ter_GPU first initializes the global decoupling controller
through Init_PIDNN(), and waits for the characteristic signal
transmitted by the CPU.

Second, the CPU extracts the feature signal from the inside
using the Slave_GPU, and obtains three sets of character-
istic signals of the three energy consumption modules of
the Slave_GPU through the Get_Slave_CharcSeg() function,
{TQSM ,TQMEM ,TQICNT }, and {fSM , fMEM , fICNT }. Three
sets of characteristic signals are transmitted to the Mas-
ter_GPU through the Send_CharcSeg_To_Master() function.
After receiving the feature signal, the Master_GPU runs
the Calculate_Contlsig() method. The method includes cal-
culating the control law of the global decoupling network
using the Control_law() function, modifying the parame-
ters with the Weight_correct() function, and returning three
sets of control parameters, CSM , CICNT , and CMEM , with
return(ContlSignls).

In the third step, the CPU uses Get_Contrl_Signals()
to obtain three sets of control parameters and uses the
Change_Slave_FrqSeg() function to change the operating
frequency of the Slave_GPU internal energy module in real
time.

IV. EXPERIMENT AND ANALYSIS
This section is divided into four parts. The first part describes
the experimental design and experimental steps. The sec-
ond part verifies and analyzes the correlation between the
task characteristics and energy consumption. The third part
verifies the performance characteristics of the global-based
DVFS model. The fourth part verifies the energy consump-
tion characteristics of the global-based DVFS model.

A. EXPERIMENTAL DESIGN AND EXPERIMENTAL
ENVIRONMENT
1) EXPERIMENTAL DESIGN
(a) In order to verify the effectiveness of the global-based
model, we build an experimental environment that can per-
form actual energy measurements based on the master–slave

FIGURE 9. Experimental environment.

model. To achieve energy optimization, we use the Master
GPU to run the PIDNN controller to perform coordinated
frequency adjustment on the controlled Slave GPU.

(b) We run the PIDNN controller on the Master GPU.
We set the frequency adjustment signal and the controlled
signal of the three energy modules once every 1000 clock
cycles, taking 50 sampling points per batch. The backward
propagation algorithm is used to adjust the network weights
of V and W , and the learning step size η = 0.002. After
64 steps of training and learning, a relatively stable PIDNN
controller is obtained.

(c) In order to verify the energy optimization effect of the
global-based model, the performance of the Tesla, Fermi, and
Kepler GPU platforms are tested, and the results compared.
We collect the throughput data and energy consumption data
of the three GPUs before and after using the global-based
model, and compare and analyze the data.

2) EXPERIMENTAL ENVIRONMENT
In order to verify the effect of the GPU global energy opti-
mization model based on the global-based DVFS model,
we set up an experimental environment that can perform
actual energy measurements. The environment is shown
in Fig. 9.

The experimental components include a Master GPU that
runs the PIDNN controller; a frequency-controlled slave
GPU; a PC host; and a power meter. A detailed description
of the experimental components is as follows.

a: MASTER GPU
An NVIDIA Tesla C2050 [16] was used as a master GPU to
run the PIDNN controller in the experiment and generate a
frequency adjustment signal for the slave GPU. The specific
parameters are described in Table 1.

b: SLAVE GPU
In order to compare and analyze the energy optimization
effect of the global-based model, Quadro FX380, GTX480,
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TABLE 1. NVIDIA TESLA C2050 experimental parameters.

TABLE 2. SLAVE GPU experimental parameters (based on different
platforms).

and GTX 680 were selected as the slave GPUs. They were
based on the Tesla, Fermi, and Kepler platforms. The module
operating frequency within the slave GPU was adjusted by
the master GPU. At the same time, we used the slave GPU
to run the benchmark and test its throughput and power
consumption. Table 2 describes the experimental parameters
of the three slave GPUs.

c: PC HOST
Its role is to complete the communication between the FPGA
function board and the GPU. The PC host acquires the feature
parameters from theGPU and sends the frequency adjustment
signal to the FPGA through the I/O interface, thereby opti-
mizing the global energy consumption of the GPU internal
modules.

d: TEST PROCEDURE DESCRIPTION
In order to verify the energy optimization effect of the
FPGA-based global energy consumption model, we tested
the improvement of GPU throughput. The test program was
divided into three groups according to the dependency on
the cache: high cache sensitivity (HCS), medium cache sen-
sitivity (MCS), and cache insensitivity (CI) [17]. These are
described in Table 3.

B. EFFECT OF TASK CHARACTERISTICS ON ENERGY
CONSUMPTION
To prove the impact of the task feature on energy consump-
tion, we tested the relationship between the process charac-
teristics (the process access frequency of the cache) and the
blocking. We selected 15 test benchmarks [18] and divided
the frequency of access to Cache into three groups, according

TABLE 3. Test program classification (classified by cache sensitivity).

to the program, to verify the relationship between process
characteristics and energy consumption.

As can be seen in our experiments, the test program gen-
erated much pipeline blocking in the SM. Moreover, this
blocking increased as the process increased the frequency of
cache access.

From Fig. 10, we find that the higher the dependency of the
benchmark program on the cache, the more blocking it will
cause. The average blocking value caused by the HCS bench-
mark was 63.84%, and the average blocking value generated
by the MCS benchmark was 43.14%. The average blocking
value generated by the CI benchmark program was 11.16%.
The process characteristics of cache dependency increased
the waiting queues of the L1Cache in SMs, which caused
increased blocking of the pipelines, ultimately causing GPU
throughput to decrease and operating energy consumption to
increase.

Through experiments, we have proved that the process
characteristic (cache access frequency) and energy consump-
tion are related, the higher the frequency of access to the
process cache the more serious the pipeline blocking, and the
higher the corresponding energy consumption.

C. PERFORMANCE OPTIMIZATION CHARACTERISTICS
OF THE GLOBAL-BASED DVFS ENERGY
MANAGEMENT MODEL
In order to compare the performance of the three Slave GPUs,
we used the test procedure outlined in Table 3 to collect
throughput rates before and after use of the global-based
DVFS model. The test data is shown in Table 4.

In order to more clearly show the performance improve-
ment when using the global-based energy optimization
model, we compare the performance of the three Slave GPUs
within Fig. 11.

Fig. 11 shows that the throughput of the three slave GPUs
improves with the global energy optimization strategy of the
global-based model. The GTX680 based on the Kepler plat-
form has the most improvement, and its throughput increases
by 13.10% on average, whereas the throughput based on
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FIGURE 10. Pipeline stall ratio.

TABLE 4. Throughput improvements with the global-based DVFS model.

Fermi GTX460 increases by 7.13% on average. The Quadro
FX380 based on the Tesla platform has the least notable
improvement (an increase of 4.99%). The experiment shows
that the performance of the GPU is significantly improved
after using the global energy optimization model of the

global-based model, which proves the performance optimiza-
tion effect of the global-based model. In addition, the exper-
imental results show that the higher the cache dependency of
the benchmark program, the more obvious the performance
improvement.
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FIGURE 11. Comparison of throughput improvement (based on different platforms).

TABLE 5. Energy consumption with the Global-based DVFS model.

D. ENERGY OPTIMIZATION FEATURES OF GLOBAL-BASED
DVFS ENERGY MANAGEMENT MODEL
In order to compare the performance of the three Slave GPUs,
we used the test program presented in Table 3 to test the
energy consumption of the three Slave GPUs. We collected

the energy consumption data before and after use of the
global-based DVFS model. The test data is shown in Table 5.

In order to more intuitively display the energy reduction
effect of the global-based model, the energy consumption of
the three slave GPUs are also presented in Fig. 12.
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FIGURE 12. Comparison of energy consumption (based on different platforms).

This figure clearly shows that the energy consumption of
the three slave GPUs decreases after using the global-based
model’s global energy optimization strategy. Among them,
the energy loss of GTX680 based on the Kepler platform is
the most obvious: its energy consumption drops by 18.67%
on average. Meanwhile, the energy consumption based on
Fermi GTX460 decreases by 13.65% on average, and the
power consumption of Quadro FX380 based on the Tesla plat-
form drops by 4.39% on average. This shows that after using
the global-based model’s global energy optimization model,
the GPU’s energy consumption has a significant decline,
which proves the energy efficiency of the global-based
model. In addition, the experimental results show that the
higher the cache dependency of the benchmark program,
the more obvious the performance improvement.

Combining the Slave GPU performance improvement and
energy optimization results, we can see that the global-based
model has improved performance and energy optimization
for GPUs on all three platforms. The GTX680 based on the
Kepler platform has the most obvious improvement, followed
by the GTX460 based on the Fermi platform. Meanwhile,
the Quadro FX380 based on the Tesla platform has the least
obvious improvement.

The energy optimization achieved by the global-based
model is based on the following two points. First, the PIDN
controller is used to decouple the three energy consumption
modules in the GPU at the same time, and the operating
frequency of the three energy consumption modules is coor-
dinated. Second, the global-basedmodel has a time advantage
in parameter adjustment of the PIDNN network, and can

coordinate the operating frequency of the energy consump-
tion module in the GPU.

V. CONCLUSIONS
In this paper, a new DVFS method is used to control the
energy consumption of a GPU. This approach uses two
energy-related strategies. The first strategy is that the energy
management method adaptively adjusts the energy consump-
tion module of the GPU based on the task feature. We have
experimentally proven that this strategy is effective for GPU
energy management. The second strategy is to use PIDNN
to achieve coordinated adjustment of GPU multi-energy
modules. We built the global-based DVFS energy manage-
ment model to achieve global GPU energy optimization.
This global-based DVFS method improves both GPU perfor-
mance and energy efficiency on different platforms.

We have only implemented the global-based DVFS energy
management model in a single GPU and have not consid-
ered applying this strategy in a multi-GPU cluster environ-
ment. Looking ahead, to solve high-performance computing
problems, GPU-based computing systems will move toward
multi-core, multi-card clusters. This means that a GPU work-
station will often contain multiple GPU computing cards.
We envisage applying the global-based DVFS model energy
optimization method to the GPU cluster.

ACKNOWLEDGMENT
We thank LetPub (www.letpub.com) for its linguistic assis-
tance during the preparation of this manuscript.

VOLUME 7, 2019 64313



Y. Huang, B. Guo: GPU Energy Consumption Optimization With Global-Based Neural Network Method

REFERENCES
[1] X. Mei, L. S. Yung, K. Zhao, and X. Chu, ‘‘A measurement study of GPU

DVFS on energy conservation,’’ in Proc. Workshop Power-Aware Comput.
Syst., Farmington, CT, USA, Nov. 2013, p. 10. doi: 10.1145/2525526.
2525852.

[2] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi,
S. Dwarkadas, and M. L. Scott, ‘‘Energy-efficient processor design using
multiple clock domains with dynamic voltage and frequency scaling,’’
in Proc. 8th Int. Symp. High Perform. Comput. Archit., Cambridge, MA,
USA, Feb. 2002, pp. 29–40. doi: 10.1109/HPCA.2002.995696.

[3] X. Mei, Q. Wang, and X. Chu, ‘‘A survey and measurement study of
GPU DVFS on energy conservation,’’ Digit. Commun. Netw., vol. 3, no. 2,
pp. 89–100, May 2017. doi: 10.1016/j.dcan.2016.10.001.

[4] D. H. K. Kim, C. Imes, and H. Hoffmann, ‘‘Racing and pacing to idle:
Theoretical and empirical analysis of energy optimization heuristics,’’ in
Proc. IEEE 3rd Int. Conf. Cyber-Phys. Syst. Netw. Appl., Aug. 2015,
pp. 78–85.

[5] Y. Abe, H. Sasaki, S. Kato, K. Inoue, M. Edahiro, and M. Peres, ‘‘Power
and performance characterization and modeling of GPU-accelerated sys-
tems,’’ in Proc. IEEE 28th Int. Parallel Distrib. Process. Symp., May 2014,
pp. 113–122.

[6] Y. Liang, H. P. Huynh, K. Rupnow, R. S. M. Goh, and D. Chen, ‘‘Efficient
GPU spatial-temporal multitasking,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 26, no. 3, pp. 748–760, Mar. 2015. doi: 10.1109/tpds.2014.2313342.

[7] S. Song and K.W. Cameron, ‘‘System-level power-performance efficiency
modeling for emergent GPU architectures,’’ in Proc. 21st Int. Conf. Paral-
lel Archit. Compilation Techn., Minneapolis, MN, USA, Sep. 2012, p. 473.
doi: 10.1145/2370816.2370903.

[8] K. Dev, X. Zhan, and S. Reda, ‘‘Power-aware characterization and map-
ping of workloads on CPU-GPU processors,’’ in Proc. IEEE Int. Symp.
Workload Characterization, Providence, RI, USA, Sep. 2016, pp. 1–2.
doi: 10.1109/IISWC.2016.7581285.

[9] G. Tang, W. Jiang, Z. Xu, F. Liu, and K. Wu, ‘‘Zero-cost, fine-grained
power monitoring of datacenters using non-intrusive power disaggrega-
tion,’’ in Proc. 16th Annu. Middleware Conf., Vancouver, BC, Canada,
Dec. 2015, pp. 271–282. doi: 10.1145/2814576.2814728.

[10] K. Li, ‘‘Improving multicore server performance and reducing energy
consumption by workload dependent dynamic power management,’’ IEEE
Trans. Cloud Comput., vol. 4, no. 2, pp. 122–137, Apr./Jun. 2016.
doi: 10.1109/tcc.2015.2440238.

[11] J. Li, B. Guo, Y. Shen, D. Li, and Y. Huang, ‘‘A modeling approach
for energy saving based on GA-BP neural network,’’ J. Elect. Eng.
Technol., vol. 11, no. 5, pp. 1289–1298, Sep. 2016. doi: 10.5370/jeet.
2016.11.5.1289.

[12] H. Shu, PID Neural Network and Its Control System. Beijing, China:
National Defense Industry Press, 2006.

[13] C. Liu and H. Song, ‘‘Design of electric loading system in flight sim-
ulator based on PIDNN,’’ in Proc. Int. Conf. Mechatronic Sci. Electr.
Eng. Comput., Jilin, China, Aug. 2011, pp. 2623–2626. doi: 10.1109/
mec.2011.6026030.

[14] Y. Zhang, H.-B. Zhu, and T.-Q. Lu, ‘‘PIDNN decoupling control of
boiler combustion system based on MCS,’’ in Proc. 29th Chin. Control
Decis. Conf., Chongqing, China, May 2017, pp. 7110–7115. doi: 10.1109/
ccdc.2017.7978466.

[15] NVIDIA’s Next Generation CUDACompute Architecture: Fermi, NVIDIA,
Santa Clara, CA, USA, 2016.

[16] TESLA C2050/C2070 GPU Computing Processor Supercomputingat
1/10th the Cost. Accessed: 2010. [Online]. Available: https://www.nvidia.
com/docs/IO/43395/NV_DS_Tesla_C2050_C2070_jul10_lores.pdf

[17] J. A. Stratton et al., ‘‘Parboil: A revised benchmark suite for
scientific and commercial throughput computing,’’ Center Reliable
High-Perform. Comput., 2012. [Online]. Available: http://impact.crhc.
illinois.edu/Shared/Docs/impact-12-01.parboil.pdf

[18] J. Coplin and M. Burtscher, ‘‘Energy, power, and performance charac-
terization of GPGPU benchmark programs,’’ in Proc. IEEE Int. Paral-
lel Distrib. Process. Symp. Workshops, Chicago, IL, USA, May 2016,
pp. 1190–1199. doi: 10.1109/ipdpsw.2016.164.

YANHUI HUANG received the B.S. and M.S.
degrees in radio electronics and computer sci-
ence from Sichuan University, in 1997 and 2002,
respectively, where he is currently a Lecturer
with the School of Computer Science. His current
research interests include embedded real-time sys-
tems and green computing.

BING GUO received the B.S. degree in computer
science from the Beijing Institute of Technology
in China, in 1991, and the M.S. and Ph.D. degrees
in computer science from the University of Elec-
tronic Science and Technology of China, China,
in 1999 and 2002, respectively. He is currently a
Professor with the School of Computer Science,
Sichuan University, China. His current research
interests include embedded real-time systems and
green computing.

YAN SHEN received the M.S. degree in mecha-
tronics engineering and the Ph.D. degree in mea-
suring and testing technology and instruments
from the University of Electronic Science and
Technology of China, in 2001 and 2004, respec-
tively. She is currently a Professor with the Con-
trol Engineering College, Chengdu University of
Information and Technology. Her main research
interests include distributed measurement systems
and embedded system development.

64314 VOLUME 7, 2019


	INTRODUCTION
	BACKGROUND AND PRELIMINARY CONSIDERATIONS
	GPU OVERALL ENERGY CONSUMPTION MODEL
	DVFS ENERGY MANAGEMENT STRATEGY DILEMMA
	PIDNN COLLABORATIVE CONTROL MODEL

	METHODOLOGY
	ENERGY MANAGEMENT MODEL BASED ON THE TASK FEATURE
	GLOBAL-BASED DVFS MODEL TRAINING PROCESS
	IMPLEMENTATION FRAMEWORK OF GLOBAL-BASED DVFS ENERGY MANAGEMENT MODEL
	GLOBAL-BASED DVFS ENERGY MANAGEMENT PSEUDO-CODE FRAMEWORK

	EXPERIMENT AND ANALYSIS
	EXPERIMENTAL DESIGN AND EXPERIMENTAL ENVIRONMENT
	EXPERIMENTAL DESIGN
	EXPERIMENTAL ENVIRONMENT

	EFFECT OF TASK CHARACTERISTICS ON ENERGY CONSUMPTION
	PERFORMANCE OPTIMIZATION CHARACTERISTICS OF THE GLOBAL-BASED DVFS ENERGY MANAGEMENT MODEL
	ENERGY OPTIMIZATION FEATURES OF GLOBAL-BASED DVFS ENERGY MANAGEMENT MODEL

	CONCLUSIONS
	REFERENCES
	Biographies
	YANHUI HUANG
	BING GUO
	YAN SHEN


