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ABSTRACT Fruit grading is an essential post-harvest task in the olive industry, where size-and-mass based
fruit classification is especially important when processing high-quality table olives. Within this context, this
research presents a new methodology aimed at supporting accurate automatic olive-fruit grading by using
computer vision techniques and feature modeling. For its development, a total of 3600 olive-fruits from
nine varieties were photographed, stochastically distributing the individuals on the scene, using an ad-hoc
designed an imaging chamber. Then, an image analysis algorithm, based on mathematical morphology, was
designed to individually segment olives and extract descriptive features to estimate their major and minor
axes and their mass. Regarding its accuracy for the individual segmentation of olive-fruits, the algorithm
was proven through 117 captures containing 11 606 fruits, producing only six fruit-segmentation mistakes.
Furthermore, by linearly correlating the data obtained by image analysis and the corresponding reference
measurements, models for estimating the three features were computed. Then, the models were tested
on 2700 external validation samples, giving relative errors below 0.80% and 1.05% for the estimation of
the major and minor axis length for all varieties, respectively. In the case of estimating olive-fruit mass,
the models provided relative errors never exceeding 1.16%. The ability of the developed algorithm to
individually segment olives stochastically positioned, along with the low error rates of around 1% reported by
the estimation models for the three features, makes the methodology a promising alternative to be integrated
into a new generation of improved and non-invasive olive classification machines. The new developed system
has been registered in the Spanish Patent and Trademark Office with the number P201930297.

INDEX TERMS Computer vision, feature modeling, food industry, fruit grading, image analysis, olive.

I. INTRODUCTION

The olive (Olea europaea) is a species belonging to the family
of Oleaceae, which nowadays comprises one of the most
significative horticultural crops worldwide. Mainly due to
the increase of popularity the olive-derived products have
experienced over the last decades, its cultivation, practiced
for centuries in the Mediterranean Basin, has spread all
around the world. Indeed, it can be found with a growing
presence in such disparate countries as China, Australia or
USA [1], [2]. This geographical expansion has obvi-
ously been accompanied by a huge growth in terms of
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production, which is directly reflected in the numbers
the olive industry deals with. Thus, according to estima-
tions for the 2018/19 crop year, a table olive production
of 2,750,000 tons [3], and 3,130,000 tons for the case of olive
oil is expected [4].

The increasing demand and consumption of these olive-
based products has led the industry to explore the use of
new technologies aimed at developing a more profitable,
competitive and sustainable market around it. Thus, as in
other mainstream crops, olive sector is currently experiencing
a process of major transformation [5], [6].

When talking about table olives, fruit classification accord-
ing to size is a relevant task undertaken during posthar-
vest manufacturing [7]. Size homogeneity, along with other
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sensory attributes, have a positive impact on the overall con-
sumer opinion about the quality of the product [8]. Further-
more, this is not exclusive of olives, since fruit-size grading
is a global issue within food industry when processing high-
quality horticultural commodities [9]. So much so that its
automation has been historically a challenge to deal with,
since this activity has traditionally been performed by hand,
with all the drawbacks that it brings. First approaches to the
problem have been based on purely mechanical solutions,
as the integration of different size hoppers through which
fruits can slide, according to their dimensions, into the con-
veyor belts used during postharvest treatment. However, they
can potentially damage fruits [10], [11], since it implies a
higher degree of physical manipulation of the commodities.
In addition, they present obvious limitations in terms of the
features the classification can be based on, and the informa-
tion that can be recorded after processing.

Within the described scenario, the classical mechanical
approaches have been reviewed in recent years [12], being
machine vision probably the most investigated technique to
build a new generation of less invasive postharvest horticul-
tural classification machines. Thus, Baigvand et al. [13] pro-
posed a machine-vision-based integral solution for dried figs
sorting. Sad et al. [14] presented a methodology fusing image
processing and supervised machine learning for grading man-
goes according to shape and mass. Focused on the same crop,
Wang et al. [15] suggested the use of RGB-D sensing for in-
field fruit size estimation. In addition, Mizushima and Lu [16]
faced the segmentation of images of apples, in order to enable
their automatic sorting.

Likewise, the use of computer vision techniques
has already been approached within the olive sector.
Gatica et al. [17] proposed RGB-image analysis and the
use of neural networks to recognize the fruits directly in
the trees, thus ideally estimating the best harvest time.
On the other hand, several studies have focused on vari-
etal identification on the basis of image analysis. Thus,
Martinez et al. [ 18] approached the problem by feature extrac-
tion from images of olive endocarps, and then using partial
least square-discriminant classifiers. Similarly, the proposal
by Beyaz et al. [19] used captures of fruits and endocarps
to identify olive cultivars. Aside from variety classification,
research has also been conducted to deal with defective fruit
discrimination. To this effect, Diaz et al. [20] compared
different algorithms for categorizing olives according to their
surface condition. On the other hand, Puerto et al. [21] pre-
sented a methodology for differentiating olives collected from
the ground from those harvested directly from the trees, as the
former impoverishes quality of the subsequently produced
olive oil.

In a previous research, Ponce et al. [22] successfully found
strong evidences about the viability of the estimation of mass
and size of olives by means of image analysis. In order to
extend the scope approached then, a highly improved new
methodology, based on computer vision and feature mod-
elling, is proposed in the present paper. It undertakes a new
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scenario, closer to match the needs of the olive industry
in terms of automated fruit grading. Thus, an image acqui-
sition chamber, potentially integrable in a conveyor belt,
was designed with the capability of taking photos of olive
batches under controlled conditions. With this device, groups
of olives from nine different varieties were photographed,
stochastically positioning the individuals on the capturing
area to mimic the chaotic distribution they would have on
real a conveyor belt. Then, the images were binarized by
clustering-based image thresholding, and the olives appearing
fused for being in touch were separated employing math-
ematical morphology principles. After isolating the indi-
vidual olives, descriptive data of the features under study
were extracted from the transformed images. Finally, a linear
regression analysis of the correlation between these measure-
ments and their corresponding individual objective obser-
vations, previously taken in laboratory, was performed to
compute the models for estimating size and mass of every
single olive appearing in images.

Unlike other studies in this field, the methodology pre-
sented is novel because, in the first place, it proposes a spe-
cific image acquisition system, designed to favor binarization
of the captures with high precision, at a low computational
cost. It makes possible to face the subsequent individual
segmentation of the fruits within a timeframe potentially
assumable to be applicable in a real time system, with the
implications that this entails in terms of usability for the olive
industry. In addition, the significant volume of samples used
during the development of the study offers guarantees of the
reliability and generality of the results obtained.

Hereafter, the manuscript is divided into three main
parts. First, section II focuses on the experimental design,
presenting different aspects related to the characteris-
tics of those fruit- samples used throughout the research
(section II-A), describing how the image acquisition and
reference data collection (section II-B) was carried out,
and detailing the framework whereby the image analysis
algorithm was developed (section II-C). Section III offers
insights into the developed methodology, laying emphasis on
how this image analysis procedure was designed to binarize
(section III-A), segment at fruit-level (section III-B), and
postprocess the initial captures (section III-C). Next, fea-
ture characterization (section III-D) and modelling (III-E)
are addressed, and methodology’s performance evaluation is
detailed (section III-F). In section IV, the results attained are
presented and discussed. Finally, the last section summarizes
the findings achieved, and formulates the main conclusions
derived from the present study.

Il. MATERIALS AND METHODS

A. SAMPLE COLLECTION

Nine Olea europaea varieties were considered for this study:
Arbequina, Arbosana, Picual, Ocal, Changlot Real, Verdial
de Huévar, Lechin de Sevilla and two experimental ones,
named as 967 and 1030, respectively. Thus, 400 samples
per variety (3,600 in total) were gathered by hand in olive
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FIGURE 1. Image acquisition chamber.

orchards located in Gibrale6n (37°2009.2”N 7°02'19.8"W),
province of Huelva (Andalusia, Spain), in October 2018. For
each variety, samples were selected to cover the observed
variability in terms of size.

B. REFERENCE DATA AND IMAGE ACQUISITION

For image capture, an imaging chamber was designed
and crafted with the aim of isolating the scene from any
external light source, thus maximizing illumination control
(see Fig. 1).

The fruits were placed on a semi translucent white plastic
sheet. This sheet, with dimensions of 500 x 500 x 2 mm,
was neatly disposed 65 mm from the bottom of the chamber,
and it was illuminated from below by a set of seven equally
distributed strips composed of 25 LEDs of 5V each. Due to
this lighting system design, it was possible to avoid shadows
cast by the fruits. As capturing device, a Sony «7-1I digital
mirrorless camera (Sony Corp., Tokyo, Japan) was installed
at the top of the chamber, looking perpendicularly at the
imaging area. The camera mounted a 24 Mpx CCD stabilized
sensor, and it was equipped with a Zeiss 24/70mm lens with
optical stabilization. It was set in manual mode, configuring
the aperture in f/7.1, shutter speed in 1/50s, ISO sensitivity
in 250, and focal length in 31mm. The camera was set to
save images in JPEG file format, with a 6000 x 3376-pixel
resolution, a color-depth of 24 bits, and a pixel density
of 350 ppi.

Every variety set of 400 olives was divided into batches
of 50 fruits, which were then photographed separately, thus
obtaining eight images per variety (72 in total). The only
criterion regarding to the way the fruits where disposed to
be imaged, was to force multiple touching occurrences. This
prerequisite was established with the purpose of approaching
a complex and realistic scenario.

Additionally, in order to test the robustness and accuracy of
the developed image analysis algorithm, a set of five stress-
images were acquired per variety (45 in total). The number
of fruits to appear was progressively incremented in each of
these five images. Two examples of the images acquired can
be checked in Figure 2. Furthermore, Table 1 summarizes
how the olive-fruit samples were organized and photographed
for the nine studied varieties.

Once a batch was photographed, measurements of mass
and size were conducted and registered for every individual
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FIGURE 2. Examples of captured images for Picual variety: (a) regular
image; (b) stress image.

TABLE 1. Materials: organization of olive-fruit samples and images for
each of the nine varieties used.

Olive fruits Images acquired
Variety Training E)(-terrl.al Regular Stress
sample subset validation images images

P subset £ g

400 (fruits) 100 (fruits) 300 (fruits) 8" 5°

50 fruits per image.
® Stochastic number of fruits.

fruit. To do so, a KERN PCB 3500-2 precision balance
(KERN & Sohn GmbH, Balingen, Germany) was used to
assess olive mass (in grams - g). To grade the size of each fruit,
its corresponding major and minor axis length were measured
(in millimeters - mm) using a Digital Vernier Caliper, which
provided 0.0lmm of resolution and 0.02mm of accuracy.
It must be pointed out that, for every variety, the major and
minor axes of 100 of the 400 individuals (900 in total), were
independently measured by three different observers, again
manually by using a digital caliper. This, in order to later
perform a study of variability, with the goal of assessing the
degree of uncertainty introduced by measuring the size of the
olives by hand, using the digital caliper.

C. IMAGE ANALYSIS ALGORITHM IMPLEMENTATION

The core of the proposed methodology is an image analysis
algorithm designed in order to, first, transform the olive-
fruit captures into binary-segmented images, and second,
to extract from them data structures with which to perform
fruit counting and characterization of the three different
features to estimate. The latter, for each of the fruits that
appear in the initial captures. Its development was carried
out by mainly using transformations based on mathemati-
cal morphology, and binarization by statistical thresholding
techniques. Regarding its implementation, MATLAB and
the Image Processing Toolbox Release 2018a (The Math-
Works, Inc., Natick, Massachusetts, USA) were used. To note
this technology was chosen only for prototyping purposes,
with the awareness that a real system, based on the pro-
posed methodology, would require an algorithmic implemen-
tation based on a computationally more flexible and efficient
language.

lll. DEVELOPED METHODOLOGY
The diagram shown in Fig. 3 illustrates the methodology
resulting from the conducted research. Essentially, the dataset
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FIGURE 3. Representative diagram of the developed methodology for
computing and validating the mass and size olive-fruits estimation
models.

composed of the acquired olive-fruit images and their cor-
responding reference measurements, previously recorded,
is used throughout an image processing and analysis proce-
dure aimed at computing, and ultimately validating, the pur-
sued models for fruit mass and size estimation. This process
of transforming the captures and extracting descriptive fea-
tures of fruits, to feed estimation model training, is described
in detail throughout the subsections below.

A. IMAGE PREPROCESSING

As it has been stated before, the present study is focused
on a scenario in which olives may appear in touch with
other in the images. Within this context, the developed image
analysis algorithm was designed on the basis of the Watershed
transform [23] for individually segmenting olive-fruits. This
section describes a set of image transformations applied to
favor the performance of this subsequent Watershed trans-
form application.
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First, an image binarization consisting in isolating those
pixels corresponding to fruits from the background is carried
out. To that end, images are previously transformed from
RGB to HSV color space [24]. A large body of literature has
investigated the importance of using the right color represen-
tation when developing image analysis procedures, with no
exception when treating captures of horticultural products,
whatever the pursued objectives are [25], [ 26]. In the present
study, the specific illumination conditions enabled the acqui-
sition of images with an important differentiation, in terms
of luminosity or brightness, between the background-pixels
and the fruits. In order to exploit this feature to the purpose
of binarizing the image, HSV comprises a suitable color
representation, since brightness information can be directly
analyzed in the specific channel V (Value). Thus, for its pro-
cessing, this channel is treated as a grayscale image, denoted
as Iy, and its grey-level values are inverted to represent
background pixels with lower values than those of fruits:

Iy =255 —1Iy (D

where 255 is the highest possible grey-level value for images
with 8 bits-per-channel of color depth. Then, Iy is binarized
based on a threshold computed by Otsu’s method [27]. This
global thresholding technique assumes that there are two
classes of pixels in terms of their grey-level values, those
belonging to the foreground and those which correspond
to the background. Thus, the method automatically calculates
the optimum threshold for class separation by maximizing the
inter-class variance or, analogously, by minimizing the intra-
class variance, so the sum of the measured spreads of the
pixel levels of both classes is minimum. Hence, the threshold
Thoysy, is computed for image Iy, which is then binarized as:

255 if Iy (x,y) > Thossy
IB,-n(x,y>={ fly (x.7) > Thoy P

0 in any other case

Next, a morphological opening is applied to the result-
ing binary image with a double purpose: 1) to eliminate
tiny groups of white pixels which cannot represent olives
because of their anomalous dimensions; 2) to remove the
olive pedicels that might be present in the image. Mathemat-
ically:

Ipina = yp (Iin) , 3)

where y is the morphological opening that uses the
disk-shaped structuring element B of 30 pixels in radio
[23, pp. 106-108]. This process of segmentation and
noise/pedicel removal is illustrated in Fig. 4.

As it can be checked, Ipj» is an accurate segmenta-
tion of olives from the background. However, olives in
touch appear fused building enlarged connected components
(sets of neighbor pixels). The aim of the procedure described
in section III-B will be to separate olives fused in Ipj2,
0 as to every connected component corresponds to a single
olive. With this goal, preprocessing finishes by computing the
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FIGURE 4. Illustration of the image preprocessing: (a) original sub-image; (b) binary sub-image; (c) binary sub-image after noise and pedicel removal;

(d) distance transform of image (c); (e) complement of the image (d).

distance transform DT on Iy, which calculates, for every
pixel, its Euclidean distance to its nearest background pixel:

Ipr = DT (Igin2) , @

where, DT is mathematically formulated as:
(DT gin)1(x, y)
. /\2 /\2 7
=mm{\/(x—x) + O —=y)" pin2 (x ,y> =0} (5)

This information will be key for olive separation in Ip;;».
Indeed, Ipr is a meaningful and simplified image in which the
mass center of all olives, originally in touch or not, constitute
a regional maximum for being the local farthest point to
the background (see Fig. 4-(d)). Note that a generic regional
maximum M of an image can be defined as a set of neighbor
pixels with a given grey-level value v, such that every pixel in
the neighborhood of M has a value strictly lower than v. The
entire preprocessing is illustrated in Fig. 4.

B. INDIVIDUAL OLIVE SEGMENTATION

The goal at this stage is the accurate application of the
Watershed transform to individually segment olives in
image Ipinp. Conceptually, the Watershed approximates an
image as a topographic surface, where grey-level values rep-
resent altitudes, being the darker regions taken as catchment
basins. Then, the surface is flooded, and the basins are divided
by water convergence lines, whose path is influenced by the
deepness, size and shape of basins. Formally, the definition
and implementation of the Watershed transform is not obvi-
ous and has produced a great amount of specific literature
over the years, which is encouraged to be consulted for deeper
study [28], [29].

According to the given explanation, if the complement
image of Ipr, Ipr = 255 — Ipr (see Fig. 4-(e)), is seen
as a topographic surface, olives constitute catchment basins.
Additionally, these basins are ideally divided by draining
lines traced according to the influence produced by the char-
acteristics of every basin with respect to its surroundings.
However, the direct application of the Watershed to Ipr
would produce oversegmentation with high probability, as it
is well-known to be very sensitive to local irregularities [29].
To overcome this difficulty, a marker-controlled Watershed
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(a) (b) (©)

FIGURE 5. (a) starting binary image, Ig;,,; (b) image resulting after
applying the distance transform on (a), Ipy; (c) extended regional
maxima of (b), Igp1axBin-

segmentation is proposed [30]. A marker is a connected
component belonging to the image to be segmented. Thus,
internal markers, those inside olives, and external markers,
belonging to the background, are found. Then, they are used
to limit the regions allowable by the watershed to those of
olives, and to accordingly modify the gradient of the image.

As a first step to obtain the set of internal markers,
the regional maxima located at the olive centres in image
Ipr are extracted by applying the h-maxima transform
[23, pp. 201-204]. This transform firstly removes irrelevant
regional maxima from the image, which will be those with a
height lower or equal than h. Mathematically:

Iipax =R}, (Upr —h)., (6)

where, generically, R}SMM (IMarker) 1s the morphological
reconstruction by dilation of Iys,s from marker Iysqrker, USing
a unitary structuring element [31]. Respecting parameter £,
a value of 5 was enough to retain only significative maxima
(the choice of this parameter value was proven to have a
wide range of optimum values in this particular case). Next,
the surviving relevant regional maxima in image gy, are

extracted by computing:
Ivax = Inmax — RY,,,, (THvax — 1), @)

and thresholding the resulting image:

255 i [RM (x, ) >0
IrMaxBin(x, y) = f “ Y (8)

0 in any other case,
The result of operations (6)-(8) can be consulted in Fig. 5.
At this point, the exact number N of fruits present in the
image, originally in touch or not, is obtained by counting
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FIGURE 6. Generation of the image of internal markers, /j,4yx : (a) image of the distance function; (b) close-up of the red-squared zone in image (a);
(c) binarization of (b) with a threshold Thy;, value of 65; (d) removal of the artificial connected components thanks to operation (9);
(e) Image ;441 where each connected component represents an internal marker for the application of the watershed transform.

the number of connected components present in IgpayBin-
Next, this information is exploited to finally decide the set
of internal markers, by building a binary image in which
all olive fruits are disconnected, but in such a way that
they keep their spatial relationship/influence; note that this
constraint preserves the original major draining lines. To do
so, the objective is finding the minimum threshold value,
Thyin, producing a binarization of the distance transform
image, Ipr, exactly containing N connected components cor-
responding to the olives disaggregated. Indeed, assuming that
the image contains olives in touch, the lower the threshold
value is, the lower the number of connected components
contains the binary image as they tend to fuse building aggre-
gations. Contrary, as the threshold value increases, the olives
tend to disconnect, and the number of connected components
converge to N. However, there are two situations to consider
in the solution for finding Thyg,: 1) smaller olives may dis-
appear when binarizing image Ipr from a certain threshold
value, depending on the size of the larger ones and the size
of aggregations; 2) tiny artificial connected components may
appear when binarizing Ipr as a consequence of the discrete
and quantized nature of the image (check Fig. 6-(a) to (c)).

Therefore, the mathematical solution to the described prob-
lem, which provides the set of internal markers, can be for-
mulated as follows:

I = R, (UIRMaxBin) - )

where I, contains N connected components correspond-
ing to the individual olives, being

Icana = max{Itapin, IRMaxBin} (10)

Indeed, the morphological reconstruction planned in (9)
discards the previously pointed out artificial connected com-
ponents probably present in Icg,q (check Fig. 6-(c)-(e)).
Additionally, (10) recovers in Icy,yq the smaller connected
components that may have disappeared when calculat-
ing Itnpin- Thus, ITpyin 1s the binarization of the distance
transform image Ipr:

255 if Ipr (x,y) > ThMin
rin (e, = {20 o7 €6 ) (a1
0 in any other case

when ThMin takes the minimum threshold value for which
Ik contains N connected components (given by the
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FIGURE 7. Computation of the set of external markers Igp1q,k

(a) Ipr , which results from inverting the image resulting from the
application of the distance transform to the image of internal markers
Iintmark: (b) image WS(Ipr Intvik " resulting from the application of the
watershed transform to Ipy Inthk (a); (c) image of external markers

(dark lines), Iextn1ark - resulting from binarizing WS(IDT'n th) (b).

generic function CC),
Thygin = min{t | CC (Iumx) = N,t =0,...,254} (12)

Consequently, in order to computationally determine
Thygin, an incremental iterative binarization over every pos-
sible threshold value starting from 1 is performed. Thus,
by binarizing the distance-transform image Ipr at every
value, Thyy;, is decided when the resulting image contains an
equal number of connected components, N, than the regional
maxima image, Ik

Next image Ipr,,,, resulting from the application of the
distance transform (5) to Ijr is calculated (Fig 7-(a)).
Then, the set of external markers is obtained by applying the
Watershed transform to the complement of Ip7,,..» IDT i »
as follows:

0 if IWSUbT)pp))(x,y) =0
Tpximic (x, y) = f )55 Y . (13)
1 in any other case
where WS stands for Watershed transform. The steps to obtain
this marker-image are visually represented in Fig. 7. Note that
the external markers are the dark lines illustrated in Fig. 7—(c).
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At this point, it should be noted that the set of lines inte-
grating the external markers offer a partial solution to the
separation problem, but it often provokes oversegmentation.
Thus, the external markers are used to force the occurrence
of regional minima (operation known as minima imposition
[23, pp. 172-173]) in the complement distance transform
image E, as:

IMinImp =R (TExtMark) (14)

&
min{Ipr IExmark }

where, generically, RfMW (IMarker) 1s the morphological
reconstruction by erosion of Iy, from marker Iyzq ker, USING
a unitary structuring element [31]. After this minima impo-
sition, the Watershed transform is applied to Iyginmp, thus
providing the definitive set of ridge lines used to eventually

separate the olives in Ip;,; as:

IFinar = min{Igin2, ILines}, (15)
where

0 if [WS ([Minlmp)] x, =0

. ., (16)
1 in any other case

ILines(x,y) =

The definitive outcome at this stage, Irinq;, is shown in
Fig. 8.

C. IMAGE POSTPROCESSING

Once object separation is finished, tiny artificial connected
components may have been generated as a consequence of
the application of the Watershed transform. These exceptional
oversegmentation occurrences are removed by computing a
morphological opening, followed by a reconstruction of the
resulting image to restore the exact size and shape of the
surviving connected components. Mathematically:

IOlives = R(]sFma, (IAux) (17)
Lyux = vg (UFinal) (18)

B represents the disk-shaped structuring element used in
the opening operation. Its radius length is adaptatively com-
puted per variety as follows:

B=r"—5x0’ —1, (19)

where #V and o) are, respectively, the mean and the sample
standard deviation values defining the statistical distribution
of observations of the minor radius length of the connected
components present in Iri,,. The distributions were stud-
ied for each variety v by analyzing all the images with
the methodology described in sections III-A and III-B, and
using the procedure detailed in section III-D to calculate the
radius length values. Hence, the distribution of olive sizes per
variety is assumed to be Gaussian, and only extremely non-
representative examples, those out of the average minus five
times the standard deviation, are discarded for being too tiny
to be meaningful.

Finally, postprocessing ends with removing from Ipjiyes
those olives not completely contained in the image. To do so,
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FIGURE 8. lllustration of final olive separation: (a) binary image /g;,»
with olive aggregations to be separated; (b) ridge lines obtained by
marked-controlled watershed segmentation; (c) binary image, after
olive-fruit separation, which is calculated as the minimum value

of (a) and (b) for every pixel.

those connected components reaching the border in /pjjyes are
discarded by performing:

3
1 OlivesDef = Totives — RIOHW,X (IBorderseeds) » (20)

where Ipyrderseeds contains seeds for each olive connected to
the image border

IBorderSeeds = min {Iojives, IBorder} » 21
and Ipynger 1S @ border image

255 if (x,y)is a border pixels

IBorder(x, y) = } (22)

0 in any other case

This subprocess is illustrated in Fig. 9 by treating a sub-
image instead of a full capture. This, in order to make easier
its visualization.
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(a) (¢) (d)

FIGURE 9. lllustration of the removal of the olives that are not completely
contained in the image: (a) binary image after individual olive
segmentation; (b) seeds corresponding to each of the olives connected to
the border; (c) components corresponding to the olives connected to the
border; (d) result after components in (c) are removed from (a).

FIGURE 10. Representation of the ellipses, and their corresponding axes,
computed for characterizing olive-fruit size.

It should be noted that in Fig. 9-(b), seeds have been
expanded and exaggerated for the purpose of facilitating its
visual representation.

D. OLIVE SIZE AND MASS CHARACTERISATION

The image analysis methodology presented individually
segmented olive-fruits following the principles specified
in section III-B. At this point, the objective is the formulation
of descriptive features, measurable in the segmented images,
to approach the major and minor axis length, and mass,
of every individual olive. Finally, these features are exploited
to build estimation models.

First, the major and minor axis length of an olive are
proposed to be characterized by the length in pixels of the
two axes of the ellipse having the same normalized second
central moment [32] than its connected component:

MajAx (CC;) = max (Ep, (CCy), Ep, (CC))),

CC; € Ioiives, (23)
MinAx (CC;) = min (Ep,(CC)), Ep,(CC)),
CCi c IOlivexa (24)

Ep, and Ep, denotes the diameters, D; and D;, of the
two axes of ellipse E fulfilling the previous definition for
connected component CC; of image Ipjives- This approach is
illustrated in Fig. 10.

Second, for characterizing mass of an olive, the area in pix-
els of its corresponding connected component is considered.
The first approach to this proposal is to assume the extent
to which each pixel equally contributes to the mass charac-
terization, independently of its position within the connected

component. Mathematically:
Area (CC;) = #CC;, CC; C Ioiives. (25)

where # stands for the cardinal operation.
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Additionally, a set of alternative approaches, based on pixel
weighing, are proposed as well. It should be noted that a
connected component is, in fact, a 2D projection of an olive,
which actually has an ellipsoidal three-dimensional body.
In order to introduce this notion of three-dimensionality,
it seems reasonable to consider that the contribution of a
given pixel, when approximating the mass of the fruit, must
be greater the closer this pixel is to the mass center of the cor-
responding connected component. This argument suggests
weighing the contribution of every pixel according to its
relative location within the connected component which it
belongs to.

Therefore, it is proposed a pixel-weighing scheme by
means of the application of the distance transform in con-
junction with a set of functions, aimed to express the pursued
three-dimensionality.

Hence, the area of a connected component CC; contained
in image Ipjives, 18 calculated using a generic weighing
function w, as:

Area,(CC =" w(NDT, (oiies)] (. 7).,

CC; C loiives € v (26)

[ERYIS

NDT, refers to the distance transform function (4), nor-
malized by the maximum olive-to-background pixel distance
measured throughout the whole set of processed images, for
the corresponding olive variety v (27), as shown at the bottom
of this page.

The purpose of the weighing function is to modulate the
initial weights, provided by the application of the distance
transform, according to the ellipsoidal shape of the fruits.
To this end, logarithm- and root-based functions are selected
and studied, since the draw similar shapes to that observable
in a cross-sectional view of an olive.

Therefore, the proposed weighing functions w, and the
labels they will be referred with from now on, are defined
as:

« Natural logarithm (NLog):

w () =In(l+ (e — 1) x p) (28)

o Logarithm to base n (Logy):

w(p) =log,(1+(n—1)xp), n=2,3,510 (29)

o Square root (Rooty):

w(p) = p,

The representation as an image of the application of the
different weighing functions is illustrated in Fig. 11, where
the weigh assigned to each pixel is represented as a grey-
level value. All these alternatives will later be evaluated and
compared.

n=2,3,5,7,10 (30)

E. OLIVE SIZE AND MASS MODEL TRAINING
For training estimation models for olive minor and major axis
length, and mass, a set of 100 olive-fruits was built per variety
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FIGURE 11. Pixel-weighing representation for each of the mass models
considered: (a) NLog; (b) Log,; (c) Logs; (d) Logs; (e) Logz; (f) Logyq;

(g) Root,; (h) Roots; (i) Roots; (j) Rooty; (k) Root;q; (I) representation of
equally-weighed pixels.

(900 in total), thus keeping disjoint sets of 300 individuals
per variety for external validation (2,700 in total). The sets
for training were made up with samples representing the
particular observed variability for each olive variety in terms
of size and mass. On the other hand, the images containing
the training olive samples were analyzed, and the features
described above were calculated for all of them. Then, a linear
regression analysis was performed per variety on the training
instances. It allowed to model the relationship between the
magnitude of the features given by image analysis and the
corresponding objective data previously registered in labora-
tory. This training scheme produced three estimation models
per variety, one per feature, which will be referred as variety-
dependent estimation models hereafter. In addition, the linear
regression analysis was replicated by considering the nine
different training sets as a whole. It made possible to generate

and assess the behavior of a unique set of three estimation
models applicable to all varieties. These models will be called
variety-independent estimation models from here on.

F. APPROACH FOR THE METHODOLOGY'S
PERFORMANCE EVALUATION

The performance of the proposed methodology was assessed
following a double approach.

First, the ability of the image analysis algorithm to indi-
vidually segment olives was studied. For this purpose, the
72 regular images (8 per variety), containing 50 olives each,
were processed with the algorithm, and the number of indi-
vidual olives found was evaluated. Additionally, the algo-
rithm was also challenged under this criterion by analyzing
the set of 45 stress images (5 per variety).

Second, the behavior of the whole methodology, compris-
ing the image analysis algorithm and the different estima-
tion models, was assessed. For each of the three modelled
features, olive major and minor axis length, and mass, esti-
mations given by the methodology were confronted to the
reference values obtained in laboratory using the following
proposed metrics:

« Root-Mean-Square Error:

n A N2
RMSE = | 2= 01 =) (31)
n
« Relative Root-Mean-Square Error (expressed as
percentage):
SE RMSE 100 (32)
= = X
21 vi
n
« Relative Mean Error (expressed as percentage):
n A. — .

Dim1 Vi
where, for the i-th fruit of a set of n elements, y; refers to the
predicted value and y; stands for its corresponding reference
measure. Additionally, one-way analysis of variance was also
conducted on the estimation results of the different devel-
oped models for the nine varieties. Mean comparison was
attempted, performing the Tukey’s test [33] at p < 0.05, on the
population of individual relative errors, e;, defined as the ratio
between the estimated and the actual value considered:

i
Yi
At this point, it is important to recall that the minor and

major axis length of 100 olives per variety (900 in total) were
measured by three different observers. For these samples and

(34)

€

[DT (opiives)] (x, y)

[NDT ,(Ipjives)1(x, y) =

; 27)
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max {\/(x, - _x”)2 + (y, - y”)2 |I/Olives ('xl’ y’) =255 Iglives ()C”, y”) = O}
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TABLE 2. Fruit-detection accuracy tested on stress images.

Stress Images

stress_image 0 stress_image 1

stress_image 2

Overall

stress_image 3 stress_image 4

Varlety (detected/actual fruits) (detected/actual fruits) (detected/actual fruits) (detected/actual fruits) (detected/actual fruits) frﬁfstesi:zsg?ﬁ;le)
967 103/103 165/165 187/187 254/254 311/311 1020/1020
1030 138/138 182/182 210/210 246/246 323/323 1099/1099
Arbequina 158/158 194/194 221/221 251/249 304/303 1128/1125
Arbosana 111/111 137/137 190/190 250/250 355/355 1043/1043
Changlot 66/66 91/91 117/117 156/156 237/237 667/667
Lechin 71/71 112/112 153/153 211/211 258/257° 805/804
Ocal 95/95 100/100 113/113 117117 141/141 566/566
Picual 164/164 195/195 207/207*° 233/233 256/256 1055/1055
Verdial 64/64 91/91 112/112 140/140 220/220 627/627
- - - - - 8110/8106

* Denotes underestimation occurrence.
® Denotes overestimation occurrence.

FIGURE 12. Examples of stress-images captured for variety 967 (a), and
the corresponding results after processing/analysis algorithm is
applied (b).

features, the average of the three independent observations
was used as reference measure y; for the application of the
metrics above. Notwithstanding, the motivation for perform-
ing this multiple evaluation for a subset of olives, was to
investigate the degree of uncertainty induced by the observer
when measuring the olive axis with a digital caliper. With this
purpose, the SME metric was defined as:

_ XL ISME;
n

SME = 100, (35)

where

max{|yij — yi|}
yi

Indeed, for every fruit i involved in the study, an error I SME;

was defined as the absolute maximum deviation of the three

observations y; ;,j = 1, ..., 3, with respect to the mean value
of the observations ;.

ISME; = (36)

IV. RESULTS AND DISCUSSIONS

A. RESULTS OF THE IMAGE ANALYSIS ALGORITHM

The image analysis algorithm showed 100% of accuracy
when individually segmenting olives in the case of the
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TABLE 3. External validation results calculated considering all varieties
as a whole (N = 2,700).

Feature Model type RMSE SE (%) (EZ‘)
Vo Variety_—dependent 0.4956 (mm) 2.67 0.44
Variety-independent ~ 0.5714 (mm) 3.07 1.14

Minor axis Va'riety'-dependent 0.3543 (mm) 2.47 0.34
Variety-independent ~ 0.3711 (mm) 2.57 0.60

Mass: Variety-dependent 0.1192 (g) 5.20 0.55
Area Variety-independent 0.2106 (g) 9.89 6.46
Mass: Variety-dependent 0.1134 (g) 4.84 0.51
Areay,, Variety-independent 0.2806 (g) 13.53 9.05
Mass: Variety-dependent 0.1135 (g) 4.84 0.50
Area,,, Variety-independent 0.2878 (g) 13.87 9.39
Mass: Variety-dependent 0.1132 (g) 4.84 0.49
Areay,g, Variety-independent 0.2783 (g) 13.42 8.95
Mass: Variety-dependent 0.1132 (g) 4.85 0.49
Area,,, Variety-independent 0.2675 (g) 12.89 8.43
Mass: Variety-dependent 0.1139 (g) 4.88 0.54
Areai,g,, Variety-independent 0.2550 (g) 12.27 7.76
Mass: Variety-dependent 0.1141 (g) 4.89 0.56
Areag,or, Variety-independent 0.2488 (g) 11.94 7.38
Mass: Variety-dependent 0.1147 (g) 4.95 0.50
Areag,or, Variety-independent 0.2329 (g) 11.12 6.47
Mass: Variety-dependent 0.1161 (g) 5.03 0.51
Areag,or, Variety-independent 0.2222 (g) 10.55 6.40
Mass: Variety-dependent 0.1170 (g) 5.08 0.54
Areagyor, Variety-independent 0.2183 (g) 10.34 6.36
Mass: Variety-dependent 0.1176 (g) 5.11 0.54
Areagye,, Variety-independent 0.2157 (g) 10.19 6.38

72 regular images, as it exactly segmented 50 olives in all
of them (3,600 in total), independently from the olive vari-
ety considered. With respect to the 45 stress images, they
represented a very more complex and challenging scenario
for the algorithm, as they contained numerous olives chaoti-
cally positioned, with multiple border cuts and olive touching
occurrences to deal with.

Fig. 12 illustrates a set of stress-images and the graphical
representation of the results of their analysis.

As it can be observed, the algorithm showed great ability
to individually segment olives and to discard those cut by
the image borders. This visual impression was corroborated
by the numerical analysis of the results given in Table 2.
This table compiles the results regarding fruit-detection
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FIGURE 13. Representation of the regression analysis performed to compute the different variety-indep
(a) major-axis-length variety-independent model; (b) minor-axis-length variety-independent model; (c) Area; 4

(e)

()

d

dent and -dep nt models:
mass variety-independent

model; (d) major-axis-length model for changlot real variety; (e) minor-axis-length model for changlot real variety; (f) Aredog, mass model for

changlot real variety.

accuracy, by showing the ratio between the olives detected
and the actual number of fruits which appear in the corre-
sponding stress images.

An outstanding number of 8,106 olive instances were
present in the 45 stress images. The algorithm individually
segmented 8,110. This slight deviation responds to the over-
estimation of 5 olives in 4 different stress images, all of them
related to not correctly removing olives cut by the image
border. Additionally, there was only one case of underestima-
tion in which a pair of fruits, touching each other, were not
properly separated; it occurred in image stress_image_2 of
the Picual variety. Thus, if 6 segmentation errors are counted
over 8106 cases, it can be concluded that the accuracy of the
algorithm measured on the stress images was 99.92%.

B. RESULTS OF THE WHOLE METHODOLOGY FOR
ESTIMATING OLIVE-FRUITS MASS AND SIZE

A set of 27 variety-dependent models (9 varieties X
3 features), and a set of 3 variety-independent models

VOLUME 7, 2019

(1 per feature for all varieties), were obtained by linearly
correlating the features obtained by image analysis to the
actual reference measures. Overall, those mass estimation
models trained featuring olive mass with the weighing func-
tion Areapg, (€q. (23), n = 3), provided better performance
at external validation than most of the other approaches.
Table 3 summarizes the results of this comparison computed
on the external validation sets presenting, per model tentative,
the mean value of the previously defined error metrics calcu-
lated for each olive variety. Consequently, the discussion and
the results reviewed hereafter regarding mass estimation are
referred to this choice.

Fig. 13 illustrates the correlation results registered when
training the three independent models and, as an example,
the three dependent models for Changlot Real variety. As it
can be observed, there was a significant positive correla-
tion, exhibiting a minimal degree of dispersion in all the
cases. This fact, extendable to the rest of the models com-
puted, highlights a strong statistical relationship between the
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TABLE 4. Training and external validation results for each of the estimation models proposed and varieties studied. N = 900 for model training

(100 per variety), and N = 2,700 for validation (300 per variety).

TRAINING EXTERNAL VALIDATION
Variety Feature Model type R’ Regression equation RMSE SE (%) |E] (%)
Major axis Variety-dependent 0.9407 y=0.06427x+0.95664 0.3946 2.64 0.68
Variety-independent 0.9838 y=0.07124x-0.27022 0.4242 2.84 1.17
967 Minor axis Va_riety_—dependent 0.9544 y=0.06724x+0.47133 0.3708 2.95 1.04
Variety-independent 0.9792 y=0.07037x+0.08466 0.3474 2.76 0.32
Mass: Area;, Varietyjdependent 0.9756 y=0.00012x-0.03778 0.0715 5.07 0.63
B Variety-independent 0.9554 y=0.00016x-0.43286 0.1652 11.71 5.16
Major axis Va-riety-dependent 0.9439 y=0.06515x+1.01841 0.3478 2.42 0.53
Variety-independent 0.9838 y=0.07124x-0.27022 0.3862 2.69 0.86
1030 Minor axis Va_riety_—dependent 0.9652 y=0.06913x+0.33592 0.2528 2.16 0.02
Variety-independent 0.9792 y=0.07037x+0.08466 0.2584 221 0.41
Mass: Area,, Va'riety'—dependent 0.9836 y= 0.00014x-0.03032 0.0456 3.88 0.15
93 Variety-independent 0.9554 y=0.00016x-0.43286 0.1976 16.79 15.19
e aE Variety-dependent 0.9772 y= 0.06448x+0.9561 0.5037 3.42 0.58
Variety-independent 0.9838 y=0.07124x-0.27022 0.5710 3.88 0.83
Arbequina Minor axis Va_riety_—dependent 0.9747 y= 0.06771x+0.51259 0.2889 2.17 0.17
Variety-independent 0.9792 y=0.07037x+0.08466 0.3052 2.29 0.40
Mass: Area;, Va_riety'—dependent 0.9886 y= 0.00013x+0.02085 0.1106 7.11 0.60
e Variety-independent 0.9554 y=0.00016x-0.43286 0.2109 13.57 7.65
Major axis Variety-dependent 0.9645 y= 0.06933x+0.04436 0.3154 2.22 0.11
Variety-independent 0.9838 y=0.07124x-0.27022 0.3321 2.34 0.41
Arbosana Minor axis Va_riety_—dependent 0.9471 y=0.06897x+0.29699 0.2260 2.01 0.18
Variety-independent 0.9792 y=0.07037x+0.08466 0.2336 2.08 0.28
Mass: Area,, Va_riety_—dependent 0.9816 y=0.00011x+0.00384 0.0435 4.02 0.34
93 Variety-independent 0.9554 y=0.00016x-0.43286 0.1844 17.01 6.87
Ve e Varietyjdependent 0.9552 y=0.06801x+0.4077 0.5938 2.89 0.78
Variety-independent 0.9838 y=0.07124x-0.27022 0.5970 291 0.54
Changlot Minor axis Variety-dependent 0.9479 y=0.06824x+0.45384 0.3035 2.06 0.45
Real Variety-independent 0.9792 y=0.07037x+0.08466 0.2988 2.03 0.06
Mass: Area; Va_riety'—dependent 0.9734 y=0.00014x-0.03664 0.1056 425 1.16
“er Variety-independent 0.9554 y=0.00016x-0.43286 0.1601 6.44 0.70
Major axis Variety-dependent 0.9451 y=0.0734x-0.76493 0.5755 2.76 0.24
Variety-independent 0.9838 y=0.07124x-0.27022 0.5913 2.84 0.92
Lechin de Minor axis Variety-dependent 0.8791 y=0.06498x+1.13778 0.3418 2.30 0.27
Sevilla Variety-independent 0.9792 y=0.07037x+0.08466 0.3755 2.53 0.86
Mass: Area, Va_riety_—dependent 0.9673 y=0.00012x+0.00431 0.1059 4.15 0.28
ks Variety-independent 0.9554 y=0.00016x-0.43286 0.4007 15.71 12.46
Vi et Varietyjdependent 0.9282 y=0.06567x+1.93467 0.7471 2.89 0.64
Variety-independent 0.9838 y=0.07124x-0.27022 0.8365 3.24 1.37
Ocal Minor axis Variety-dependent 0.8463 y=0.06721x+1.0975 0.5275 2.79 0.38
Variety-independent 0.9792 y=0.07037x+0.08466 0.5980 3.16 1.32
Mass: Area; Va_riety_—dependent 0.9596 y=0.00015x+0.22991 0.2986 591 0.85
“er Variety-independent 0.9554 y=0.00016x-0.43286 0.5747 11.37 9.68
Major axis Va_riety_—dependent 0.9486 y=0.0692x+0.87548 0.4525 2.32 0.20
Variety-independent 0.9838 y=0.07124x-0.27022 0.7827 4.01 3.25
Picual Minor axis Variety-dependent 0.9406 y=0.06963x+0.37024 0.2990 232 0.14
Variety-independent 0.9792 y=0.07037x+0.08466 0.3276 2.55 1.03
Mass: Area, Variety-dependent 0.9773 y=0.00012x-0.07138 0.0749 4.17 0.27
) ks Variety-independent 0.9554 y=0.00016x-0.43286 0.3767 20.97 18.42
Vi et Variety-dependent 0.9492 y=0.06607x+1.14255 0.5299 2.50 0.20
Variety-independent 0.9838 y=0.07124x-0.27022 0.6221 2.94 0.94
Verdial de Minor axis Variety-dependent 0.8506 y= 0.06252x+1.98224 0.5783 3.47 0.40
Huevar Variety-independent 0.9792 y=0.07037x+0.08466 0.5956 3.58 0.74
Mass: Area Variety-dependent 0.9658 y= 0.00015x+0.00958 0.1622 4.97 0.11
) Logs Variety-independent 0.9554 y=0.00016x-0.43286 0.2348 7.20 4.44

estimations and actual values, which reinforce the viability
of using simple-linear-regression-based modelling in order to
individually estimate the mass and size of olive-fruits.

Table 4 details training and external validation results for
all the model variants and olive varieties. With regard to
training, outstandingly high values were registered for the
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coefficient of determination, RZ, in all cases. Indeed, the
coefficient value was below 0.9 only in three cases, reaching
0.8463 in the worst case. Furthermore, training was generally
so consistent and comparable for both the variety-dependent
and the variety-independent approaches, that no conclusions
could be taken at this stage. However, when applying the
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TABLE 5. Results of one-way analysis of variance performed on the estimations produced by the variety-depend

dent models for each

nd
t and -indep

variety. The analyzed populations are the individual relative errors, calculated by using (34), produced by the different models on the external validation
sets of each variety (N = 2,700, 300 per variety). The mean ¢; and standard deviation oe; of each population is given. dissimilar letters indicate different

statistical means according to the analysis of variance using the tukey’s test at p < 0.05.

Variety-dependent models

Variety-independent models

Variety - ] - - - - : :
Major axis Minor axis Mass: Area; g, Major axis Minor axis Mass: Area,qg,
(él' Ue,-) (‘?u o-ei) (e_u o—ei) (él' Ue,-) (el' o-ei) (Eu Ue,-)

967 (0.9944,0.0265)*  (0.9907,0.0276)*  (0.9964,0.0488) ™  (1.0117,0.0268)¢  (1.0039,0.0279)*  (1.0225,0.1314) ¢
1030 (0.9952,0.0243)*  (1.0003,0.0218) > (1.0020,0.0468)®  (0.9909,0.0264)°  (0.9961,0.0219)>  (0.8148,0.1503) *
Arbequina  (0.9950,0.0339)*  (0.9985,0.0223)*  (0.9974,0.0758)®  (1.0071,0.0377)°*  (1.0037,0.0232) *  (0.8770,0.1725)"
Arbosana (0.9989,0.0234) ™ (1.0018,0.0204) ™ (0.9990,0.0418)®®  (1.0037,0.0242)°  (1.0026,0.0210)*  (1.0131,0.2182) ¢
g::l"g"" (0.9927,0.0280)*  (0.9959,0.0202) ™  (0.9884,0.0423)*  (1.0054,0.0290) “*  (1.0008,0.0205)*  (0.9941,0.0723) ¢
g:sl';l‘: de (0.9973,0.0287) ®  (1.0034,0.0231)°¢  (0.9979,0.0438)®®  (0.9910,0.0277)®  (1.0085,0.0240)¢  (1.1065,0.0916)
Ocal (0.9944,0.0282)*  (0.9964,0.0278)  (0.9948,0.0598)°  (0.9861,0.0297)"  (0.9867,0.0290)*  (0.8983,0.0648) "
Picual (0.9984,0.0235) ™  (1.0018,0.0235)™  (1.0033,0.0436)®  (0.9673,0.0240)*  (0.9899,0.0234)®  (1.1714,0.0858)
;’Ifl‘:i?r' de (1.0022,0.0265) > (0.9975,0.0340) >  (1.0005,0.0501) ™  (1.0086,0.0296) **  (0.9930,0.0345)®  (0.9430,0.0755) °

Dissimilar Letters Indicate Different Statistical Means According to the Analysis of Variance Using the Tukey’s Test at p<0.05

trained models to the sets of external validation, the cal-
culation of the error metrics to assess the given different
estimations showed some certain trends to be analyzed.

On the one hand, focusing on mass estimation, variety-
dependent models offered, systematically and by far, lower
estimation error rates than the independent ones. Actually,
variety-dependent models gave |E| rates per variety for mass
estimation below 1% with the exception of that for Changlot
Real, which reached 1.16%; the mean error |E| considering
all varieties as a whole was 0.49% (Table 3). The trend is
also corroborated by the results registered with metrics based
on accumulated error, RMSE and SE. The higher error rates
for the independent approach can be explained by differences
in physical characteristic features, as fruit density, stone-
fresh ratio, or fat content, among others. All of them, having
an evident impact on mass, may differ from one variety to
another. Consequently, the slope of the lines better fitting
the mass-size relationship may vary among varieties, thus
explaining the poorer behavior shown by the independent
approach. Studied this effect, no definitive reasons can be
given to discard generic variety-independent models as a
feasible tool for mass estimation, but it suggests the necessity
to explore alternative approaches for its more effective imple-
mentation. To this end, a future study will explore non-linear
modelling, in an attempt to achieve models able to express
this mass-size variability.

Respecting size estimation, satisfying results were also
found. As a reference, the mean error |E| for the major and
minor axis length estimation was lower than 1%, excepting
for a few cases, per variety and considering all of them
together (Table 4 and Table 3, respectively). Notwithstanding,
despite a slightly more accurate behavior could be recog-
nized for the variety-dependent models, this difference was
so subtle that suggested further analysis in order to be more
conclusive. Table 5 shows the results of the one-way anal-
ysis of variance performed per variety and model approach.

VOLUME 7, 2019

TABLE 6. Results of the study of variability of manual olive size
measurement performed by three different observers. N = 900,
100 per variety, where each instance is the deviation of the three
individual observations given by (36).

Major Axis Minor Axis
Variety o N
Mean Lengt SME (%) Mean Lengt SME (%)
(mm) (mm)
967 15.27 1.21 13.03 1.19
1030 14.59 1.19 11.92 1.30
Arbequina 15.10 2.21 13.64 0.94
Arbosana 14.32 0.93 11.31 1.0
Changlot 20.81 0.67 14.94 0.72
Lechin 20.03 1.05 14.35 1.36
Ocal 26.00 1.38 18.96 1.96
Picual 19.68 1.06 12.93 1.27
Verdial 20.67 0.94 16.38 1.08

Generally, a higher number of classes of significance resulted
from the analysis of the estimations produced by the variety-
independent models for the three features. Especially relevant
was this difference for the case of mass, with 2 Vs 6 classes
of significance, which confirms the previous conclusions
and adds strong signs of statistical consistence regarding the
behavior of this set of variety-dependent models. Contrary,
differences were less conclusive for the case of size esti-
mation. This fact encouraged to study the reliability of the
reference objective measurements, for the major and minor
axis length, taken in laboratory by hand using a digital cal-
liper. Indeed, there are multiple factors which potentially
introduce uncertainty in the procedure, as the slight elasticity
of the fruits, their ellipsoidal shape and other morphological
features. Table 6 compiles the results of the variability of the
manual measurements performed by three different observers
for a set of 900 individuals, 100 per variety. As it can be
observed, the magnitude of the found variability is compara-
ble to the analyzed slight performance deviation between the
variety-dependent and variety-independent models. As this
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variability may affect model training and validation in a
rather random manner, the most conservative conclusion is
to consider both modelling approaches comparably valid for
the case of size estimation.

V. CONCLUSIONS

The present paper proposes a new methodology for the auto-
matic counting, and the individual mass and size estimation,
of olive-fruits in digital images. All this work is intended
to assess the viability of a machine vision system, aimed at
improving post-harvest olive-fruit grading and classification,
currently performed by rather limited mechanical methods,
and to lay the basis for its implementation. Thus, the proposed
imaging chamber, designed to be potentially integrated in
real classification machines equipped with translucent belts,
provided an efficient way to carry out the acquisition of
the digital images. On the other hand, the image analysis
algorithm was conceived to deal with complex situations as
fruit touching, or fruit cut by the image borders. It argues for
the methodology could operate under a real scenario. Regard-
ing estimation models, and by relying on external validation
results, variety-dependent models outperformed the indepen-
dent ones when estimating olive mass. It indicates mass-
size ratio dependence from variety. Variety-dependent models
showed slightly better behavior than the variety-independent
ones for size estimation, again in terms of external validation.
Notwithstanding, as variability of the manual reference mea-
surements was found to have a magnitude comparable to the
performance deviation of both approaches, the most conser-
vative conclusion is to consider them analogously valid.

A. FUTHER WORK

As detailed before, 3,600 fruits from nine different olive
varieties where used to train and validate the methodology.
Despite these figures, along with the obtained results, support
confidence in the developed methodology, further research
will include new olive-fruit varieties and samples, in order to
reinforce its generalization.

On the other hand, variety-dependent models consistently
and outstandingly outperformed the independent ones for the
case of mass estimation, providing an overall mean error |E|
of 0.49%. It indicates mass-size relationship dependence
from olive variety, what encourages to explore in the future
non-linear modelling for the case of independent methods,
in an attempt to achieve statistical models able to express this
mass-size variability.

As stated before, the image analysis algorithm was devel-
oped by using MATLAB along with the Image Processing
Toolbox for prototyping purposes. Future research will also
be focused on the implementation of the methodology within
a framework able to satisfy real-time computation.
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