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ABSTRACT This paper proposes a novel saliency model that reveals the long-term info to boost detection
accuracy. The saliency estimation of conventional methods heavily depends on the locally revealed short-
term info, and they could easily be trapped into imperfect configurations. In contrast, our method can take
full consideration of common consistency of those reliable low-level predictions from the perspective of
the entire video sequence. Meanwhile, we adopt a newly designed self-learning strategy which is guided
by the low-rank analysis to adaptively reveal the long-term spatial–temporal video coherency. To avoid the
error accumulations, we also propose a novel non-local descriptor to enhance the discriminative power of the
feature space. Thus, the newly revealed the long-term info can be directly regarded as a trustful indicator to
sustain additional low-rank analysis, which would serve as the basis toward selective fusion and significantly
enhance the detection accuracy.

INDEX TERMS Video saliency detection, foreground modeling, spatial-temporal diffusion.

I. INTRODUCTION
The problem of video saliency detection aims to automat-
ically detect the most salient object in the given video
sequence. And such detections can be regarded as the ROI
(region-of-interest) indicator to facilitate various downstream
applications including person re-identification [1], video
surveillance [2], and traffic control [3]. Different from the
conventional image saliency which heavily rely on the spa-
tial info as the exclusive saliency clue [4], [5], the incur-
sion of video temporal info is the critical factor to obtain
accurate video saliency. In fact, for downstream applications
with saliency computation must be necessarily done online,
e.g., the autopilot system [6], it is critical to accomplish the
saliency aided environment perceiving immediately accord-
ing to those newly arrived video streams. Thus, almost all the
state-of-the-art methods [7]–[9] have to build their saliency
model merely rely on the short-term info [10]–[12], which
easily causing massive artifacts. However, for downstream
applications with saliency accuracy at the highest priority,
e.g., video summarization [13], the conventional in-available
long-term infomay become available, and this motivates us to
utilize off-line manner to take full advantage of the long-term
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info for the accurate video saliency detection. To this end we
summarize the current key technical challenges as follows.

First, the saliency exploring scope of the current state-
of-the-art methods is too local to reveal long-term video
saliency. In fact, rather than being limited in consecutive
frames, the detection accuracy can be further boosted by
considering more reliable long-term info as we mentioned
before. Meanwhile, this revealed long-term info should also
enable self-adaption to guide the current saliency prediction.

Second, simply applying the saliency corrections/
amendments in the color spanned feature space easily causes
the accumulation of false-alarm detections, especially when
the salient foreground object shares similar color to its non-
salient backgrounds. Thus, it is necessary to develop a much
discriminative feature space which can enlarge the feature
distance between the salient foreground object and its non-
salient backgrounds.

Specially, our previous work FD17 [9] attempted to extend
the saliency exploring extent in batch-wise manner via using
low-rank guided fusion and diffusion procedure in color
spanned feature space. However, because of the absence
of the long-term info, FD17 encountered distinctive perfor-
mance degradation when the majority of the intra batch low-
level saliency are incorrect (see demonstrations in Fig. 1),
not to mention the side-effects (e.g., the accumulation of
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FIGURE 1. Motivation demonstration. Compared to FD17 [9], our method
can well handle those fast scale change induced false negative detections
and the intermittent movements induced hollow effects.

errors) brought by the low discriminatingly of the solely
color-spanned feature space.

To ameliorate, our current research endeavors are aiming
at iteratively establishing a much global self-learning based
video saliency modeling solution to prevent the accumulation
of the false-alarm detections while respecting the long-term
info. To achieve this, we propose to introduce the newly
designed structure-aware descriptor to span feature space
with high discriminative power, which can well respects
the spatial info while conserving the generalization power
in temporal scale. Meanwhile, in order to correctly explore
the long-term info, we propose to adaptively learn an addi-
tional appearance model from the low-level saliency predic-
tions. Also, we utilize a series low-rank solutions to enable
the adaptability of our learned appearance model, which is
important for the saliency corrections/amendments to stay
smoothness in temporal scale. Specifically, the salient contri-
butions of this paper towards novel computational strategies
can be summarized as follows:

• We design a novel descriptor to enhance the discrimina-
tive power of the color spanned sub feature space, which
enable our subsequent saliency diffusion procedure to
correct those previously ill-detectionswhile avoiding the
accumulation of errors.

• We propose a self-learning to reveal the long-term
info to iteratively correct/amend those poor low-level
saliency predictions, which suppose to exhibit much
robust video saliency detections when the current low-
level saliency is undergoing long period untrustful
status.

• We integrate the low-rank analysis guided selective
fusion strategy into our self-learning framework aiming
to further constraint the temporal consistence of the
detected video saliency.

II. RELATED WORK
A. IMAGE SALIENCY DETECTION METHODS
The central idea of image saliency detection is to extract
the most eye-catching object that is significantly distinctive
(i.e., uniqueness) from its non-salient surroundings. To rep-
resent the uniqueness, most of the earlier saliency meth-
ods directly employ global contrast as the saliency crite-
rion, either in the raw color feature space [14] or in the
frequency domain [15]. Following the same rationality, the
improved multi-scale solutions dominate the saliency detec-
tion field for a long period of time, which explore the
global saliency over the color information spanned fea-
ture spaces, including sparse dictionary based method [16],
multi-level super-pixel feature based method [17], image
boundary based method [18], etc. Although global contrast
based saliency methods have achieved remarkable accu-
racy, they may easily miss some important sub-parts in
the salient object due to the feature (color) overlapping
between foreground and background. Then, local contrast
methods are resorted to conquer this limitation, however,
it tends to bring in hollow effect problems, which leave
the inside regions of the salient object being undetected
but assign high saliency value around the salient object
boundaries [19]. The hybrid solutions (considering both
local and global contrast) are also proposed to alleviate
these limitations [20] by adopting more meaningful feature
space [21], [22] and more discriminative descriptor [5], [23]
to perform multi-scale contrast computation [24], [25]. Also,
some high-level shape/structure based constraints [26] and
priors [27] are introduced to sharpen the boundary of the
salient object. Although the state-of-the-art image saliency
detection methods have already achieved great success, they
are still struggling to make trade-off between the local con-
trast and the global contrast. In particular, their detection
performance over videos is extremely poor, and visual proofs
(Fig. 10) can be found in our quantitative comparison in our
experimental section.

B. FUSION-BASED VIDEO SALIENCY METHODS
Compared with the image saliency detection over spatial
domain only, the incursion of video temporal/motion infor-
mation is a critical factor which makes the video saliency
challenging. The fusion based video saliency methods aim
to integrate multiple saliency sources, which can be mainly
classified into two categories such as color saliency clues
and motion saliency clues, to achieve robust video saliency
detections. Mahadevan and Vasconcelos [28] proposed to
integrate spatial contrast computation into temporal scale,
and then the obtained temporal-spatial contrast (i.e., center
surrounded spatial-temporal region, followed and improved
by [25]) was directly regarded as the spatial-temporal
video saliency clue. Similarly, Seo and Milanfar [29] pro-
posed to compute the contrast based saliency in pre-defined
spatial-temporal surroundings directly. Although these
methods [28], [29] considered both the spatial and tempo-
ral saliency clues simultaneously, neither of these clues is
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accurate enough to produce high quality video saliency detec-
tions due to the absence of the long-term spatial-temporal
coherency. To overcome this limitation [30] resorted the Con-
ditional Random Field (CRF) to fuse more saliency sources,
e.g., the illumination contrast, achieving better video saliency
detections than [28]. Also following the same principle,
i.e., ‘‘the more, the better’’, [13] further explores the motion
saliency from the temporal perspective, including the fore-
ground object related velocity contrast and acceleration con-
trast, and the final video saliency is computed via the ‘‘addi-
tive’’ fusion [31] in a multi-scale manner, which on average
combines multiple saliency sources to boost the detection
accuracy. In fact, the above methods still rely on two basic
video saliency sources (i.e., the color saliency and motion
saliency), yet with different formulations or combinations,
which obviously are encountering unsolvable performance
bottleneck due to their bootstrapmotivation. Thus, rather than
roughly combining multiple basic saliency sources for the
final video saliency detection, the most recent fusion based
works are mainly focusing on the designation of the selective
strategy, which estimates the video saliency by automatically
seeking an appropriate balance respectively from the above-
mentioned basic saliency clues. For example, Fang et al. [12]
adopted the entropy as the major indicator to evaluate the per-
formance of individual basic saliency clues, and then the final
video saliency were designed to strictly bias toward those
saliency clues with high entropy measure. Most recently,
Liu et al. [32] regarded the mutual consistence as the criterion
to guide the collaborative interaction and selection between
temporal and spatial spaces, which achieved remarkable
performance improvement. Although these newly-designed
selection based fusion strategies [12], [32] can produce
robust saliency detection results, unfortunately, the con-
tinuity nature of the movement (i.e., the consistence of
the spatial-temporal information between consecutive video
frames, named as the spatial-temporal coherency) is totally
neglected, and massive false-alarm detections frequently
occur when both spatial and temporal saliency clues are
undergoing unreliable condition during a long perior of
time.

C. VIDEO SALIENCY METHODS GUIDED BY
SPATIAL-TEMPORAL COHERENCY
Almost all the spatial-temporal coherency guided video
saliency methods follow the rationality that, the movement
trajectories of the salient foreground object are frequently
characterized by spatial-temporal smoothness. Thus, long-
term modeling with appropriate update is the most intuitive
solution to explore the spatial-temporal coherency in con-
secutive video frames. From the perspective of scene mod-
eling, background subtraction based salient motion/change
detection methods [2], [33], [34] have been well stud-
ied in recent years, whose central idea is to utilize low-
rank decomposition [35] to automatically separate the
salient foreground (i.e., the sparsity component) from the

non-salient background (i.e., the low-rank component) by
seeking spatial-temporal coherency, and the sparsity mea-
sure is regarded as the unique indicator to locate the
motions/changes. Although plausible detection performance
has been observed for the stationary videos, these model-
ing based methods frequently become incapable for non-
stationary videos [34] due to the absence of pixel-wise
correspondence in consecutive video frames. To amelio-
rate, either frame-level affine registration [36] or back-
ground tracking strategy [37] is integrated into the low-
rank revealing process to convert the non-stationary sce-
narios to relatively stationary ones, however, the obstinate
challenges still exist when the input video sequences only
have limited frames, because it can heavily impacts the
robustness of the estimated background model and leads
to poor performance. Different from the above-mentioned
modeling methods, which mainly model the spatial-temporal
coherency of the non-salient backgrounds, [10] proposes to
utilize the foreground spatial-temporal information to con-
struct their attention model, which fully takes the advan-
tages of the motion continuity to eliminate false-alarm
detections. So the limitations of video saliency detection
over non-stationary video have been significantly alleviated
with magnificent performance improvement in stationary
scenarios. Similarly, Li et al. [31] proposed to utilize the
newly-designed kernel regression to explore the local spatial-
temporal coherency, whose hidden rationale is to seek the
common consistencies of the foreground object in short-
term video in a batch-wise way. Kim et al. [8] regarded the
graph model (to be built over short-term video frame batches)
based stationary status as the video saliency clue, achieving
plausible performance. Actually, the core rationality of the
above batch-wise spatial-temporal coherency method is to
constrain the detected video saliency of the local neighboring
frames (i.e., consecutive frames in short-term frame batches)
to stay spatial-temporal consistence. It follows the assump-
tion that, the overall appearance of the foreground object
should remain roughly identical. Thus, the obtained spatial-
temporal coherency is localized in the predefined short-term
frame batches, and their performance constantly struggles
to deal with the trade-off between the predefined frame
batch size and the intensity level of the varying foreground
object. So, [38] proposes to utilize a newly-designed graph
model (considering the unbound spatial-temporal coherency
of the foreground object) to automatically conduct the
video saliency detections, which was further followed and
improved by Wang et al. [7], [39]. Although these graph
model based video saliency methods have achieved remark-
able performance improvement, the graph model solution
easily causes the accumulation of false-alarm detections,
because its un-bounded saliency expansion lacks of a mecha-
nism to suppress the non-salient backgrounds while enhanc-
ing the salient foreground object. This paper will explore
the global spatial-temporal coherency in an un-bounded
manner to avoid the accumulation problem of false-alarm
detections.
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FIGURE 2. Overview of our proposed video saliency method.

III. METHOD OVERVIEW
As we can see in Fig. 2, our method mainly consists of three
components: (1) structure-aware saliency transfer (Mark 1);
(2) low-rank analysis guided selective fusion (Mark 2);
(3) appearance model update (Mark 3).

Our method first decomposes the original input video
sequence into video batches (identical to our previous work
FD17 [9]), and then compute Spatial-temporal Gradient
(Fig. 13) guided novel low-level saliency, i.e., the color
saliency and the motion saliency, which will be discussed
in APPENDIX. Based on the obtained low-level saliency
clues, we propose to automatically formulate structure-aware
Pattern Models (middle row in Fig. 2) to facilitate our self-
adaptive learning iterations, which mainly include the follow-
ing components:
A: automatically obtain the binary segmentations as the

foreground object mask (Algorithm 1 in Sec. IV-A) which
can be regarded as the intermediate saliency assumption to
facilitate the computation of our structure-aware descriptor
(Sec. IV-B) in the current learning iteration;
B: detail our newly-proposed structure-aware descriptor

to enhance the discriminative power of color-based feature
subspace, which is extremely important for the following
Saliency Transfer Procedure (seeMark 1 in Fig. 2), andmore
details can be found in Algorithm 2 in Sec. IV-B;
C: utilize our newly-designed saliency transfer (details can

be found in Sec. V-C) to amend the previous detection results
in an iterative fashion viaLow-rank Analysis Guided Selective
Fusion (seeMark 2 in Fig. 2), which automatically performs
the selective combination between the low-level predictions
and the transferred saliency according to the sparsity mea-
sure of our low-rank analysis. It will be further discussed
in Sec. V-D;
D: the learned pattern models and the foreground mask

will be iteratively updated after each self-learning procedure,

see Mark 3 in Fig. 2 and more details can be found
in Sec. V-E.

IV. STRUCTURE-AWARE DESCRIPTOR
Given an input video sequence, we follow our previous work
(FD17 [9]) to perform the low-level saliency estimation in
frame-wise manner, and the details can be found inAppendix
of this manuscript.

A. ADAPTIVE BINARY LABELING
Since we have already obtained the low-level saliency
(LS, Eq. A5) for each video frame in the given video
sequence, it is indispensable to conduct binary segmenta-
tion in the current learning iteration as the preliminaries
of our structure-aware description (details can be found
in Sec. IV-B). However, due to the varying appearance of the
salient foreground object, it is not advisable to adopt hard
threshold (i.e, the most commonly used: 2 × mean(LS)) to
perform uniform binary labeling. Although the appearance of
the salient foreground may undergo exquisite variation exten-
sively, the appearance-varying tendency frequently follows
the spatial-temporal coherency, which is highly constrained
in temporally neighbored short-term frame batches. Thus,
we propose to employ the shape prior (SP) as the adap-
tive threshold to iteratively perform the coarse-to-fine binary
labeling batch-wisely.

Here we demonstrate the detailed computation of the shape
prior in Eq. 1, where the subscript j and k respectively
represent the frame index and batch index, STG denotes
the spatial-temporal gradient map, di denotes the location of
the i-th non-zero element in STG, Ck,j,1 denotes the single
center location of the 1st-round K-means clustering, Ck,j,2
and Ck,j,3 represent the center locations of the 2nd-round
K-means clustering, f (·) denotes the distance filter, which
only considers those distances between 5-th and 95-th per-
centiles of the observed l2 distances distribution, and hard
threshold α is empirically assigned to 0.25 × min{W ,H},
where W and H separately denotes the width and height of
the given video frame.

SPj←



f (

∑
i ||di − Ck,j,1||2
||STGj||0

)︸ ︷︷ ︸
if |Ck,j,1−Ck,j,2|+|Ck,j,1−Ck,j,3|≤α

f (

∑
i ||di − Ck,j,2||2
2× ||STGj||0

)+ f (

∑
i ||di − Ck,j,3||2
2× ||STGj||0

)︸ ︷︷ ︸
otherwise

,

(1)

Also the pseudo-code of our adaptive labeling procedure to
obtain the foreground mask (FM∈ {0, 1}W×H ) can be found
in Alg.1, where pos(·) represents the binary labeling function
that automatically assigns 1 to those non-zero elements and
0 to the remaining ones, β is the learning factor that is
empirically set to 0.7 to avoid fluctuation induced inter-batch
artifacts. In fact, the underlying rationality of Alg.1 is to con-
strain the binary labeling procedure iteratively to respect the
estimated shape prior, yet the over-fitting problem could be
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FIGURE 3. Demonstration of our structure-aware pattern descriptor,
where the given superpixel and its corresponding ‘‘non-salient’’ topology
constraints are respectively marked with blue and yellow color in
Structure-aware Description.

Algorithm 1 Iterative Binary Labeling
Input: Shape prior separately from t − 1 batch

and t batch: SPt−1, SPt ;
Low-level saliency map of i frame (Eq. A5): LS i.
Labeling threshold: LTi−1 = 2× avg(LS i);
Total super-pixel number of i− 1 frame: ni;

Output: Foreground mask of the i-th video frame: FM i.
Initialization:

Hard threshold Ti = LTi−1 at the beginning,
or Ti = 2× avg(FSali)︸ ︷︷ ︸

for the following iterations

(Eq. 7).

1. SPt = (1− β)× SPt−1 + β × SPt ;
While (1)
2. if ((π × SP2t )/(W × H )− ||LS i − Ti||0/ni < 0.1)︸ ︷︷ ︸

continue iteration;

3. Ti = Ti × (1− 0.05× sign((π × SP2t )/(W × H )
−||LS i − Ti||0/ni));

End While
4. LTi = (LTi−1 + Ti)/2;
5. FM i = pos(LS i − LTi);

avoided by adopting the slack parameter (i.e., 0.1 in step 2 of
Alg. 1). Specifically, because the initial hard threshold LT is
selected based on the low-level saliency, poor binary labeling
result may be easily obtained at the early iterations, thus,
the binary labeling result can be further improved in our
following self-adaptive learning iterations.

B. NOVEL STRUCTURE-AWARE DESCRIPTOR
The technical foci of this paper are to utilize the self-adaptive
learning process to capture the long-term common consis-
tence of the salient foreground object. To achieve this, we pro-
pose to represent all the low-level saliency in the formation
of explicit sub graph model, and we name it as Pattern Mod-
els (PM). Considering the robustness of the STG (Spatial-
temporal Gradient map, see details in Appendix) in motion
sensing, we propose to utilize the STG to adaptively locate
its corresponding non-local regions. That is, for any binary
labeling indicated salient super-pixel (blue regions in right
part of Fig. 3), we attempt to locate multiple ‘‘non-salient’’
super-pixels (yellow regions in right part of Fig. 3) as a weak
structure-aware constraint, and we empirically set its number

Algorithm 2 Structure-Aware Descriptor
Input: Spatial-temporal gradient map: STG;

Super-pixel number: n;
Labeling mask and SLIC super-pixel map: FM , SM ;
Total number of the salient super-pixels: u;
The center location of the target super-pixel: pt ;

Output: Pattern model of the t-th superpixel: PM .
Initialization: v = 2× u.
For t = 1 : ni
if (FM (pt ) == 1)
1. Locate v non-zero elements ξ = {ξ1, ξ1, ..., ξv}︸ ︷︷ ︸

Mark B in Fig. 3
in region ϕ(Mark A dash circle located at pt );

2. Select v non-salient super-pixels Q = {q1, q2, ..., qv}
from the Sector Area, which anchors at each ξ
with main direction Eζ = ξ − pt (Mark C), while
satisfying FM (qi) == 0 and argminqi ||qi − ξ ||2;

3. Select the top u super-pixel from Q
according to ||Q− pt ||2;

4. PM ← [ PM {SM (pt ) SM (Q)} ] (Mark D);
end if
End For

to 3 according to the quantitative results toward different
super-pixel size. We now summarize the detailed steps of our
structure-aware descriptor in Alg.2.
In Alg.2, ξ (step 1) denotes the coordinates of non-zero

elements in STG, and we also utilize the shape prior (Eq. 1)
to control the radius of ϕ (i.e., 1.2 × SP), which is marked
with yellow dash lines in sub-figure A of Fig. 3. Also, q
(step 2) represent the average center location of the selected
non-salient super-pixel indicated by foreground mask
(FM , Alg.1), and we assign the radius of Eζ centered sector
area (±35o) as 1.2 × SP, which is identical to the ϕ. Appar-
ently, the obtained PM ∈ R(1+v)×ColorDim+1 contains the
local topology info coupled with its current saliency measure,
wherein v = 3 denotes the number of selected topology
constraints, ColorDim = 5 denotes the feature dimension
of our adopted color info, including the RGB color info and
the last two dimensions of Lab color info. The demonstration
of the obtained pattern model can be found in sub-figureD of
Fig. 3. Specifically, the newly formulated pattern models are
informative enough to span feature space for our subsequent
saliency transferring scheme, because both the STG and the
foreground mask are mutually suppressed at the same time.
Thus, whenever the foreground mask is incorrect, the dis-
criminative power of the corresponding feature space would
be degenerated if we solely consider the STG, and vice versa.

V. SELF-ADAPTIVE LEARNING
Since the purpose of our self-adaptive learning scheme is to
utilize those good low-level predictions to amend the remain-
ing bad ones, we propose to learn an AM (AppearanceModel,
Sec. V-B) to adaptively facilitate global video saliency
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FIGURE 4. The pipeline of our low-rank analysis method.

prediction, which leverages multiple PM (Pattern Models,
Alg.2) to capture the common consistence of the salient
foregrounds in our structure-aware descriptor spanned feature
space, i.e., AM = {PM1,PM2, ...}.

A. LONG-TERM LOW-RANK COHERENCY ANALYSIS
Observing the fact that the overall foreground appearance
frequently stay unchanging within the limited video frames,
we propose to further explore its common consistence by
performing low-rank analysis to facilitate our previous men-
tioned low-level saliency amendment. To gain a better under-
standing, we demonstrate the overall pipeline of our low-rank
analysis method in Fig. 4, wherein the current foreground
mask indicated foreground regions are represented with the
[10, 10, 10] histogram, which are dilated with 3-ring discrete
Gaussian sphere (variance = 10) to ensure the generaliza-
tion ability. And then, the foreground regions corresponded
histograms are catenated into high-dimensional vector (m) to
constitute the histogrammatrix, i.e., the appearancematrixD.
We nowprovide a brief introduction about the common thread
low-rank analysis. Its main purpose is to decompose the input
appearance matrix D into a low-rank part L and a sparse part
E, as D = L + E . So the problem can now be formulated as:

min
L,E

rank(L)+ λ||E||0 s.t. D = L + E . (2)

Since Eq. 2 is a non-convex optimization problem (which
is NP-hard), however, it can be approximately solved via its
relaxing convex envelope as:

min
L,E
||L||∗ + λ||E||1 s.t. D = L + E . (3)

Here || · ||∗ indicates the nuclear norm of L, and λ controls
the sparsity measure, which is assigned to 1

√
m following the

suggestion of [34] and [35]. Of which, m represents the fea-
ture dimension of original data. Obviously, since the obtained
low-rank componentL represents the common consistence of
the foreground object along the temporal axis, the column-
wise l1 norm of the revealed sparse component E is trustful
enough to indicate those ill-detected low-level predictions.

B. APPEARANCE MODEL CONSTRUCTION
As aforementioned, the goal of our learning scheme is to
establish an appearance model (AM) to record the common
consistence of the detected salient foregrounds. However,

FIGURE 5. Demonstration of our structure-aware saliency transferring
strategy.

the appearance model should be well initialized in advance
due to the iterative nature of our learning procedure. Since
the sparse component E (Eq. 3) is relatively trustful toward
the assessment of low-level saliency predictions, we propose
to batch-wisely locate one key frame with lowest sparsity
degree (||Ci(|E|)||1) as the anchor frame (Fig. 2, Step 4) and
use its embraced pattern models to initialize the appearance
model. After that, the appearancemodel will be automatically
becoming self-contained, where each learning iteration starts
with the saliency transferring (Sec. V-C) simultaneously at
all the current anchor frames and ends with the updating
procedure (Sec. V-E).

C. SALIENCY TRANSFERRING
Actually, the key rationality of our saliency transferring
procedure (Fig. 5) is to perform spatial-temporal saliency
weighting according to the ‘‘similarity’’ degree between two
neighbored PMs (Pattern Models). Here, we mainly consider
the similarity between two spatial-temporal neighbored PMs
from two aspects: the color info and the local topology info.
Thus, the corresponding formulation of the above mentioned
novel similarity measurements ($ ) can be detailed as fol-
lows:

$ = exp(−ω1 · ||PM1 − ci||2

−ω2 ·min
j∈ψ
{

v∑
k=2

exp(−G(∇j)) · ||PM k − cj||2}), (4)

where ω1, ω2 are the weighting parameters, the definition of
v is identical to that in Alg.2, c ∈ R5×1 denotes the color info
(3RGB+2Lab), ∇ denotes the color gradient-like contour
detections, and ψ (Eq. 5) shrinks the problem domain (i.e.,
radius of the searching range, see the yellow dash circle in
Fig. 5A) to facilitate the minimum topology distance compu-
tation. Here parameter κ is identical to Eq. A2.

ψ = {||j− i||2 ≤ 1.1× κ},

s.t. θ ≤ ||j− i||2 ≤ max{0.5× SP, θ}. (5)

Specifically, function G(·) in Eq. 4 returns the local max-
ima of the ∇ (spatial gradient) within the local neighbor-
hood located along the two given superpixel. For example,
the green rectangle region in Fig. 5D can be efficiently imple-
mented via exhaustive search within multiple green circles
(with uniform radius 15, Fig. 5E). In fact, the left part of Eq. 4
measuring the color similarity, and the right part respects
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FIGURE 6. Demonstration of the advantages of our novel saliency
transferring strategy.

to the consistence degree between two correlated topology
info. And both the parameters ω1 and ω2 control the trade-
off between these two components, which will be further
discussed in Sec. VI-A. In practice, the optimal solution of
the right part of Eq. 4 can be efficiently solved by Hungarian
algorithm [40] in polynomial time. We propose to use CUDA
acceleration to solve it in parallel by invoking an individual
CUDA kernel for each target super-pixel.

So far the transferred saliency value (TSal) can be easily
obtained via the following majority voting scheme (Eq. 6).

TSal j =

∑M
i=1 σi ×$i,j × Sali∑M

i=1 σi ×$i,j
. (6)

In Eq. 6,$i,j denotes the computed similarity measure (using
Eq. 4) between the i-th pattern model and the j-th pattern
model, M denotes the total pattern model number in the
appearance model, Sali denotes the saliency info provided by
the i-th pattern model. And σi = exp(−0.5×||pi, pj||2) is the
spatial constraint, where pi and pj respectively represent the
location of the corresponding pattern models.

The qualitative performance improvement brought by our
saliency transferring strategy can be easily observed in Fig. 5
(please refer to the difference between the Before/After
Transferring). We further demonstrate the advantages of
our novel descriptor supported saliency transferring strategy
in Fig. 6, wherein the accumulation of false-alarm detections
can be easily observed from the method adopting spatial-
temporal smoothing, while our method can handle this prob-
lem well. Also, the quantitative proofs can be found in the
Sec. VI-A (Fig. 9b). After the saliency transferring procedure
(Eq. 6), the newly-transferred saliency result will be applied
to guide the low-level saliency amendment via our low-rank
analysis guided fusion scheme (Sec. V-D).

D. LOW-RANK ANALYSIS GUIDED LOW-LEVEL SALIENCY
AMENDMENT
In the current self-adaptive learning iteration, the quality of
the TSal (Transferred Saliency, Eq. 6) is strictly determined
by one previously estimated prerequisites, i.e., the foreground
mask. In fact, the estimated foreground mask tends to exhibit
low accuracy at the earlier learning iterations, and this may
directly result in performance degradation of our saliency
transferring procedure. Therefore, for the current learning

iteration, it is not advisable to directly regard the transferred
saliency as the current low-level saliency assumption.

Being noticed the fact that the long-term low-rank
coherency can well represents the trustful degree of the
current low-level saliency, we propose to perform selective
saliency fusion before we conduct new learning iteration.
That is, we propose to fuse the current low-level saliency
with the transferred saliency as the final saliency estimation
in the current learning iteration. And our fusion procedure
will bias toward the low-level saliency if the column-wise
l1 norm of the sparse component E (Eq. 3) exhibits small
value. Therefore, we formulate our low-rank analysis guided
saliency amendment as following:

FSali = N (η1 × TSali + (1− η1)× LSi)

� ((1− η2)× N (TSali)+ η2), (7)

η1← (1− η2)× N (||Ci(|E|)||1)+ η2. (8)

Here the FSal denotes the fused video saliency result, η2
(we empirically set it to 0.7) is the predefined parameter
to suppress the influence of the element-wise Hadamard
operation �, N (·) denotes the min-max [0, 1] normalization
function. The latent rationality of the Hadamard operation in
Eq. 7 is to further suppress those non-salient backgrounds
while boosting the saliency measure of the common con-
sistences. Hence, the parameter η1 in Eq. 7 determines the
bias tendency between the transferred saliency (TSal) and the
low-level saliency (LS), which can be automatically assigned
according to the sparsity measure by using Eq. 8. Of which,
Ci(·) represents the column-wise selection operator, which
returns the i-th column of the given input.

η2← 0.7× η2, if ||Ci(|E|)||1>
2
FN

FN∑
j=1

||Cj(|E|)||1. (9)

Specifically, for those video frames with extremely intensive
scenario variations, i.e., a very large ||Ci(|E|)||1, it is reason-
able to increase the bias degree toward the TSal as Eq. 9. FN
in Eq. 9 denotes the total frame number.

E. APPEARANCE MODEL LEARNING AND UPDATING
In order tomaintain the adaptability of the learned appearance
model, we employ the residual between theTSal (Transferred
Saliency, Eq. 6) and the previous estimated low-level saliency
to jointly determine which pattern model should be updated.
Also, inspired by sparse sensing theories [41], the appear-
ance model can be sparsely represented by Gaussian-like
random observations if the observation matrix satisfies the
Johnson-Lindenstrauss lemma [42]. For example, following
the sparsity lower-bound m/log(m) (m represents the data
dimension), we propose to normalize the above ‘‘residual’’
into Gaussian-like probability to control the updating pro-
cedure, and the performance improvement can be found in
the bottom row of Fig. 7. Specifically, we utilize Eq. 10
to compute the original updating probability, wherein the
similarity degree $ can be computed by Eq. 4, ψ and σ are
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FIGURE 7. The middle row demonstrates the video saliency detection
results without self-learning updating procedure, and the bottom row
demonstrates the detection results with our novel self-learning updating
procedure.

FIGURE 8. Demonstration of performance improvement brought by our
novel learning scheme. The middle row demonstrates the low-level
saliency results computed by Eq. A5, and the bottom row shows the video
saliency performance of our newly-developed learning scheme.

identical to that in Eq. 5, and the FSal can be obtained via
Eq. 7.

pj =

∑
i∈ψ
|N (FSalt−1i )− N (TSal ti )| × σi ×$i∑

i∈ψ
σi ×$i

. (10)

To this end, all these computed probability (prob) in
the appearance model can be represented as prob =

{p1, p2, ..., pan}, where an denotes the total pattern model
number in the appearance model, and then, in order to
transform prob into Gaussian-like formulation to meet the
Johnson-Lindenstrauss lemma, we further normalize prob by
using Eq. 11.

prob =


0.5× N (prob1)

if pi < Cb cn
log(cn) c

(Rank(N (prob1)))

0.5× N (prob1)+ 0.5, otherwise,

(11)

where Rank(·) denotes the forward ranking operation, Ck (·)
returns top-k elements of the given input, N (·) is the normal-
ization function, b·c represents the round down operation, and
cn denotes the total pattern model number in the current video
frame.

As discussed above, we propose to utilize the buffering
strategy to discriminatively control the updating procedure
to handle the motion related false-alarm detections. Thus,
we introduce an additional parameter buf to buffer the updat-
ing procedure, so that the corresponding pattern model will
be replaced by the currently computed novel pattern model if
buf reaches zero, see details in Eq. 12.

bufi =

{
bufi − 1 if probi > τ

min(bufi + 1, δ) otherwise,
(12)

FIGURE 9. (a) PR (Precision-recall) curves of our method under different
choices of ω1 and ω2 (Eq. 4); (b) PR curves of our method combining with
different components, where the symbol (+) denotes the sub component
combining.

where τ denotes a random value between [0, 1], probi repre-
sents the i-th pattern model’s updating probability (Eq. 11),
and δ represents the initial buffer size, whose optimal choice
will be discussed in Sec. VI-A. Besides, Fig. 8 demonstrates
the performance improvement brought by our self-adaptive
learning scheme.

VI. EXPERIMENTS AND EVALUATIONS
A. PARAMETER SETTINGS
In principle, there are three parameters having influence on
the performance of our method: the trade-off parameters ω1
and ω2 (Eq. 4), the initial buffer size δ (Eq. 12) and the SLIC
super-pixel size. As the first two parameters (ω1,2 and δ) can
directly affect the performance of video saliency detection,
in order to obtain the optimal overall performance, we com-
prehensively test their entire effects quantitatively (these two
parameters are independently evaluated), and then determine
the optimal selection of the detailed SLIC super-pixel size.

1) PARAMETER ω1 AND ω2
(Eq. 4). We quantitatively test the performance of these
parameters to obtain an optimal choice, and the evaluation
results can be found in Fig. 9(a). In fact, parameter ω2 is
extremely important for our local topology constraint. A large
ω2 easily hinders the saliency transferring procedure, leading
to poor detection results. Besides, an appropriate choice of
ω1 is also important for the saliency transferring procedure,
and we test several choices of ω1 with different combination
ofω2. According to the results from Fig. 9(a), we assignω1 =

10, ω2 = 20 as the optimal choice. Specially, an additional
proof toward the superiority of our structure-aware descriptor
can be easily observed via comparing the cyan curve (with
Structure-aware Descriptor) and the magenta curve (without
Structure-aware Descriptor) in Fig. 9 (b).

2) PARAMETER δ
(Eq. 12). We quantitatively evaluate the influences of δ to
obtain the optimal choice, and the evaluation results can
be found in Table. 1. Actually, the buffer size δ has direct
influence on the updating procedure, which is important for
the self-adaptive learning procedure to estimate the long-term
appearance model. Thus, we assign δ = 3.
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TABLE 1. Performance influences from different choices of buffer size δ.

TABLE 2. Performance influences from different choices of SLIC
superpixel number.

TABLE 3. Performance influences from different choices of the minimum
batch size.

3) SLIC SUPER-PIXEL SIZE
As shown in Table. 2, it gives rise to remarkable performance
improvement by increasing the SLIC super-pixel number
at the expense of increased computational cost. However,
the quantitative evaluation results indicate that, the optimal
super-pixel number is 600. Here it should be noted that,
the performance degradation with 800 super-pixels is mainly
caused by the absence of the mid-level saliency clues [27],
which is the direct consequence of adopting an extremely
large super-pixel number.

Specifically, the quantitative result over the minimum
batch size (range from 6 to 12) tends to claim ‘‘insensitive’’,
see details in Table. 3. Although the scores under the different
choices are similar to each other, there still exist slight differ-
ences when minimum batch size is 9. Thus, we believe these
tiny differences are mainly caused by other parameters.

B. QUANTITATIVE EVALUATIONS
In this paper, we evaluate the performance of our method over
4 public benchmarks (almost 200 video sequences), including
SegTrack [45], Davis16 [43], DS [44], and UCF [46] dataset.
We compare our method with 16 state-of-the-art meth-
ods, including FL18 [47], DLVSD18 [48], RADF18 [49],
RAS18 [50], DSS17 [51], DHS16 [52], RFCN16 [53],
MDF16 [54], DF17 [9], SA15 [39], GF15 [7], MC15 [8],
SU14 [12], CS13 [25], HS13 [17], MF13 [18]. To better
verify and validate the performance of our method, we lever-
age the well-recognized precision-recall (PR) as evaluation
indicator.We demonstrate the quantitative comparison results
in Fig. 10, and the selected qualitative comparisons can be
found in Fig. 11.

Due to the lack of global long-term info, the state-of-
the-art methods (e.g. DLVSD18 and FD17) easily produce

hollow effect, and massive false-alarm detections can be eas-
ily observed toward those frame batches with extremely poor
low-level predictions. Also, due to the absence of the mecha-
nism to suppress the non-salient surroundings while enhanc-
ing the salient foreground, massive false-alarm detections can
be easily observed in the detection results of graph-based
methods (i.e., GF15, SA15, and MC15). Fortunately, directly
benefiting from our novel structure-aware descriptor and low-
rank analysis guided fusion strategies, our self-adaptive learn-
ing scheme is capable of capturing the long-term common
consistencies (i.e, the spatial-temporal coherency) of the fore-
ground object while avoiding the accumulation of false-alarm
detections. As for those fusion-based video saliency detection
methods (i.e., ST14, and SU14), their massive false-alarm
detections are mainly caused by the deficiencies of the sole
fusion, which totally neglects the spatial-temporal coherency
due to the fact of treating each video frame independently as
the naive combination of the motion clues and the color clues.
Furthermore, due to the absence of the temporal info, the con-
ventional image saliency methods (e.g., RADF18, RAS18,
HS13, and MF13) manifest much worse detections over all
adopted benchmarks except for the DS dataset, because the
foreground objects in DS dataset frequently show distinct
colors against its surroundings. Specifically, since SB14 and
BL14 belong to the modeling based methods, which require
temporal sequence across a long period of time to construct
the robust background model, these methods exhibit good
performance for stationary videos but poor performance for
non-stationary videos (e.g., the birdfall sequence).

C. DIFFERENCES BETWEEN OUR NEW METHOD AND
FD17
Here we list the theoretical differences between our new
method and FD17 [9] in the following two aspects:

First, the feature space adopted by our new method is
different to FD17. Since the FD17 only consider the color
spanned local info to perform saliency detection, it may
easily encounter the obstinate ‘‘error accumulation’’ problem
if the salient regions and non-salient surroundings exhibit
similar color info, see demonstrations in Fig. 6. Benefit
from our newly designed non-local descriptor, our new
method can well handle the error accumulation problem,
see proofs in both quantitative and qualitative comparisons
in Fig. 10 and Fig. 11;

Second, the saliency revealing scope of our new method
is different to FD17. Although both our new method and
FD17 adopted the low-rank analysis for video saliency detec-
tion, the low-rank solution adopted in FD17 is designed to
guide inter-frame alignments for ‘‘short-term info’’ revealing,
while we use the low-rank analysis in this paper to facilitate
our learning procedure for ‘‘long-term info’’ revealing. And
the pictorial demonstration of the above differences can be
found in Fig. 1. Benefit from the revealed long-term info,
our newmethod can well handle the ‘‘Intermittent Movement
Cases’’ and ‘‘Fast Scale Change Cases’’ while the short-term
info based FD17 can not, see comparisons in Fig. 1. And we
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TABLE 4. Comparison of quantitative results including MAE (smaller is better) and maximum F-measure (larger is better). The top three results are
highlighted in red, green, and blue, respectively.

FIGURE 10. Quantitative comparisons (PR curves) between our methods and 15 state-of-the-art methods over, SegTrack [45], [55], Davis16 [43], DS [44]
and UCF [46] datasets (almost 200 video sequences).

also believe the abovementioned two cases are quiet common
in real video sequences, which shouldn’t be ignored.

D. LIMITATIONS
The primary limitation of our method is that, our method
tends to be time-consuming in certain sense. Here all the
methods are running on a computer with Quad Core i7-4790k
4.0 GHz, 16GB RAM, and NVIDIA GeForce GTX 970.
For single 300*300 video frame, although our method has
utilized CUDA acceleration, the major bottleneck remains
in the pattern model computation (3.61s) and the saliency
transferring procedure (10s). It may be noted that, for some
cases, high accuracy is perhaps somehow less desirable in
the interest of efficiency, so we suggest reducing the SLIC

super-pixel number (e.g., reducing from 600 to 400), so that
the entire time costs could be reduced by about 60%, and the
performance degradation is demonstrated in Fig. 9(e).

VII. CONCLUSION AND FUTURE WORK
In this paper, we have advocated a novel video saliency
detection method. Compared with the conventional methods,
our method comprises several novel technical components,
including: (1) the structure-aware super-pixel based feature
descriptor, which automatically enlarge the feature margin
while still exhibiting good generalization ability; (2) the self-
adaptive learning method, which can captures the common
consistence of the salient foreground object in an iterative
manner while retaining sufficient adaptability to guarantee
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FIGURE 11. Qualitative comparisons over SegTrack [45], Davis16 [43], DS [44] and UCF [46] dataset. (a) denotes the source input image with
ground truth marked with red rectangle, (b-l) respectively demonstrate saliency maps of several most representative state-of-the-art methods,
including FL18 [47], DLVSD18 [48], RADF18 [49], RAS18 [50], FD17 [9], RFCN16 [53], GF15 [7], SA15 [39], MC15 [8], SU14 [12].

the correct saliency transfer; (3) the low-rank analysis guided
selective saliency fusion strategy, which further constrains
the global spatial-temporal coherency revealing from the per-
spective of saliency transfer.

As for our near future work, we are particularly interested
in using deep learning solutions to perform fast foregrounds
re-identification, which is expected to build an ‘‘end-to-end
feature tunnel’’ to align those beyond scope long-term info

to the current frames. By applying the low computational
spatial-temporal weighting scheme, we may simultaneously
achieve good spatial-temporal smoothness while avoiding the
obstinate error accumulation limitation. At the same time,
to further alleviate the computation cost, our upcoming work
will also investigate a much simple solution to perform
accurate low-level saliency quality assessment for the anchor
frame selection.
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FIGURE 12. Demonstration of the low-level saliency computation.

FIGURE 13. Demonstration of the contrast computation.

APPENDIX
LOW-LEVEL SALIENCY COMPUTATION
Given an input video frame I ∈ RW×H×3, where W and H
respectively represents the frame width and height, we adopt
the edge-preserving smoothing algorithm RF [56] to elimi-
nate unnecessary details of I . Then, the SLIC algorithm [57]
is used to perform super-pixel decomposition over I to alle-
viate the contrast computation burden. Meanwhile, we adopt
the Optical Flow algorithm [58] to capture the motions
between consecutive video frames. Here, we denote vertical
flow as vx ∈ RW×H and horizontal flow as vy ∈ RW×H .
Thus, theMotionSaliency can be computed as follows.

MS i =
∑
pj∈ψi

||Vi,Vj||2
||pi, pj||2

, ψi = {κ ≤ ||pi, pj||2 ≤ κ + l},

(A1)

where V = [vx vy], || · ||2 denotes the l2-norm, pi denotes
the center position of the i-th super-pixel, ψi controls the
contrast computation range (the right part of Eq. A1), l is
a predefined local contrast computation range used in the
conventional local contrast computation, and we empirically
set it to 1

5min{W ,H}. Also, we formulate the choice of the
lower bound κ as:

κ =
l

||3(STG)||0

∑
k∈||k,i||2≤l

||3(STGk )||0. (A2)

Here, 3(·) denotes the down-sampling operation (30%),
STG is the spatial-temporal gradient map, whose computation
has been demonstrated in Fig. 3 (ST Gradient), and the
detailed computation can be found in Eq. A3.

STG = ||∇(I )||2 � ||vx, vy||2, (A3)

where � denotes the element-wise Hadamard product, and
∇(I ) denotes color gradient-like contour detections [59].
Obviously, the underlying rationality of our adaptive contrast
computation include three aspects: First, the conventional
contrast computation is easily trapped into hollow effects
(Color/Motion Sal in Fig. 13). Second, the spatial-temporal

gradient map is robust enough to capture the structure info
of the salient object, because its regional clustering step fully
respects the color spatial layout.Third, for those super-pixels
located at the central region of the salient object, the adoption
of κ definitely excludes its surrounding super-pixels from the
contrast computation, and finally avoids the hollow effects.
Also, the ColorSaliency can be computed by Eq. A4.

CS i =
∑
pj∈ψi

||(Ri,Gi,Bi), (Rj,Gj,Bj)||2
||pi, pj||2

, (A4)

where the definition of ψi is identical to Eq. A1, and
(Ri,Gi,Bi) denote the corresponding averaged RGB color of
the i-th super-pixel. Thus, the (Low-level Saliency) can be
easily obtained by multiplying the (Color Saliency) with the
(Motion Saliency) in an element-wise fashion:

LS = CS �MS. (A5)

Here � denotes element-wise Hadamard product. As shown
in Fig. 12, the fused low-level saliency (Low-level Sal) is
much better than the motion saliency or the color saliency.
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