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ABSTRACT Urban intelligence is an emerging concept which guides a series of infrastructure developments
in modern smart cities. Human–computer interaction (HCI) is the interface between residents and the smart
cities, it plays a key role in bridging the gap in applicating information technologies in modern cities.
Hand gestures have been widely acknowledged as a promising HCI method, recognition human hand
gestures using surface electromyogram (sEMG) is an important research topic in the application of sEMG.
However, state-of-the-art signal processing technologies are not robust in feature extraction and pattern
recognition with sEMG signals, several technical problems are still yet to be solved. For example, how
to maintain the availability of myoelectric control in intermittent use, since pattern recognition qualities are
greatly affected by time variability, but it is unavoidable during daily use. How to ensure the reliability and
effectiveness of myoelectric control system also important in developing a good human–machine interface.
In this paper, linear discriminant analysis (LDA) and extreme learning machine (ELM) are implemented in
hand gesture recognition system, which is able to reduce the redundant information in sEMG signals and
improve recognition efficiency and accuracy. The characteristic map slope (CMS) is extracted by using the
feature re-extraction method because CMS can strengthen the relationship of features cross time domain and
enhance the feasibility of cross-time identification. This study is focusing on optimizing the time differences
in sEMG pattern recognition, the experimental results are beneficial to reducing the time differences in
gesture recognition based on sEMG. The recognition framework proposed in this paper can enhance the
generalization ability of HCI in the long term use and it also simplifies the data collection stage before
training the device ready for daily use, which is of great significance to improve the time generalization
performance of an HCI system.

INDEX TERMS Urban intelligence, human-computer interaction, sEMG, gesture recognition.

I. INTRODUCTION
With the emerging of novel information technologies such as
Internet of things, cloud computing, big data, remote sensing
telemetry and geographic information systems, the research
of urban intelligence is booming. As a front-end application
technology in urban intelligence, HCI is also been intensively
studied [1]. When we talking about HCI in urban manage-
ment, more attentions should be paid on humanity, since HCI
is the direct interface for residents to interact with cities.

The associate editor coordinating the review of this manuscript and
approving it for publication was Rongbo Zhu.

In order to construct a more intelligent and livable city,
the demands of residents can be obtained dynamically by
HCI [2], [3]. Developing the front-end HCI technologies of
smart cities can promote efficiency and accessibility of trans-
portation, environment, security, management, service, cul-
ture, medical and other industries in modern cities. Improving
the level of intelligent and refining management in the field
of urban operation management is very important to the
development of intelligent urban [4], [5].

The sEMG signal can be used to indicate the active states
of the muscles, through the analysis, the information of the
neural activities can be obtained. The advantages of sEMG

61378 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-1460-5986
https://orcid.org/0000-0002-4905-6799
https://orcid.org/0000-0002-2695-2742


J. Qi et al.: Intelligent HCI Based on Surface EMG Gesture Recognition

is non-invasive, so it performs well in the field of artificial
control, clinical diagnosis, motion detection and neurological
rehabilitation [6]. Gesture recognition based on sEMG signal
is an important research topic in the practical application
of surface electromyography, also the reliable and effective
gesture recognition help to develop a good human-machine
interface. The main challenges of pattern recognition today
are the weak signal intensity with noise and high dimen-
sion, frequent interferences [7], usually the amplitude range
is 0∼105mV and the bandwidth is 0.5∼2 kHz, it is easily
perturbated by the external noise source and the acquisition
device itself, and shielded by the surface skin [8].

At present, the research on sEMG signal mainly focuses
on the spatial non-stationarity of sEMG, but the time
non-stationarity of sEMG has always been a big challenge.
In this paper, LDA is used to reduce the dimensionality of
high-dimensional signals and eliminate the redundant infor-
mation in sEMG. The method of feature re-extraction is
adopted to extract the characteristic slope value, and the ELM
is optimized by genetic algorithm to establish a gesture recog-
nition system across time dimensions. This paper studied the
compatibility of sEMG classifier in time dimension, which
is conducive to reduce the difference in time dimension of
gesture recognition based on sEMG and improve the gener-
alization ability of classifier in time dimension.

The reminder of the paper is as follows, the second section
reviews the basic methods of gesture recognition, including
feature extraction, feature reduction and pattern recognition
based on neural network. The third section elaborates the
whole experimental process, including the sEMG signal col-
lection plans. We proposed a feature extraction method for
reducing time non-stationarity, establishes GA-ELM opti-
mization recognition network, and analyzes the algorithm
process of each step. In fourth section, we illustrated the
gesture recognition experiment based on this algorithm and
concluded the experimental results in the last section.

II. RELATED WORK
The sEMG is random in nature, which ismade up of the action
potential of the motion unit [1], [9]. These action potentials
exist in the electrode pick-up area and the detected voltage
is the sum of the action potentials of the single electrode
elements [10]. The pattern recognition process can be divided
into three stages: signal detection, signal representation and
signal classification. In general, the long-term recognition
accuracy can only reach 50-70%, which still have a long way
to practical application [11]–[14].

Recently, there are many existing schemes on feature
extraction, feature dimensionality reduction and pattern
recognition. The time-domain processing method is to pro-
cess the surface EMG as a function of time and obtains some
statistical characteristics through time-domain analysis [15].
The time-domain method is simple in principle and low
in computational complexity, but it can effectively repre-
sent the signal characteristics and is widely used in fea-
ture extraction of surface EMG. However, time-domain

features are not robust enough to interferences [16], even
small changes in muscle states will result in huge variance
in features [17]. At present, the time-domain characteristics
most frequently used are as follows: integrated electromyo-
graphy (iEMG), root mean square (RMS), absolute value
(AVI), zero crossover (ZC), variance (VA), Willis amplitude,
wavelength (WL), etc.

The frequency domain analysis method is realized by
Fourier transform, which transforms the signal into frequency
spectrum or power spectrum. Now scholars mainly study the
two characteristics of average power frequency and median
frequency [18]. The signal is transformed into frequency
spectrum or power spectrum by fast Fourier transform, and
its waveform changes little. Therefore, the descriptions of
sEMG in frequency domain are relatively stable [19]. The
stability of sEMG power spectrumwaveform directly leads to
the stability of frequency domain features extracted by power
spectrum. Therefore, the extracted frequency domain features
are beneficial to the subsequent sEMG pattern recognition.

Although the first two methods can be used to extract
some typical features of EMG, they have ignored the insta-
bility and chaotic EMG [20]. In the process of exercise,
the number of motor units, action potential and conduc-
tion rates involved in neuromuscular process are different,
and the motor nervous system are non-liner [21]. Non-liner
dynamic method can construct multi-dimensional dynamic
model based on one-dimensional time series to extract more
hidden information [22]. The main non-liner characteristics
include correlation dimension, entropy, complexity and Lya-
punov exponent.

The training of the sEMG pattern classifier relies on a
large training database, but the diversity of these samples slow
down the training speed of the model. Hence, efficient feature
or high-quality data from certain channels will be selected
but they have significant uncertainty for different gestures
or acquisition methods [23]. Therefore, it is necessary to
improve data efficiency through dimension reduction to avoid
overloading the classifier. Besides, dimensionality reduction
can eliminate redundant information and prevent unnecessary
information from interfering with the correct judgment of the
classifier. Therefore, when performing pattern recognition,
it is necessary to adopt the method of feature dimension
reduction [24].

There are two common methods for dimensional reduction
for extracted features: one is to obtain a subset of the original
features without losing the classification information, and the
other is to create a new subset of features by transforming the
original features. The first method is called feature selection,
which reduces the number of features to be calculated and the
computational complexity [25], [26]. The second method is
called feature transformation, which reduces the dimension of
the feature space through data transformation to avoid the loss
of classification information, so it can be used by the same
classifier to achieve a higher classification accuracy compare
with the feature selection method [27]–[29], because feature
transformation can reduce the dimension of the feature space
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regardless of the attributes or memberships of the features,
while keeping the maximum separability, on the contrary,
the former is greatly limited in this respectively [30], [31].
In feature transformation, the originalN -dimensional date are
projected to a lower n-dimensional space through a certain
optimization process, so as to achieve the purpose of reducing
the dimension [32]. The representative algorithms of feature
transformation are linear discriminant analysis (LDA) and
principal component analysis (PCA). For example, the com-
bination of PCA and SOFM improves the accuracy of sEMG
pattern classification [33], [34], saves the running time and
it’s more applicable to real-time control of prosthesis. The
feature transformation also includes non-negative matrix
factorization, factor analysis, singular value decomposition,
etc. The disadvantage of the feature dimension reduction is
that when the original features contain physical meanings,
the new feature may loss them, the advantage is that these
new features have high compression efficiency [35], [36].

At present, the widely used pattern recognition methods
of sEMG mainly include support vector machine (SVM),
radial basis function (RBF) algorithm, artificial neural net-
work (ANN), hidden Markov model (HMM) and linear
discriminant classifier [37]–[39]. Among these classification
methods, the theory of ANN technology is the most mature
and widely used. In the late 1980s and early 1990s, ANN
was introduced to motion recognition of sEMG [40]. With-
out explicit inferences of the calculation process, ANN can
achieve the non-linear mapping of input and output, which
satisfied the demand performance of the classifier in motion
recognition of sEMG [41]. Therefore, ANN plays a dominant
role in the research of gesture recognition of via sEMG. How-
ever, there are still have many problems lie in ANN, such as
relative long response time and instability [42], [43]. Regard-
ing to the above problems, an ELM with simpler model
structures, faster training speed and fewer adjustment param-
eters is introduced in sEMG gesture recognition, compared
with feed-forward neural networks, ELM is much quicker in
finding the global optima.

III. METHOD
The whole process from the acquisition of surface EMG
to pattern recognition is shown in Figure 1. Firstly, collect
surface EMG X1 and hand motion n synchronously, then
preprocess surface EMG. Signal preprocessing consists of
feature extraction, feature dimension reduction with LDA and
feature re-extraction. Matrix [X4, n] is obtained after prepro-
cessing, and non-linear mapping of network input is used to
recognize hand motion n through ELM. Finally, the genetic
algorithm is used to optimize the structural parameters of
ELM network for the best network structure and better clas-
sification accuracy of the network.

A. ACQUISITION OF sEMG
The design of gesture dataset effects the classification accu-
racy in the experiment. The gestures in experiment must be
typical and with as more moving joints involved as possible.

FIGURE 1. Gesture recognition process block diagram.

Hand motions are delivered by the bending of wrist and
finger joints (especially the thumb and index finger), so the
motion of these joints should be included in the design of
gestures [44], [45]. In addition, each finger is in the state of
linkage when in the work, so the design of gesture should
consider the combination of finger movements.

As shown in Figure 2 [46], nine gestures involve the whole
handmovement, including palm closure (SH) and palm open-
ing (SK), wrist movement including inward bending (NQ)
and outward bending (WQ) and finger movement including
thumb acting on index finger (MS), middle finger (MZ),
ring finger (MW) and small finger (MX) respectively. Except
those test gestures, rest state (RE) is include as the control
group. These gestures were defined to include the movements
of all the major joints on one hand, such as wrist, finger and
palm movements. A three-day dataset was collected, the data
collect in the first and second day were serves as training set
and the data collected in third day were treated as test set.

FIGURE 2. Nine static gestures (involve wrist movements, finger
movements, palm opening and closing).

B. DIMENSION REDUCTION AND FEATURE FUSION
1) PRELIMINARY FEATURE EXTRACTION
In order to facilitate feature extraction in the future, window
functions are used to segment these continuous signals into
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appropriate sizes. After that, features were extracted from
the intercepted signal in a single window. The attributes of
extracted features affect the performance of gesture recog-
nition system. For example, the number and type of fea-
tures affect the real-time and accuracy of the system. In the
field of signal analysis, the main feature types are time
domain feature and frequency domain feature. According
to the references [15]–[18], [20], two time-domain features
are extracted, including root mean square (RMS) and wave-
form length (WL), and a frequency-domain feature median
amplitude spectrum (MAS). Using these three features, good
classification results can be obtained. Therefore, these three
parameters are used as input parameters of the identification
network.

Taking signal data from the single channel as an example,
the waveforms of three features are displayed in Figure 3.
Obviously, these three features are various with different
gestures, which provided evidences for the follow-up gesture
recognition. Because of the magnitude differences of each
feature and the sensitivity of the classifier, the features need
to be pre-processed before dimension reduction, in order to
unify the order of parameters of each feature. As shown
Figure 3, it can be seen that the WL features are of the
highest order from Figure 3a, if unification is missing RMS
and MAS will be covered by WL, when gesture recognition
is performed.

2) FEATURE FUSION AND DIMENSION REDUCTION
The direct extracted features, RMS, WL and MAS, are in
high dimensional feature spaces, which is not suitable for
classification. In order to improve the accuracy of gesture
recognition and generalize the classifier, reducing the dimen-
sion of the feature space is very important. In this paper, three
features are integrated into a feature set, which build on a
fused feature with 48 dimensions (16 channels× 3 features).
Before dimension reduction, the data of the first day and

the second day are averaged to get the new dataset X2. Equa-
tion 1 represents the process of feature fusion.

X2 = [RMS1 + RMS2,WL1 +WL2,MAS1 +MAS2] (1)

X3 will be applied to dimension reduction, which is
obtained by normalizing X2. LDA is used to eliminate the
matching problem between channels and features, while
weakening some channels with less correlation or more
redundant information and improving the recognition rate.
Specifically, ignoring the feature data of 16 channels of each
feature and the relationship between the channel and the
feature, the variance within the same classes is the smallest
after projection, and the variance between different classes is
the largest. The process of dimension reduction is as follows.

Input dataset X2 = [x1, x2, . . . , xc], where any sample xi is
a c-dimensional vector.

Computing of intra-class divergence matrix Sω.
Computing inter-class divergence matrix Sb
Computational matrix S−1ω Sb.

FIGURE 3. RMS, WL, MAS features extracted from one sample.

Calculating the maximum d eigenvalues of S−1ω Sb and cor-
responding d eigenvectors ω1, ω2, . . . , ωd and the projection
matrix W.
For each sample xi dataset, it is transformed into a new

sample zi = W T xi.
Outputting sample set X3 = [z1, z2, . . . , zc].
After dimension reduction by LDA, the dimension of fused

feature becomes d .

3) FEATURE RE-EXTRACTION
Because of the sEMG signals have great differences in time
domain, which leads to the differences of features. There-
fore, it is difficult to train an ANN with time generalization
performance simply by using the reduced dimension-reduced
feature as the input of network training.
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Figure 4 shows the first three-dimensional feature scatter
plots of the training set and the test set. After dimension
reduction by LDA, the training set and the test set have a good
separability. But obviously, there are no significant effects
between training set and test set. The ANN trained by the
training set cannot identify the gestures in test set accurately
and the time generalization performance of neural network is
not obvious.

FIGURE 4. Pre-three-dimensional feature scatter plot of training set and
test set.

As shown in Figure 5, two sets of features of training set
and test set are visualized. Obviously, there is little overlap
between training set and feature set. The data in test set
and training set are not well integrated, which brings great
difficulties in recognition.

As shown in Figure 6, the data of a gesture test set and
a training set are selected, among which ten sets of data are
chosen, and a line graph is drawn. The trend of data in training
set and test set are similar, but the values are different.

Therefore, we can use the fluctuations of the characteristic
polylines to represent the difference between different ges-
tures.

Therefore, we designed a new feature, characteristic map
slope, CMS, which used slope to represent the trend of eigen-
value in the fused feature map. Specifically, it calculates the
slope of adjacent two-dimensional data and combines these
slopes into a new feature matrix. The slope here is not a
derivative but a value defined in Formula 2.

hi =
zi+1 − zi
zi+1 + zi

i = 1, 2, . . . , d − 1 (2)

FIGURE 5. Characteristic coincidence degree between training set and
test set after dimension reduction of LDA. The three graphs a, b and c are
scatter graphs with three sets of features respectively.

X4 = [h1, h2, . . . , hd−1] (3)

Then, we can get that the dimension of X4, which is one
dimension lower than that of X3. A new eigenvector X4 is
used as the input of the neural network to reduce the time
variance.

C. CLASSIFIER DESIGN AND PARAMETER OPTIMIZATION
Genetic algorithm in GA-ELM network is designed to opti-
mize the initial weights and thresholds of the network, due
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FIGURE 6. Ten sets of characteristic polygons of the first gesture. Data
representing training set and test set respectively.

to the excellent performance in global search. Then the opti-
mized training set was used to train the network and establish
a reliable gesture recognition model for better recognition
results.

1) EXTREME LEARNING MACHINE AND GENETIC
ALGORITHMS
Extreme learning machine (ELM) is a fast learning method
based on single-hidden layer feedforward neural network
proposed by Hu et al. [47]. It can randomly select the hid-
den layer nodes of a single-hidden layer feedforward neural
network and the parameters of corresponding. In the training
process, only the output weights of the network need to
be adjusted by the regularized least squares algorithm [48].
Therefore, it can achieve good network generalization per-
formance with extremely high learning speed. The expression
cost function of ELM can be described as:

E =
n∑

J=1

(
l∑

l=1

βIg(dI ∗ xJ + bI )− fJ

)2

(4)

Among them, n as the number of the input layer, l is the
number of the hidden layer, βI as the weight vector which
is connected between hidden layer and output layer, g(x)
indicates the activation function, dI as the weight vector
which is connected between input layer and hidden layer,
XJ is the input data, bI is the bias and fJ is the output data
of the single-hidden layer feed forward neural network.

Genetic algorithm is an iterative process. In each itera-
tion, a group of candidate solutions are reserved, and sorted
according to their merits and demerits, some solutions are
selected according to some index. The genetic operator is
iteratively participated to find a new generation of candidate
solutions, which is stopped until convergence.

2) IMPROVING ELM WITH GENETIC ALGORITHM
The theory proves that ELM neural network will converge
quickly and better generalization ability than traditional

gradient descent algorithm and is easy to obtain global opti-
mum. However, twomain problems need to be solved if better
prediction accuracy is obtained [49].

In training, the weights and thresholds are initialized
randomly before training. The randomness is introduced by
calculation, which interferes the training quality of themodel,
thus affecting the performance of prediction. Selection of
activation function g(x) and definition of neuron quantity
effects the performance of ELM neural network. The activa-
tion function g(x) can be Sin, Sigmoidal or Hardlim function,
which leads to different prediction capabilities of ELM.

The existing researches on ELM suggest the number of
neurons are defined by empirical trial algorithm [50]. In this
paper, we used genetic algorithm to optimize the initial
weights and thresholds of the ELM. It is necessary to encode
the data of the original morphology in advance, since genetic
algorithm is used to solve optimization problems. After
encoding, the morphology is chromosome. Different chro-
mosomes represent the possible solutions of the problem,
all chromosomes constitute a population. In order to distin-
guish the performance of each individual, different fitness
functions are constructed for different problems to evaluate.
In fitness estimation, corresponding genetic operator can be
implemented. The population can be optimized by repeating
the above steps and the best solution of the problem is found
in the feasible region.

Genetic algorithm can be run parallelly for selecting
the superior, eliminating the inferior and optimizing the
population performance step by step. The specific steps,
shown in Figure 7, lead to the solution to problems. The
pre-processed data are used in sample encoding and the
construction of original solutions. The encoded samples are
fed into ELM for pattern recognition to accurately recognize
the hand gestures. The fitness function of each sample is
calculated according to the accuracy of recognition and the
size of feature subset.

fi =
1
E(i)

(5)

E(i) =
∑
p

∑
k

(Vpk − Tpk )
2

(6)

where, i = 1, . . . , n represents the number of chromo-
somes, k = d − 1, is the number of neurons in the output
layer, p = 1,. . . ,v is the number of training samples, Vpk
is the actual output value, and Tpk is the predicted output
value.

Population selection, crossover and mutation are carried
out in corresponding genetic steps to generate the offspring
population.

After many experiments, the population size N = 40, the
evolutionary algebra M = 30, 000, the crossover probability
Pc = 0.7 and the mutation probability Pm = 0.1.

IV. RESULT ANALYSIS OF GESTURE RECOGNITION
In order to illustrate the advantages of this method, the data
before and after dimensionality reduction are used as input
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FIGURE 7. Genetic algorithms for optimizing limit learning set processes.

of ELM classifier, and the experimental results of the two
methods are compared. The data of the first day and the sec-
ond day are used as training set, and the data of the third
day are used as test set. The training set is used to learn the
parameters of classifier, and the test set is used to test the
performance of the classifier.

A. ANALYSIS OF TWO EXPERIMENTAL RESULTS BEFORE
GA OPTIMIZATION
By analyzing the ELM networkmodel of each layer, the ELM
feature data model is established. The eigenvalues of each
gesture are randomly divided into two groups, one is the
training set and the other is the test set. The training set
consists of data from the first two days, and the test set
consists of data from the third day. Each gesture randomly
extracts 50 sets of data, a total of 100 times, that is, 100 times
of experiments. The number of input neurons is determined
by the data dimension after feature extraction, so the number
of input neurons is d − 1 and the output is 9 neurons. The
results are shown in Figure 8.

The average recognition accuracy of ELM network after
LDA dimension reduction is 67.18%, and that of ELM net-
work after feature extraction is 75.74%.

Figure 9 shows the degree of feature coincidence after data
feature extraction. The first two sets of features of training set
and test set are extracted. Compared with Figure 5, the over-
lap of training set and feature set in Figure 9 increases a lot,

FIGURE 8. Network recognition accuracy after LDA dimension reduction
and network recognition accuracy after feature re-extraction.

which also shows the effectiveness of feature extraction on
time generalization performance of classifier.

B. EXPERIMENTAL RESULTS ANALYSIS OF GA
OPTIMIZATION
After 30,000 iterations, the mean square error of network
training is shown in Figure 10. The optimal threshold and
weight obtained by training are loaded into the ELM network
to form a GA-ELM correction model. After 18,013 iterations,
the error converges to 6.876.

Similarly, the test samples are randomly selected and run
100 times, as shown in Figure 11. The results show that the
accuracy is 79.3%. After training the network, the accuracy of
gesture recognition is higher than the network without opti-
mization, the relationship between the recognition accuracy
of network and the partition of test set is very small.

Compared with the actual data, the GA-ELM network has
higher accuracy in gesture recognition than the traditional
ELM network. This is because the GA-ELM network spends
a longer training time. By training the input and output values
separately, the optimal gene chain can be found, based on its
global search ability, and the optimal weights and thresholds
can be obtained, thus avoiding the emergence of defects in
ELM network.
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FIGURE 9. Feature coincidence degree between training set and test set
after feature extraction. The three graphs a, b and c are scatter graphs
with three sets of features respectively.

The average recognition accuracies of the three cases is
shown in Table 1.

Items 1, 2 and 3 are the recognition rate after feature dimen-
sion reduction, the recognition rate after feature extraction
and the recognition rate after network optimization respec-
tively. From Table 1, we can see that the generalization per-
formance of the classifier in time dimension is closely related

FIGURE 10. Evolutionary process and error relation. The total number of
iterations is 30,000, and the error value tends to be stable at 18,013 times.

FIGURE 11. Recognition accuracy of 100 times tests of ELM Network
Optimized by GA.

TABLE 1. Comparison table of feature classification results.

to the extraction and processing of features and network
structure.

V. CONCLUSION
In this paper, a front-end application of human-computer
interaction method in urban intelligent, based on surface
EMG gesture recognition is proposed. Due to the non-
stationary, non-linearity and uncertainty of sEMG, it is dif-
ficult to extract effective features for pattern recognition.
In addition, reducing the differences of sEMG in the long
time span also increased the difficulty in pattern recogni-
tion. Based on RMS, WL and MAS features, LDA is used
to reduce feature dimension and eliminate redundant infor-
mation. Aiming at the time difference between training set
and test set, according to the fluctuation trend of feature
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data, a new feature, CMS, is designed, which enhanced the
relevance of sEMG across time and reduces the error of
gesture recognition, which exert positive effects on clinical
practice. A classifier based on ELM is constructed, and the
initial weights and thresholds of the network are optimized
by genetic algorithm, which improves the performance of
the classifier. The final accuracy of gesture recognition is
significantly improved to 79.32%, which makes long-term
gesture recognition possible.

In this paper, the second feature extraction of static ges-
ture based on sEMG is studied. Theoretical and experi-
mental results have been obtained, however there are still
problems need to be further explored. The extraction of
eigenvalue slope improves the recognition accuracy in our
work, to define new features or feature selection methods are
promising research directions in the future.
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