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ABSTRACT This paper proposes the use of barycentric coordinates in the development and implementation
of space-vector pulse-width modulation (SVPWM) methods, especially for inverters with deformed space-
vector diagrams. The proposed approach is capable of explicit calculation of vector duty cycles, independent
of whether they assume ideal positions or are displaced due to the DC-link voltage imbalance. The use of
barycentric coordinates also permits a well-defined and universal approach to the problem of identifying
the region in which the reference vector is located. It completely avoids the use of angles, trigonometric
functions, and inverse trigonometric functions and is chiefly based onmatrix operations which are well suited
for digital signal processor implementation. The proposed approach is exposed and validated for the special
case of three-level neutral-point clamped (NPC) inverter controlled by a discontinuous space-vector PWM.

INDEX TERMS Space-vector PWM, three-level NPC inverter, barycentric coordinates.

I. INTRODUCTION
The Voltage source inverter topologies become more and
more complex with the increasing number of voltage lev-
els and inverter legs. The increase in topological complex-
ity entails exponential increase in the complexity of PWM
modulation methods suitable for these inverters. This paper
addresses the above problem by proposing the use of barycen-
tric coordinates as a convenient and transparent computa-
tional idea applicable to PWMcomputations. To fix attention,
the space–vector type of modulation is assumed through-
out the paper (SVPWM). The SVPWM involves selecting
appropriate subsets of inverter voltage vectors and computing
the application times of those vectors in every modulation
period. The aim is to synthesize a sequence of inverter vectors
whose average value equals the reference vector. The relative
application times of component vectors are usually called
duty cycles, and so the SVPWM chiefly deals with selecting
the component vectors and computing their duty cycles. The
component vectors used in the SVPWM synthesis are usually
the inverter voltage vectors corresponding directly to the
on/off states of inverter switches. Such vectors will here be
called the basic vectors. In some cases it may be advantageous
to predefine some sequences of basic vectors, usually called
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virtual vectors, and use the latter as component vectors in the
PWM synthesis.

In the case of two–level inverters, the selection of compo-
nent vectors usually reduces to a simple task of finding the
60◦ sector in the space-vector diagram in which the reference
vector currently resides. For the three-level NPC inverter and
more complex topologies, however, the number of regions
to select from is much greater, especially when the DC link
voltages are unbalanced. This means that the selection of
region (and thus the corresponding component vectors) is no
longer a trivial task.

The literature overview below starts by presenting the ideas
for SVPWM computations under balanced DC-link voltages.
Then, the methods used for active balancing of the DC-link
voltages are briefly discussed. And finally, the few concepts
for SVPWM computations under DC-link voltage imbalance
are outlined.

Several classes of methods of SVPWM for multilevel
inverters have been proposed and discussed in the litera-
ture. Most of them rely on the nearest three vectors (NTV)
approach, meaning that the component vectors used in the
synthesis form a triangle comprising the endpoint of the
reference vector (modulation triangle) on the space–vector
diagram. One of the methods, here referred to as the small
reference vectors method, was proposed in [1]–[3] for the
three–level inverters. In this method, the large space–vector

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

91499

https://orcid.org/0000-0001-8491-4472


P. Szczepankowski, J. Nieznański: Application of Barycentric Coordinates in Space Vector PWM Computations

hexagon of the three–level inverter is decomposed into six
small hexagons characteristic of two–level inverters. As the
first step in the method, the small hexagon containing the ref-
erence voltage vector is found, based on the angular position
of that vector. This step effectively means determining the
60◦ angular sector containing the reference vector and the
center of the appropriate small hexagon. Then, the original
reference vector is replaced by a small reference vectorwhose
origin is at the center of the small hexagon. This is done by
subtracting the coordinates of the center from the original
reference vector. Once this is done, the selection of basic
vectors (or the target modulation triangle) can be based on the
angular position of the small reference vector, and the duty
cycle calculations can proceed as for the two-level inverter.
A similar approach is proposed in [4]. A generalization of the
considered method to inverters with more levels than three
was proposed in [5]. The original reference vector is again
replaced by one whose origin is at the center of the appropri-
ate small hexagon; this vector is called the remainder vector.
The target small hexagon is found by gradual reduction of
the complete space-vector hexagon to smaller ones. In each
step the smaller hexagon corresponds to the space-vector
diagram of an inverter with number of levels reduced by one.
The consecutive centers of smaller hexagons, called vertex
vectors, are subtracted from the corresponding consecutive
values of modified reference vectors. The main limitation
of all variants of the small hexagon method is that they
rely on perfect geometry of the space-vector diagrams. That
means that the PWM computations under DC–link voltage
imbalance can be far from accurate.

References [6]–[9] propose and discuss a method that can
be considered a variety of the small reference vectors method.
The method is discussed in detail for the three–level inverter.
It also reduces the problem of multilevel PWM computa-
tions to the two–level case. Just like the previous method,
it starts by determining the 60◦ angular sector containing the
reference vector (again, using the current angular position of
that vector). Then, the modulation triangle is found based on
two integers k1 and k2 computed from the Cartesian (αβ)
coordinates of the reference vector. The combination of the
integers may directly indicate the target modulation triangle
or a rhombus made of two target triangles. In the latter case
an additional test is necessary to decide which of the two
triangles should be selected (the test is based on the αβ coor-
dinates of the reference vector and the above mentioned inte-
gers). Once the modulation triangle is determined, the small
reference vector can be evaluated and the basic vector duty
cycles can be computed from the local αβ coordinates of the
small reference vector, just like for the two–level inverter.
This approach also assumes perfect geometry of the space-
vector diagrams and thus can be affected by DC-link voltage
imbalance.

A number of references propose transformations of the
space-vector diagrams from the Cartesian (or αβ) coordinates
to other frames. One of them is the gh coordinate system
proposed in [10], also referred to as the gh frame [11],

the 60◦ coordinate system [12], [13] or mn coordinates [14].
The transformation results in all basic vectors having integer
coordinates, which simplifies the determination of the modu-
lation triangle and computation of the component vector duty
cycles. The 60◦ sector of the space-vector diagram containing
the reference vector is determined from the angular position
of that vector, while the rest of computations are freed from
angles and cumbersome trigonometry. Similarly to the small
reference vectors method, the main drawback of the method
is its reliance on the assumed regularity of space-vector dia-
gram. The method in its basic form does not address the prob-
lem of DC-link voltage imbalance. Another transformation
of the space-vector coordinate system is proposed in [15].
The new coordinate system is denoted as the α′β ′ coordinate
frame and the main feature of that system is that all state
vectors have integer coordinates. Unlike the gh frame, which
leaves the geometry of the space–vector diagram unchanged,
the α′β ′ coordinate system changes the shape of the diagram
(e.g. transforming circular trajectories of reference vector to
elliptic trajectories). Other than this, the properties of this
coordinate system are similar to the gh frame. The selection
of modulation triangle and duty cycle calculations are again
based on implicit assumption of undistorted space-vector
diagram.

The problem of balancing the DC–link voltages has quite
rich literature. In general, the balancing actions can be based
on appropriately changing the switch state sequences and/or
adjusting the application times of the switch states repre-
senting the redundant (i.e. short) voltage vectors [2], [3],
[9], [16]–[18]. To reduce undesired effect on the DC–link
voltages, some solutions ( [9], [19]) suppress the use of
medium vectors (i.e. vectors that do not have alternative
switch state options) for higher modulation indexes. Consid-
ered in [20]–[22] is the modulation of the three–level NPC
inverter using virtual vectors. In all of the above approaches
the duty cycles are only calculated under the assumption of
balanced DC–link voltages. Obviously, the use of ideal vector
positions under DC–link voltage imbalance means imprecise
voltage synthesis, which translates into distortion of load
currents.

One of the few attempts to compute the duty cycles of the
actual (i.e. non–ideal) component vectors for the three-level
NPC inverter was presented in [23]. The authors proposed an
extension of the gh frame method of [10] to include accu-
rate duty cycle calculations under DC–link imbalance. The
idea, called the method of projections, is quite complex and
derived after a complex analysis of geometric relationships
between the basic vectors displaced by the DC–link voltage
imbalance. The approach is hardly extendable to other cases,
for instance a different type of component vectors (e.g. vir-
tual vectors) or different inverter topologies (e.g. four–leg
inverters or inverters with more than three levels). A more
universal method was proposed in [24]. The calculations of
duty cycles are performed in a frame called abc coordinates.
This frame is made of three axes – a, b and c – corresponding
to the respective three phases of the inverter, but forming a
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three–dimensional orthogonal system rather than the standard
planar system with the abc axes rotated by multiples of 2π/3.
It permits quite simple representation of DC–link voltage
imbalance and computation of duty cycles under imbalance.
The method can be used for multilevel three–leg and four–leg
inverters.

This paper also proposes a computational approach sup-
porting explicit space–vector PWM computations for multi-
level inverters with possible DC–link voltage imbalance. The
key idea in the proposed arithmetic is the use of barycentric
coordinates for the duty cycle computations and selection of
the modulation triangle. The first attempt to put the idea forth
was [25], where it was rather unfortunately related to finite
element shape functions (the idea passed unnoticed). In this
paper the presentation of the idea is completely redesigned
and uses a new case study for illustration. Unlike the method
of [24], which uses a special coordinate frame, the proposed
method is applicable directly to the space–vector diagrams in
the natural Cartesian coordinates (αβ). The method can be
applied to all types of multilevel NPC inverters (and other
types of power converters, notably the matrix converters), but
here its potential is presented and discussed using the three–
level NPC inverter (Fig. 1) and a particular type ofmodulation
(discontinuous modulation with switch commutations occur-
ring only in two phases in each modulation period).

FIGURE 1. Three–level NPC inverter.

It is important to underline that the proposed use of
barycentric coordinates is only a useful and helpful mathe-
matical aid for both the development and implementation of
particular SVPWM solutions. The very fact that vector selec-
tions and duty cycle computations are based on barycentric
coordinates does not entail any effect on the properties of the
modulation (like THD, switching frequency and so on).

Section II explains the general idea of PWM computa-
tions based on barycentric coordinates. Section III presents
the proposed discontinuous SVPWMmodulation. Section IV
provides laboratory test results of the algorithm and SectionV
concludes the paper.

II. PWM COMPUTATIONS BASED ON
BARYCENTRIC COORDINATES
In the case of three-leg inverters the voltage vectors used
in the PWM synthesis can be considered points on a

FIGURE 2. Illustration of the representation of an arbitrary reference
vector v0 as a point inside a triangle.

two-dimensional αβ plane. In most cases considered in the
literature, the reference vector is synthesized using the three
nearest component vectors, and this approach is also assumed
here to fix attention. Consider an arbitrary reference vector v0
on the αβ plane and arbitrary three nearest component voltage
vectors v1, v2 and v3 (Fig. 2). The computation of vector duty
cycles amounts to expressing the reference vector position as
a linear combination of the component vectors. It is exactly
the same problem as expressing the Cartesian coordinates of
a point inside a triangle in terms of the barycentric coor-
dinates (or area coordinates) of that point [26]. Thus, the
coordinates of vector v0 in Fig. 2 can be expressed using the
coordinates of v1, v2 and v3 as follows:[

v0α
v0β

]
=

[
v1α v2α v3α
v1β v2β v3β

]N1
N2
N3

 (1)

where N1, N2 and N3 are the barycentric coordinates of v0
which can be evaluated by[

N1 N2 N3
]
=

[
A023
A123

A013
A123

A012
A123

]
(2)

with the Aijk symbols representing the areas of the triangles
defined by vertices vi, vj and vk . In other words, the barycen-
tric coordinates are equal to the normalized areas of their
corresponding triangles. The areas can be computed straight
from the αβ coordinates of the appropriate component vec-
tors by

Aijk =
1
2
·

∣∣∣∣∣∣
 viα viβ 1
vjα vjβ 1
vkα vkβ 1

∣∣∣∣∣∣ (3)

From the viewpoint of PWM, the barycentric coordinates
can be interpreted as duty cycles of the component vectors
required to synthesize the reference vector. It is worth noting
that the computation of duty cycles in terms of barycentric
coordinates can be based directly on the actual positions
of the component vectors rather than their ideal positions
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without affecting the ease of computations. What is more,
the proposed computing approach readily extends to more
complex problems of PWM synthesis (e.g. inverters with
more levels, four–leg inverters, matrix converters and others).

The above considerations lead to the following general
conclusion about the use of barycentric coordinates in the
PWM computations:
Conclusion 1: The use of barycentric coordinates in the

PWM computations permits effective and uniform evaluation
of the duty cycles of component voltage vectors, independent
of the possible displacements of these vectors from their ideal
positions.

FIGURE 3. Illustration of a vector v0 lying outside the considered triangle.

The barycentric coordinates have a very useful additional
property that their sum equals unity if they are computed
for a point inside the triangle (as in Fig. 2), but it is greater
than unity if the point lies outside the triangle (as illustrated
in Fig. 3). Thus, a uniform and effective method to find the
triangle or triangles containing the reference vector can be
to compute some candidate sums of barycentric coordinates
and then select the smallest one (ideally equal to 1). This
idea is illustrated in Fig. 4 for the case of two–level inverter.
The lowest sum of barycentric coordinates computed for
all triangular regions in which the reference vector may lie
(here equivalent to sectors) appropriately indicates the actual
reference vector location. The illustrated case is very simple,
but for more complex space-vector diagrams the localization
of reference vector in the appropriate region can be a complex
task (cf. the considerations in Section III). Thus, a second
general conclusion about the use of barycentric coordinates
in the PWM computations can be formulated as follows:
Conclusion 2: Barycentric coordinates can be used as the

basis of a universal method for locating the region comprising
the reference vector.

The above general conclusions will be illustrated and sup-
ported by the discussions and results presented in the sequel.

FIGURE 4. Illustrative example of how the lowest sum of barycentric
coordinates indicates the triangular region containing the reference
vector.

FIGURE 5. Basic vectors of the three-level NPC inverter for balanced
DC-link voltages.

CALCULATION OF THE αβ COORDINATES
OF BASIC VECTORS
Fig. 5 shows the basic vectors of the three-level NPC inverter
for the case of balanced DC-link voltages. The three-digit
vectors next to the basic vectors of general form

H =
[
ha hb hc

]
(4)

represent the switch states according to the following con-
vention: hx = 0 if the corresponding phase is connected to
the DC–link potential N , hx = 1 if the corresponding phase
is connected to the DC–link potential O, and hx = 2 if the
corresponding phase is connected to the DC–link potential P,
with the subscript x standing for a, b or c.
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Any imbalance in the DC link, here expressed in terms of
the neutral point (NP) imbalance index

υ1 =
uC2 − uC1
UDC

(5)

will result in the medium vectors being displaced and the
short vectors being split and displaced (as illustrated in Fig. 6
for sector 1).

FIGURE 6. Basic vectors of the 3–level NPC inverter for unbalanced
DC-link voltages (υ1 = 0.1); only sector 1 shown.

Whether the DC link is balanced or unbalanced, the αβ
coordinates of the inverter basic vectors can be computed
by applying the Clarke transformation to their corresponding
vectors of inverter leg voltages

v =
[
vα
vβ

]
=

[
2/3 −1/3 −1/3
0 1/

√
3 −1/

√
3

]
u (6)

where

u =

 uaub
uc

 (7)

The leg voltages ua, ub and uc are defined in Fig. 1. It is easily
verified by inspection that they can be evaluated using the
matrix formula below

u = C · uDC (8)

where uDC is the following vector of DC–link potentials

uDC =

 uPuO
uN

 =
UDCuC1
0

 (9)

and C is the following DC–link–to–leg–voltage conversion
matrix

C =

 caP caO caN
cbP cbO cbN
ccP ccO ccN

 (10)

Each row in the above matrix represents the inverter switch
states in the corresponding leg as follows

[
cxP cxO cxN

]
=


[
0 0 1

]
⇔ hx = 0[

0 1 0
]
⇔ hx = 1[

1 0 0
]
⇔ hx = 2

(11)

III. PROPOSED DISCONTINUOUS SVPWM
The discontinuous space–vector PWM has been chosen for
the case study in this paper. This kind of modulation is used
to reduce the switching frequency of the inverter and thus the
switching losses [27], [28]. The reason for developing such
a modulation scheme by the authors was a demanding coal
mine application. This section briefly discusses the sequences
of switch states to be used in the proposed modulation algo-
rithm and presents the algorithm itself.

TABLE 1. Sequences of switch states used in the proposed
PWM (sector 1).

A. SEQUENCES OF SWITCH STATES
The proposed discontinuous PWMuses three different switch
states arranged in symmetric H1–H2–H3 | H3–H2–H1 state
sequences. The sequences are each designed in such a way
as to minimize the number of transistor state changes per
PWM period, and thus to minimize the switching frequency
and switching losses. To each sequence of switch states there
corresponds a triangular region defined by the switch states
ha, hb and hc. The collection of sequences to be used in the
modulation is such that for any reference vector there are
two candidate regions (triangles) and state sequences. This
redundancy allows active balancing of the DC-link voltages
(as explained in the following section). Table 1 shows all
sequences of switch states to be used in the case of refer-
ence vector residing in sector 1 (only the left halves of the
sequences are explicitly specified). For illustration, Fig. 7
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FIGURE 7. Timing diagram of an example switch state sequence (S3) of
the considered discontinuous PWM.

FIGURE 8. Vector triangles corresponding to switch state sequences listed
in Table 1.

FIGURE 9. Example reference vector and candidate modulation triangles.

shows the timing diagram of switch state sequenceS3. The tri-
angular regions corresponding to the sequences in Table 1 are
shown in Fig. 8.

B. THE ALGORITHM
The proposed modulation algorithmwill be explained assum-
ing that the reference voltage vector has coordinates vα = 0.3
and vβ = 0.4 (in pu), which corresponds to the vector location
shown in Fig. 9. To select the appropriate triangle of basic
vectors, it is convenient first to find the main angular sector

FIGURE 10. Triangles in sector 1 and the corresponding sums of
barycentric coordinates.

in which the reference vector is located. This task can be
accomplished based on Conclusion 2, that is, by computing
the sums of barycentric coordinates corresponding to the six
triangles defining the sectors (i.e. triangles whose vertices
are zero vectors and the longest vectors 200, 220, 020, 022,
002 and 202).

The next step is finding the small triangle embracing the
reference vector. Again, this can be based on Conclusion 2.
To this end, consider the following 12× 3 matrix of barycen-
tric coordinates:

NSECTOR1 =



N1
N2
...

N8
N9
...

N12


=



N000 N100 N110
N111 N110 N100
...

N110 N210 N220
N221 N220 N210
...

N211 N210 N110


(12)

where each row corresponds to one triangle in Fig. 8. The
barycentric coordinates in (12) can be computed using (2)
and (3), with the αβ coordinates evaluated from (6). By sum-
ming up the coordinates in each row one obtains the following
12–by–1 matrix:

N6 =



N000 + N100 + N110
N111 + N110 + N100
...

N110 + N210 + N220
N221 + N220 + N210
...

N211 + N210 + N110


(13)

The sums of barycentric coordinates corresponding to the
considered location of reference vector are shown in Fig. 10.
Note that the results corresponding to sequences S1 and S2
will be identical, and the same applies to sequences S3 and S4.
This can either be exploited in the arrangement of com-
putations or disregarded – for the sake of simplicity and
effectiveness of the code (the latter is the suggested solution).
The results indicate that two small triangles corresponding to
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sequences S8 and S9 contain the considered reference vector.
As observed earlier, the redundancy of candidate triangles
and sequences can be used in active balancing of DC–link
voltages. The ultimate choice can be based on the predicted
influence of the choice on the NP imbalance index. It should
be noted that the computation of barycentric coordinates and
location of their lowest sums is very well supported by mod-
ern DSP technology and thus proceeds very fast. For inverters
with more levels than three the process can be further sped up
(if necessary) by grouping the candidate modulation triangles
into smaller sets; this can be easily done based on the criterion
of magnitude of the reference vector.

A simple analysis of the four possible combinations of the
signs of the imbalance voltage and the average neutral point
current leads to the conclusion that it is sufficient to compare
the following capacitor energy indexes

ε8 = iNP8 · sign(υ1)

ε9 = iNP9 · sign(υ1) (14)

where iNP8 and iNP9 are estimates of the expected average
neutral point currents corresponding to the respective switch
state sequences. If ε8 is greater than ε9, sequence S9 should
be selected; otherwise, the better choice is sequence S8. The
evaluation of iNP8 and iNP9 is explained below.
To fix attention, assume again the location of reference

vector as shown in Fig. 9. For algebraic convenience the
sequences listed in Table 1 can be represented by the follow-
ing matrices (shown for S8 and S9 only):

S8 =

 1 1 0
2 1 0
2 2 0

 S9 =

 2 2 1
2 2 0
2 1 0

 (15)

Based on the ideas for NP current calculation presented
in [16], the estimates corresponding to both sequences can
be obtained by

iNP8 = N8 · (J− abs (S8 − J)) · iT

iNP9 = N9 · (J− abs (S9 − J)) · iT (16)

where N8 and N9 are 1–by–3 vectors of barycentric coordi-
nates as defined in (12), J denotes an all–ones 3–by–3 matrix,
i is the vector of inverter output currents defined by

i =
[
ia ib ic

]
(17)

and abs(.) represents componentwise absolute value. The
flowchart of the proposed algorithm is presented in Fig. 11.

IV. EXPERIMENTAL RESULTS
A simplified schematic diagram of the laboratory setup is
presented in Fig. 12, while the parameters of the schematic
are presented in Table 2. The converter used in the laboratory
tests is shown in Fig. 13. As anticipated in Section II, the use
of actual component vectors rather than ideal component
vectors in the PWMcomputations permits undistorted current
generation despite possible DC–link voltage imbalance.

FIGURE 11. Flowchart of the proposed algorithm (BCs stands for
barycentric coordinates).

FIGURE 12. Simplified schematic diagram of the laboratory setup.

TABLE 2. Basic parameters of the laboratory setup.

Fig. 14 shows sample experimental results demonstrating
this capability of the proposed algorithm. Initially the con-
verter works with balanced DC-link voltages, whereupon a
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FIGURE 13. Laboratory NPC inverter model: (1) connection to the DC
supplies, (2) one three level leg, (3) DSP control card with
TMS320C6713 and FPGA device, (4) load Lo inductor.

FIGURE 14. Output currents of the inverter controlled by the proposed
SVPWM for a negative 50% step change in the NP imbalance.

step change in the NP voltage is forced by the contactor S1.
The quality of currents is unaffected by the huge imbalance.
By contrast, Fig. 15 shows how the current quality is affected
by the imbalance in the case of using ideal vector positions in
the PWM computations.

FIGURE 15. Output currents of the inverter controlled by SVPWM
neglecting the DC–link imbalance (for a negative 50% step change in the
NP imbalance).

FIGURE 16. Active balancing of the DC–link voltage imbalance.

Another important advantage of the proposed modulation
is its ability to actively compensate the DC–link voltage
imbalance. Fig. 16 shows sample results obtained for the
proposed modulation in the case of a large initial imbalance.
The uC1 voltage, initially elevated to 150% of its nominal
value, quickly returns to the correct value thanks to the appro-
priate use of redundant sequences. Again, the currents remain
undistorted all along the balancing process.

As already observed, the use of barycentric coordinates
can greatly help in the development of PWM computations,
but it does not influence the results of computations (that is,
the duty cycles). Therefore, there is no point in comparing
the properties of particular modulation methods (e.g. THD)
using the proposed arithmetic with ones based on other
mathematical recipes. What can be assessed comparatively
is computational effectiveness of the proposed approach and
conventional approaches. To this end, the duty cycle compu-
tation time of a routine based on barycentric coordinates was
compared with the time used by a routine based on trigono-
metric functions (the latter can be classified as the method
of projections presented in [23]). Both routines, contained
in the code listing presented in the appendix, compute the
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FIGURE 17. Definition of variables used in the benchmarking code.

TABLE 3. Benchmarking conditions.

TABLE 4. Benchmarking results.

duty cycles of vector vref shown in Fig. 17. The modulation
triangle corresponds to sequence S9 (see Fig. 8). Because of
the DC-link voltage imbalance (υ1 = 0.1) the triangle is
not equilateral. This complicates the trigonometric computa-
tions and is completely insignificant for the arithmetic using
barycentric coordinates. The test conditions are specified
in Table 3, while the test results are given in Table 4. As can

be seen, the proposed arithmetic is many times faster than the
conventional approach.

V. CONCLUSION
The use of barycentric coordinates is proposed as a tool
for space–vector PWM computations, especially for com-
plex and unbalanced lattices of inverter vectors. The use
of these coordinates can facilitate both the development
and implementation of particular SVPWM algorithms. The
proposed approach completely avoids calculations based on
angles, trigonometric functions and inverse trigonometric
functions. It is well suited for implementation on digital
signal processors.

The general idea of SVPWM computations based on the
barycentric coordinates was exposed and validated for the
special case of the three–level NPC inverter controlled by a
discontinuous SVPWM, but the idea easily extends to more
complex converters.
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