
Received March 22, 2019, accepted April 28, 2019, date of publication May 3, 2019, date of current version May 16, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2914533

Prediction of LncRNA-Disease Associations Based
on Network Consistency Projection
GUANGHUI LI 1, JIAWEI LUO 2, CHENG LIANG3, QIU XIAO 4,
PINGJIAN DING 2, (Student Member, IEEE), AND YUEJIN ZHANG1
1School of Information Engineering, East China Jiaotong University, Nanchang 330013, China
2College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
3College of Information Science and Engineering, Shandong Normal University, Jinan 250000, China
4College of Information Science and Engineering, Hunan Normal University, Changsha 410081, China

Corresponding author: Jiawei Luo (luojiawei@hnu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61862025, Grant 61873089, Grant
61602283, Grant 11862006, Grant 61861017, and Grant 61862023, in part by the Jiangxi Provincial Natural Science Foundation under
Grant 20181BAB211016, Grant 2018ACB21032, Grant 20181BAB211013, and Grant 20181BAB202007, in part by the Scientific and
Technological Research Project of Education Department in Jiangxi Province under Grant GJJ170383, Grant GJJ170381, and Grant
GJJ170414, and in part by the Hunan Provincial Natural Science Foundation under Grant 2018JJ2024.

ABSTRACT A growing body of research has uncovered the role of long noncoding RNAs (lncRNAs)
in multiple biological processes and tumorigenesis. Predicting novel interactions between diseases and
lncRNAs could help decipher disease pathology and discover new drugs. However, because of a lack of
data, inferring disease-lncRNA associations accurately and efficiently remains a challenge. In this paper,
we present a novel network consistency projection for LncRNA-disease association prediction (NCPLDA)
model by integrating the lncRNA-disease association probabilitymatrix with the integrated disease similarity
and lncRNA similarity. The lncRNA-disease association probability matrix is calculated based on known
lncRNA-disease associations and disease semantic similarity. The integrated disease similarity and lncRNA
similarity are computed based on disease semantic similarity, lncRNA functional similarity and Gaussian
interaction profile kernel similarity. In leave-one-out cross validation experiments, NCPLDA achieved
outstanding AUCs of 0.8900, 0.8996, and 0.9012 for three datasets. Furthermore, prostate cancer and ovarian
cancer case studies demonstrated that the NCPLDA can effectively infer undiscovered lncRNAs.

INDEX TERMS Disease-related lncRNAs, lncRNA-disease association, network consistency projection,
similarity measure.

I. INTRODUCTION
Long noncoding RNAs (lncRNAs) have a length greater
than 200 nucleotides and were initially thought to be tran-
scriptional noise; they are a class of important regulators of
various cellular processes [1]–[3], such as cell cycle control,
translational and post-translational regulation, and chromatin
modification. Not surprisingly, aberrant lncRNA expression
can cause the initiation and progression of numerous human
diseases [4]–[6]. Therefore, inferring disease-related lncR-
NAs can contribute to understanding the complex mecha-
nisms underlying carcinogenesis at the lncRNA level and
uncover new prognostic markers for disease diagnosis and
therapy. However, experimentally verified lncRNA-disease
relationships are still comparatively limited. Moreover, most
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biological experiments are laborious and costly. Accordingly,
it is important to compute the association scores between
diseases and lncRNAs using computational methods.

Over the past few years, some prediction models have
been proposed to quantify the lncRNA-disease association
probability based on multiple data types and sources [7], [8].
Recently, proposed models can be predominantly classified
into three types. The first type of model makes use of known
disease-related lncRNAs to infer new associations. Related
studies are built on the basic view that similar diseases are
likely to be linked with functionally similar lncRNAs. Chen
and Yan [9] presented a computational method called LRL-
SLDA to make prediction for lncRNA-disease pairs based
on a Laplacian regularized least squares framework, which
achieved reliable prediction by utilizing known interactions
and lncRNA expression profiles. Sun et al. [10] developed
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RWRlncD, a global network-based method that constructs
a lncRNA-lncRNA functional similarity network and per-
forms randomwalks restarting to detect potential links. After-
wards, Chen et al. [11] proposed an improved model called
IRWRLDA based on random walk, which sets the initial
probability vector of lncRNAs by combining disease seman-
tic similarity, lncRNA expression similarity, and known
disease-lncRNA associations. Ping et al. [12] devised a new
model based on a constructed bipartite network that relies on
available disease-lncRNA network topological information.
Yang et al. [13] presented an iterative model that integrates
disease-lncRNA interactions and coding gene-disease inter-
actions into a coding-noncoding gene-disease bipartite net-
work; themodel ranks the potential candidates for all diseases
by applying a propagation algorithm to the newly constructed
bipartite network. Ding et al. [14] applied a resource allo-
cation algorithm on a gene-disease-lncRNA tripartite graph,
integrating disease-gene interactions with disease-lncRNA
interactions. However, most models of this type fail to iden-
tify interactions for new diseases or lncRNAs. The second
type of model mines underlying disease-lncRNA pairs based
on known disease (or lncRNA)-associated miRNAs or genes.
Based on a hypergeometric distribution, Chen [15] designed
the model of HGLDA, which scored each disease-lncRNA
pair by testing whether this disease notably shared com-
mon microRNAs with lncRNA. Liu et al. [16] constructed
a lncRNA prioritization model by integrating gene-disease
interactions, gene expression profiles, and lncRNA expres-
sion profiles to prioritize novel disease-associated lncRNAs.
Alaimo et al. [17] used the resource propagation technique
to compute the weight between each disease-ncRNA pair
by integrating disease-target interactions with ncRNA-target
interactions. Later, Mori et al. [18] extended Alaimo’s ncPred
to make predictions, which integrated biological sequence
information with weights computed by ncPred. The third
type of models predicts possible associations between dis-
eases and lncRNAs by combining multiple data sources.
For instance, Chen [19] released a computational model
termed KATZLDA to excavate latent lncRNA-disease asso-
ciations by integrating known lncRNA-disease interactions
and different types of lncRNA and disease similarity into
a heterogeneous network. Fu et al. [20] presented a matrix
factorization-based data fusion model to prioritize potential
disease-related lncRNAs, which was capable of selecting and
weighing different data sources. Lu et al. [21] developed
a computational model named SIMCLDA using inductive
matrix completion aiming to complete the missing lncRNA-
disease interaction based on known interactions, lncRNA
similarity data, and disease similarity data. Subsequently,
a probabilistic model named NBCLDA was proposed by Yu
et al. [22]. In NBCLDA, multiple heterogeneous kinds of
biological data were combined to generate a tripartite net-
work and a quadruple network, in which a naïve Bayesian
classifier was applied for the prediction of latent disease-
lncRNA interactions. Recently, Xiao et al. [23] developed
a new computational path weighted method to compute the

association score of each lncRNA-disease pair based on paths
connecting them in a heterogeneous network, which was
composed of known lncRNA-disease interactions, lncRNA
similarity data, and disease similarity data. In addition, Lan
et al. [24] integrated multiple data sources and utilized a
bagging SVM classifier to mine latent relationships between
diseases and lncRNAs. However, effectively fusing multiple
heterogenous data sources is still a big challenge. Moreover,
many models fail to identify interactions for new diseases,
and some models need negative samples, which usually are
unknown. Additionally, because of a lack of known associa-
tion data, excavating the latent disease-lncRNA interactions
accurately and efficiently remains a challenge.

In this paper, we propose the use of network consis-
tency projection for lncRNA-disease association prediction
(NCPLDA). NCPLDA computes the association score for
each lncRNA-disease pair by integrating the lncRNA-disease
association probability matrix with the integrated disease
similarity and lncRNA similarity. To estimate the prediction
accuracy of NCPLDA, leave-one-out cross validation was
carried out on three datasets downloaded from the LncR-
NADisease database [25]. Moreover, we conducted two types
of case studies to examine the practical ability of NCPLDA,
including association prediction for diseases based on known
interactions and for new diseases without any known related
lncRNAs. NCPLDA performed well in the above experi-
ments, which suggests that NCPLDA is effective in inferring
latent interactions between lncRNAs and diseases.

Unlike the previous models, we predict the lncRNA-
disease relationships according to a simple and effective
algorithm (i.e., network consistency projection), which does
not require negative instances and can greatly reduce the
prediction time. In addition, a preprocessing procedure is
adopted to derive the intermediate interaction probability of
non-associated lncRNA-disease pairs that may be missed in
the current databases. Such a consideration is often better for
improving the prediction precision and enhancing predictions
in the new disease cases.

II. MATERIALS AND METHODS
A. HUMAN LncRNA-DISEASE ASSOCIATIONS
The data of known lncRNA-disease associations were gath-
ered from the LncRNADisease database. Three versions
(June-2012 Version, January-2014 Version, and June-2015
Version) of LncRNADisease were used in the experiments.
A few lncRNA-disease interactions with irregular lncRNA
names or disease names were filtered out, and all repeat-
ing records were merged. As a result, the June-2012 Ver-
sion (marked as DS1) consisted of 276 interactions between
112 lncRNAs and 150 diseases, the January-2014 Version
(marked as DS2) consisted of 319 interactions between
131 lncRNAs and 169 diseases, and the June-2015 Ver-
sion (marked as DS3) consisted of 621 interactions between
285 lncRNAs and 226 diseases. For convenience, we used
an adjacency matrix A ∈ Rm×n to encode the lncRNA-
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disease interactions with m lncRNAs as rows and n diseases
as columns, where A(i, j) =1 if lncRNA i has association with
disease j and 0 if not.

B. DISEASE SEMANTIC SIMILARITY
Recent research has increasingly demonstrated that disease
semantic similarity aids in predicting disease-related ncR-
NAs [26]–[28]. Here, the calculation of the disease semantic
similarity was identical to the method proposed by Wang
et al. [29], in which diseases are organized as directed acyclic
graphs (DAGs). According to their corresponding DAGs,
semantic similarities among all diseases were computed and
the calculating process was illustrated by the DOSE software
package [30]. Therefore, disease semantic similarity matrix
SS can be obtained, where the element SS(di, dj) denotes
the value of the semantic similarity between disease di and
disease dj.

C. LncRNA FUNCTIONAL SIMILARITY
It is observed that functionally similar lncRNAs are often
linked with similar diseases [10], [26]. Here, the calculation
of the lncRNA functional similarity was identical to that in
the previous study [10], which computed functional similarity
of two lncRNAs by estimating the semantic similarity of
two disease sets that are associated with these two lncRNAs.
Specifically, we supposed that lncRNA li and lncRNA lj were
related to m and n diseases, respectively. Thus, the similarity
between lncRNA li and lncRNA lj can be calculated by
equations (1) and (2) as follows:

FS(li, lj) =

∑
d∈D(lj)

S(d,D(li))+
∑

d∈D(li)
S(d,D(lj))

m+ n
(1)

S(d1,D(li)) = max
d∈D(li)

(SS(d1, d)) (2)

where FS is the lncRNA functional similarity matrix, D(li)
indicates the disease set related to lncRNA li.
Note that disease similarity matrix SS and lncRNA simi-

larity matrix FS are both sparse. Therefore, we further intro-
duced the Gaussian interaction profile kernel similarity to
alleviate this weakness.

D. GAUSSIAN INTERACTION PROFILE KERNEL
SIMILARITY FOR LncRNAS AND DISEASES
Based on the notion that functionally similar lncRNAs tend
to have similar association patterns with similar diseases
and vice versa, a Gaussian interaction profile kernel sim-
ilarity was constructed to measure lncRNA similarity and
disease similarity. Firstly, we defined the association profile
of lncRNA li, which is a binary vector specifying the pres-
ence or absence of association with each disease. In fact,
the association profile of lncRNA li is the i-th row vector
of the adjacency matrix A, i.e., A(i, :). Then, the similarity
between lncRNA li and lj can be computed by utilizing a
Gaussian kernel function:

KL(li, lj) = exp(−γl ‖A(i, :)− A(j, :)‖2) (3)

γl = γ /(
1
m

m∑
i=1

‖A(i, :)‖2) (4)

where γl is charged with controlling the kernel bandwidth,
which could be obtained by normalizing the original band-
width γ . Here, γ is simply set to 1.

Similarly, disease Gaussian interaction profile kernel sim-
ilarity can be defined as follows:

KD(di, dj) = exp(−γd ‖A(:, i)− A(:, j)‖2) (5)

γd = γ /(
1
n

n∑
i=1

‖A(:, i)‖2) (6)

where A(:, i) denotes the association profile of disease di, and
the parameter γd is defined similarly as γl .

E. INTEGRATED SIMILARITY FOR LncRNAS AND DISEASES
We combined lncRNA functional similarityFSwithGaussian
interaction profile kernel similarity for lncRNA KL to con-
struct the final lncRNA similarity matrix (LS). Specifically,
for lncRNA li and lncRNA lj, if FS (li, lj) = 0, we have LS
(li, lj) = KL (li, lj), otherwise LS (li, lj) = FS (li, lj). The
combination is presented as follows:

LS(li, lj) =

{
KL(li, lj) if FS(li, lj) = 0
FS(li, lj) otherwise

(7)

Accordingly, we integrated semantic similarity SS and
Gaussian interaction profile kernel similarityKD for diseases,
and the final disease similarity matrix (DS) can be combined
in the following manner:

DS(di, dj) =

{
KD(di, dj) if SS(di, dj) = 0
SS(di, dj) otherwise

(8)

F. ASSOCIATION PROBABILITY MATRIX
As we know, existing lncRNA-disease interactions are very
sparse [9], [25]. In fact, many of the non-associated lncRNA-
disease pairs in adjacency matrix A are unknown interac-
tions [21]. Inspired by the solutions to new disease cases,
we applied the WKNKN algorithm [31] as a preprocessing
step to calculate the temporary interaction probability for
these non-associated pairs according to their known neigh-
bors. For instance, we estimate the interaction probability that
lncRNA li and disease dj interact. Firstly, we select K nearest
known diseases as the neighbors of dj based on their semantic
similarity to dj. Then, we compute the interaction probability
profile for disease dj by using the weighted average of its
neighbors’ interaction profiles. We formulate the WKNKN
as follows:

Ad (:, dj) =
1
Qd

K∑
i=1

wiA(:, di) (9)

where d1 to dK denote K nearest known neighbors of dj
sorted in descending order; wi = T i−1 SS (di, dj) is the
weight coefficient, where T is a decay term with T ≤ 1, and
Qd =

∑K
i=1 SS (di, dj) is the normalization term.
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FIGURE 1. The overall workflow of NCPLDA method.

Finally, assuming A(li, dj) equals zero, we replace it with
an intermediate interaction probability Ad (li, dj).

G. NCPLDA METHOD
In this paper, we generated a novel computational model
NCPLDA to infer lncRNA-disease relationships by using
network consistency projection [32]. The implementation
process of NCPLDA could be summarized in three steps (see
Fig. 1). Firstly, we constructed the integrated disease similar-
ity and lncRNA similarity by using disease semantic similar-
ity, lncRNA functional similarity as well as known disease-
lncRNA interactions. Secondly, we calculated the disease-
lncRNA association probability matrix based on known
disease-lncRNA interactions and disease semantic similarity.
Lastly, we implemented the network consistency projection
on lncRNA space and disease space respectively, and then we
combined the results from these two spaces to obtain the final
predictions.

NCPLDA measures the relevance between lncRNA li and
disease dj by combining two separate network consistency
projection scores, i.e., the lncRNA space projection score
and the disease space projection score. The projection of
the lncRNA similarity network (denoted as matrix LS) on
the lncRNA-disease association probability network (denoted
as matrix A) represents the lncRNA space projection. Thus,
the lncRNA space projection can be formulated in vector
form as:

LSP(i, j) =
LS(i, :)× A(:, j)
|A(:, j)|

(10)

where LS (i, :) is a row vector representing the similarities
between lncRNA li and all other lncRNAs; A (:, j) is a column
vector encoding the interactions between disease dj and all
lncRNAs; |A(:, j)| denotes the length of vectorA (:, j); and LSP
(i, j) is the projection score of LS (i, :) on A (:, j). Obviously,
the smaller angle between LS (i, :) andA(:, j), the more similar
lncRNAs and lncRNA li are, and the more lncRNAs related
to disease dj, the higher the projection score LSP (i, j) is.

Algorithm 1 NCPLDA
Input: the known lncRNA-disease association matrix A,
disease semantic similarity matrix SS, the nearest neighbor
number K and the decay term T
Output: the final network consistency projection score
matrix NCP
1: Calculate the lncRNA functional similarity matrix FS by
eq. (1) and eq. (2);
2: Calculate the lncRNA Gaussian interaction profile ker-
nel similarity matrix KL by eq. (3) and eq. (4);
3: Calculate the disease Gaussian interaction profile kernel
similarity matrix KD by eq. (5) and eq. (6);
4: Construct the final lncRNA similarity matrix LS and the
final disease similarity matrix DS by eq. (7) and eq. (8),
respectively;
5: Compute the temporary lncRNA-disease association
probability matrix A by eq. (9);
6: Calculate the lncRNA space projection score matrix LSP
by eq. (10);
7: Calculate the disease space projection score matrixDSP
by eq. (11);
8: Integrate LSPand DSP by eq. (12) to obtain the final
network consistency projection score matrix NCP;
9: return NCP.

Similarly, the projection of the disease similarity network
(denoted as matrix DS) on the lncRNA-disease association
probability network (denoted as matrix A) can be defined in
a similar way:

DSP(i, j) =
A(i, :)× DS(:, j)
|A(i, :)|

(11)

where DSP (i, j) is the projection score of DS (:, j) on A(i,:).
Finally, the lncRNA space projection score and the disease

space projection score can be integrated and normalized as
follows:

NCP(i, j) =
LSP(i, j)+ DSP(i, j)
|LS(i, :)| + |DS(:, j)|

(12)

where NCP is the final network consistency projection
score matrix, which quantifies the relevance between each
lncRNA-disease pair.

Algorithm 1 describes the implementation process of
NCPLDA for disease-lncRNA association prediction. MAT-
LAB code and datasets of NCPLDA can be accessed at
https://github.com/ghli16/NCPLDA.

III. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL SETTINGS
We conducted leave-one-out cross validation (LOOCV) to
evaluate and compare the predictive accuracy of NCPLDA
against other competitive methods, including SIMCLDA
[21], LRLSLDA [9], and RWRlncD [10]. In LOOCV, for
a given disease di, each labeled di-associated lncRNA is
selected in turn as the testing sample, while other labeled
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lncRNA-disease interactions are deemed as the training set.
All the unlabeled di-associated lncRNAs, including the test-
ing sample, comprise the candidate samples. After perform-
ing prediction, we ranked the association probability of the
testing sample with the other candidate samples to judge
whether the rank of the testing sample exceeded a given
threshold. After each known association has been tested,
the receiver operating characteristic (ROC) curve can be
obtained, which plots the true positive rate (TPR) versus the
false positive rate (FPR) at various cutoff points. From the
ROC curve, the area under the curve (AUC) can be used
to measure the overall performance of the model. Given
that the Gaussian interaction profile kernel similarity and
the association probability matrix are connected with known
lncRNA-disease interactions, they need to be recalculated in
each round of cross validation.

B. PARAMETER ANALYSIS
We investigated the impacts of the nearest neighbor number
K and the decay term T on the performance of NCPLDA,
where K and T range from 10 to 50 with step 10 and 0.1 to
0.9 with step 0.1, respectively. To search for proper values of
K and T , we performed cross validation experiments using
our three datasets. As shown in Fig. 2, the AUC scores for the
DS1 dataset were relatively robust for the change of K and T
values. For instance, the maximal and minimal AUC values
were 0.8900 and 0.8796 respectively. It means that there is
no significant difference between them. In general, the AUC
values just fluctuated within a 1.04% interval. Similar results
were obtained for the DS2 and DS3 datasets for all K and T ,
which are illustrated in Supplementary Figs. S1 and S2.

FIGURE 2. The effects of different values of K and T under the
DS1 dataset.

C. PERFORMANCE EVALUATION
To demonstrate the effectiveness of NCPLDA in predicting
disease-lncRNA interactions, we implemented three repre-
sentative methods (i.e., SIMCLDA, LRLSLDA, and RWRl-
ncD) using the same three datasets. Fig. 3 shows the ROC

FIGURE 3. Comparison of different prediction models using LOOCV under
the DS1 dataset.

curves for each method and reports their corresponding AUC
scores for the DS1 dataset. The ROC curve of NCPLDA
was clearly superior to those of the other methods in most
cases, and NCPLDA had the best AUC (0.8900) among the
approaches, whereas the AUCs of SIMCLDA, LRLSLDA,
and RWRlncDwere 0.8237, 0.6444, and 0.6886, respectively.
Additionally, for the DS2 dataset, NCPLDA almost always
achieved the highest TPR for the same FPR and obtained an
AUC value of 0.8996, which was better than those of the other
models (SIMCLDA: 0.8526; LRLSLDA: 0.6407; RWRlncD:
0.6803); the results are presented in Fig. 4. We also provide
the results for the DS3 dataset in Fig. 5. Consistent with
DS1 and DS2, NCPLDA yielded the highest AUC. The AUCs
obtained for NCPLDA were 4.34%, 17.12%, and 28.91%
higher than those obtained for SIMCLDA, LRLSLDA, and
RWRlncD, respectively. In conclusion, these experimental
results suggest that NCPLDA is an effective lncRNA-disease
interaction prediction tool.

FIGURE 4. Comparison of different prediction models using LOOCV under
the DS2 dataset.
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FIGURE 5. Comparison of different prediction models using LOOCV under
the DS3 dataset.

D. CASE STUDIES
Two different types of case studies, on prostate cancer and
ovarian cancer, were implemented to examine the practi-
cability of NCPLDA in predicting novel disease-lncRNA
interactions. For the first type of study, we used all known
disease-lncRNA associated pairs from the DS3 dataset as
training samples and selected the top 10 candidate lncRNAs
as prediction lists for each investigated disease. The predicted
associations were then checked by two other disease-lncRNA
association databases: MNDR [33] and Lnc2cancer [34].

We implemented NCPLDA for analysis of prostate cancer,
and 9 out of the top 10 predicted lncRNA candidates were
supported by either MNDR or Lnc2cancer (see Table 1).
For instance, H19 has been found to be expressed in lower
quantities in prostatic carcinoma cell lines (Du-145 and PC-
3) than in normal cell lines [35]. Besides, the only unsup-
ported lncRNA was BOK-AS1, which had been reported to
be associated with prostate cancer in the literature [36].

The top 10 ovarian cancer-associated candidates ranked
by NCPLDA and the corresponding evidence are illustrated
in Table 2. The results showed 8 of the top 10 potential
lncRNAs were found in public resources. As reported in [37],
lncRNA-HOTAIR plays a role in regulating cell invasion,
migration, and proliferation of ovarian cancer through pro-

TABLE 1. The top 10 lncRNA candidates predicted by NCPLDA for prostate
cancer.

TABLE 2. The top 10 lncRNA candidates predicted by NCPLDA for ovarian
cancer.

moting the expression of PIK3R3. Moreover, we found that
lncRNA-HOTAIR is also differentially expressed [38].

For the second type of study, we constructed the NCPLDA
model by eliminating all known association information of
the watched disease from the DS3 dataset and then used
the model to predict disease-lncRNA interactions. The top
10 predicted lncRNAs for prostate cancer and ovarian cancer
and the evidence supporting these candidates are described
in Table 3 and Table 4, respectively. As the results show, all
of the top 10 predictions for the two investigated diseases
were verified as true by the DS3 dataset and/or the other
two databases. Moreover, with all known disease-lncRNA
associations of each disease considered as positive samples,
NCPLDAwas used to predict its interactions and achieved an
average AUC score of 0.8951, suggesting that our method can
predict latent disease-lncRNA interactions for new diseases
with confidence.

TABLE 3. The top 10 lncRNA candidates predicted by NCPLDA for prostate
cancer by hiding all association information of the watched disease from
the DS3 dataset.

TABLE 4. The top 10 lncRNA candidates predicted by NCPLDA for ovarian
cancer by hiding all association information of the watched disease from
the DS3 dataset.
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IV. CONCLUSION
Exploring disease-lncRNA relationships is not only the key to
deciphering the mechanism of lncRNA-influencing diseases,
but it is also important for curing diseases. In this study, we
introduced a novel method, NCPLDA, for disease-lncRNA
interaction prediction based on network consistency projec-
tion. In NCPLDA, the lncRNA space projection score and
the disease space projection score were combined to com-
pute the relevance score of each candidate lncRNA-disease
pair. Compared with three previous methods, NCPLDA had
higher accuracy in terms of AUC for three tested datasets.
We also implemented two types of case studies, on prostate
cancer and ovarian cancer, and found that more than 80% of
lncRNA candidates in their top 10 predictions were validated
by previous experimental reports. These results imply that
NCPLDA is a promising tool for discoveringmore underlying
disease-lncRNA associations.

The good prediction performance obtained by NCPLDA
could be due to several reasons. First of all, we utilized
the nearest-neighbor information to construct an interme-
diate association probability matrix, which could fill the
incompleteness and sparsity of known associations. Sec-
ondly, NCPLDA could fully make use of the integrated sim-
ilarity data of both the diseases and the lncRNAs, which can
further enhance its detection results and make it applicable
to isolated nodes. In the end, NCPLDA could mine hidden
lncRNAs for all queried diseases on a large scale as a global
ranking model.

Despite the commendable results obtained by NCPLDA,
there are also several limitations that need to be further
investigated. For example, NCPLDA depends on the quality
of lncRNA-similarity and disease-similarity matrices. More
biological information about lncRNAs and disease, such as
gene-lncRNA and gene-disease interactions, could be inte-
grated to further expand the model. Furthermore, we simply
treated the disease space projection and the lncRNA space
projection as being of equal importance, which might not
be optimal. In addition, there are merely hundreds of known
available disease-lncRNA interactions. The prediction accu-
racy of NCPLDA could be further enhanced when more
experimentally verified relationships between diseases and
lncRNAs are confirmed.
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