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ABSTRACT The effective fault detection of wind turbines (WTs) can greatly help to improve their
availability and reduce their operation and maintenance costs. In this context, data-driven fault detection
approaches have attracted a lot of interests due to the availability of a large amount of monitoring sensor
data containing rich information related to health conditions of WTs. However, sensor data collected from
WTs are naturally multivariate and highly nonlinear correlated with redundant information and significantly
contaminated measurement noise, which makes the WT fault detection more challenging. To this end,
this paper develops a multivariate data-driven fault detection (MDFD) framework based on a recently
emerged neural network algorithm named denoising autoencoder (DAE). Instead of using a single fixed
noise level in the traditional DAE, a novel multi-level-denoising autoencoder (MLD-AE)method is proposed
to enhance the representation learning ability by designing different multi-level noise adding schemes. The
proposed MLD-AE could better discover useful patterns at multiple corrupted scales and capture nonlinear
dependencies from noisy multivariate sensor data, therefore robustly reconstruct the original signal with the
preserved largest information. The proposed framework and method are evaluated on both simulated data
from a generic 5 MWWT benchmark and SCADA data from a real wind farm. The results demonstrate that
our proposed MLD-AE-based fault detection approach significantly outperforms traditional DAE, AE, and
linear PCA approaches, which has great potentials for practical applications in the wind industry.

INDEX TERMS Wind turbines (WTs), fault detection, multivariate data-driven, denoising autoencoder
(DAE), multi-level-denoising autoencoder (MLD-AE).

I. INTRODUCTION
Nowadays, wind energy is experiencing a rapid growth
among various renewable energy sources worldwide, and
accordingly, wind turbines (WTs) have been widely stalled
onshore and offshore. Due to harsh working environments
and constantly changing loads and speeds, WTs are subject to
various faults/failures in sensors, actuators, and components,
thus resulting in unscheduled downtime and high mainte-
nance and operation O&Mcosts [1], [2]. Statistically, theWT
O&M costs account for 20-25% of the overall cost of power
generation. In order to reduce O&M costs and maximize the
uptime of WTs, it is highly desirable to develop advanced
fault detection systems to detect those possible faults as early
as possible. Early detection of failures can assist operators in
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wind farms to take proper actions in time to avoid secondary
damage and even catastrophic accidents, thus enabling better
maintenance planning and logistics.

In recent years, considerable efforts have been devoted
to the problem of condition monitoring and fault detection
of WTs and their subsystems or key components, including
sensors [3], bearings [4], [5], gearboxes [6], [7], and pitch
actuators [8], etc. Among them, vibration and lubrication
oil monitoring are two widely used ones. To effectively
and reliably detect mechanical faults from the complex raw
sensory signal, such as vibration signals, different signal
processing algorithms have been developed to extract fault
signatures [4], [9], [10] and finally identify and diagnose
faults. However, both techniques are sophisticated and expen-
sive due to the need of additional installation of sensors and
data acquisition hardware devices; furthermore, the inter-
pretation of the analysis results also require high-level
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knowledge about the monitored component. Alternatively,
Supervisory Control and Data Acquisition (SCADA) mon-
itoring has been considered as a cost-effective means [11]
for early warning of failures and performance issues since
no additional sensors and hardware devices are required,
and recently, it has attracted significant interest. Practically,
modern large-scale WTs have been equipped with a SCADA
system to record and collect the operation data and the status
data. Typically, these data include meteorological conditions
(e.g. wind speed, wind direction), bearing temperatures, pres-
sures, and power and electrical measurements [12], which
contain rich information concerning the health of the WT
and its key components or subsystems. The availability of a
large amount of historical operational data facilitates the wide
application of data-driven fault detection methods.

Practically, the operational condition of the turbine is mon-
itored mainly based on simple limit sensing. The method
determines the thresholds for each observation but ignores the
correlations among multiple measurements. Hence, it often
leads to false alarms or missed detections of faults. Indeed,
SCADA data are multivariate in nature and highly cor-
related due to the interaction and independence between
different subsystems in a WT. To address such an issue,
much effort has been expended to investigate the correlations
among the SCADA variables to develop efficient and reliable
monitoring techniques. One effective solution of the use of
SCADA data for condition monitoring is normal behavior
modeling. In literature, various machine learning and data
mining algorithms, like neural networks (NN) [13]–[15], sup-
port vector regression (SVR) [16], random forest (RF) [17],
long short-term memory network (LSTM) [18] and recently
emerged deep neural networks (DNN) [19], have been exten-
sively used to develop normal behavior models. Then, dif-
ferences between the estimated behavior and actual observed
behavior are used to identify the presence of potential faults.
These methods mainly focus on predicting a certain output
variable (e.g. gearbox bearing temperature, gearbox cooling
oil temperature, and the generator temperature), given one or
more input variables. Indeed, the health of a component or
subsystem will be related to multiple variables.

On the other hand, in order to deal with correlations hidden
in multiple sensor variables, multivariate static monitoring
approaches like principal component analysis (PCA) and
fisher discriminant analysis (FDA) have been applied for WT
monitoring [20], [21]. However, multivariate sensor data col-
lected from WTs are highly nonlinear correlated. Traditional
multivariate monitoring approaches like PCA and FDA based
on the assumption of linear process behavior may not be valid
in practical situations. Alternatively, autoencoder (AE), as a
powerful nonlinear modeling approach, has been proposed
for fault detection purpose. The AE is a special feedforward
neural network [22], which reproduces its input at the out-
put layer. It has been successfully applied to missing data
recovery [23], fault diagnosis in rotary machines [24], gas
turbines [25], and wind turbine blades [26]. A notable feature
of the AE approach is that it can learn arbitrary relationships

among different sensor variables in both linear and nonlinear
cases and therefore be more flexible than existing linear
monitoring methods. Notably, WTs are driven stochastically
by the wind and subject to various external disturbances, thus
resulting in more noise and variations of data, which will in
turn increase the difficulty to discover abnormal pattern from
noisy multivariate data. However, the existing PCA-based
and AE-based methods are often sensitive to the disturbances
and noise, thus leading to biased monitoring results. Recent
studies in the deep learning community have shown that
denoising autoencoder (DAE), a variant of the traditional
AE, can learn more robust representation and has improved
generalization capability [27], especially for noisy input data.
This good property of DAE is well suitable for dealing with
noisy multivariate sensor data measured fromWTs operating
in variable conditions [28]. This motivates us to develop a
new DAE-based fault detection system for WTs. It is well
known that DAE adopts a denoising training scheme to pro-
duce the learned representations robust to partial corruption
of the input pattern. However, during the training process
of DAE, only a single fixed noise level is used and keeps
unchanged, which can only capture partial information at a
single corrupted scale. In order to improve representation
learning ability of the traditional DAE, instead of using a
single noise level, a new multi-level noise adding scheme is
proposed to train the DAE model, with the aim to capture
more meaningful nonlinear representation from multivariate
noisy data and obtain robust signal reconstruction.

The contribution of this paper is two-fold. First, we propose
a new multi-level-denoising autoencoder (MLD-AE) algo-
rithm with two different multi-level noise adding schemes
to train the normal behavior model under a general multi-
variate data-driven fault detection (MDFD) framework. Com-
pared with the traditional DAE, the proposed MLD-AE will
discover more useful patterns and nonlinear dependencies
among multivariate noisy data, therefore could obtain robust
signal reconstruction for further fault detection purpose.
Second, we comprehensively evaluate the proposed algorithm
using a generic simulated benchmark model and practical
field measured SCADA data from a real wind farm. Specifi-
cally, we investigate the effects of several important parame-
ters in MLD-AE algorithms with two commonly used noise
types on detection performance, and conduct the comparative
study with other traditional approaches.

The rest of this paper is organized as follows. A new
MLD-AE approach is proposed in Section II. Then Section III
presents a generic multivariate data-driven fault detec-
tion (MDFD) framework for WT systems. Performance eval-
uation is carried out on simulated benchmark model and
real SCADA data in Section IV and Section V, respectively.
Finally, conclusions are drawn in Section VI.

II. MULTI-LEVEL-DENOISING AUTOENCODER
In this section, we propose a new MLD-AE algorithm to
learn robust representation from multivariate sensor data
while capture nonlinear correlations hidden among different
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sensor variables and result in more robust reconstruction, thus
enabling to perform the subsequent detection task. We start
by briefly describing the conventional DAE and point out its
limitations for data representation learning. Then, we present
our MLD-AE approach in detail.

A. BASIC DAE
DAE is a variation of conventional AE, which is trained
to reconstruct a data sample x ∈ Rm from its corrupted
version x̃ [27]. By doing so, it can prevent AE from just
simply learning an identity mapping between the input x and
the reconstructed output x̂, and therefore learn more robust
and informative representation from noisy data. It should
be noted that the corrupted input x̃ is typically drawn from
a conditional distribution p(x̃|x). Two common choices are
additive Gaussian (GS) noise and Zero-Masking (ZM) noise
where a fraction of input values are randomly forced to 0 [29].
The former one is a natural choice for real-valued inputs,
while the latter one can be viewed as turning off components
consideredmissing or replacing their value by a default value.
Both choices will be considered and compared in this study.

Specifically, like the conventional AE, DAE also consists
of an encoder process and a decoder process. The corrupted
input x̃ is first mapped to a hidden representation h ∈ Rl as (1)
by the nonlinear transformation between the input layer and
the hidden layer:

h = f (W1x̃ + b) (1)

where W1 ∈ Rl×m is the weight matrix and b ∈ Rl is
the bias vector. In this study, we use the sigmoid function
f (x) = 1/(1+ exp(−x)) for the nonlinear mapping purpose.
The hidden layer code h can be viewed as a compression of
input data with some information loss when number of hidden
units is less than the number of input units, and it can capture
the main variations in multivariate input data and eliminate
less important information through dimension reduction.

Then, the hidden representation h is mapped back to a
reconstruction output x̂ as (2) through the decoder:

x̂ = g(W2h+ c) (2)

where W2 ∈ Rm×l is the weight matrix, c ∈ Rm is the bias
vector, and g(·) is the sigmoid function. The training process
of DAE is to find optimal parameters θ = {W1,W2, b, c}
by minimizing the squared reconstruction error of the cost
function as follows:

L(x, x̃) =
n∑
i=1

‖xi − x̂i‖2 (3)

where n is the number of training data.

B. PROPOSED MLD-AE
As described in Section II-A, DAE is to be able to recon-
struct data from an input of corrupted data and force the
hidden layer to learn only the more robust features. Tradi-
tionally, a given input data will be stochastically corrupted

using a single predefined noise level. Also, the noise level
is kept fixed during the whole training process of DAE.
Recent stuides [6], [30] in the deep learning community with
classification tasks have shown that It should be noted that
different noise levels will affect the learned representations.
Specifically, for a high noise level, the input data will be more
heavily corrupted during training, and force the network to
learn coarse-grained features; whereas for a low noise level,
the inputs will be only slightly corrupted and thus the network
will be forced to learn fine-grained features. Motivated by
this, we attempt to design a new multi-level noise adding
scheme to enhance the representation learning capacity of the
traditional DAE. Instead of a single fixed noise level, multiple
different noise levels are used to train the autoencoder net-
work, thus enables to learn more general and detailed feature
patterns simultaneously at different scales from the original
input data.

In this study, we consider two different schemes to add
multiple noise levels. The first scheme is to train a single
DAE sequentially using decreasing noise levels, such that
υ0 > · · · > υT ≥ 0, where υ0 and υT are the initial noise
level and the final noise level, respectively. We call the first
schemeMLD-AE-S1. In the second scheme, we first corrupt
the original input dataX at different noise levels {υ0, · · · , υT }
to obtain the corrupted data {X̃υ0 , · · · , X̃υT }. Then we con-
catenate all corrupted inputs to obtain the augmented data
X̃new as the new input to train a single DAE. The second
scheme is called MLD-AE-S2. Both training schemes are
summarized in Algorithm 1 and Algorithm 2, respectively.
As is mentioned before, we will also investigate the effects of
two commonly used noise types, i.e., GS noise and ZM noise
on detection performance in Section IV and Section V.

C. MANIFOLD INTERPRETATION OF MLD-AE
As described in [27], DAE can be viewed as a way to
define and learn a manifold from the given data. Similarly,
we attempt to give a manifold interpretation of MLD-AE.
Different from DAE, in our proposed MLD-AE, the original
training samples are corrupted by using multiple different
noise levels, and thus will lead to different learned repre-
sentations containing partial information at different scales.
We take the Zero-Masking noise as an example for further
explanation. As shown in Figure 1, for a high level noise,
the model is forced to reconstruct the original data using
only few input variables; hence it learns only about manifold
around larger neighborhood of input, and captures the general
features about the input data. For a low level noise, the model
can reconstruct the original input more easily with more
input variables, and looks at smaller neighborhood around
manifold about the data to capture detailed features. There-
fore, the model trained with multiple noise levels can learn
and incorporate useful information at different scales about
the input data, thus enable to learn the manifold in a better
way than a single fixed noise level. Therefore, MLD-AE
has the more powerful ability to capture nonlinear hidden
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Algorithm 1MLD-AE Training Scheme I
1: procedure MLD-AE-S1(X , υ0,1υ, υT ,K )
2: X = [x1, x2, · · · , xn] ∈ Rm×n is the input matrix, in

which xi ∈ [0, 1]m(1 ≤ i ≤ m)
3: N is the number of epochs to be iterated
4: b is the number of batches
5: η is the learning rate
6: υ0 is the initial noise level
7: υT is the final noise level, υT < υ0
8: 1υ is the noise decreasing step size
9: K is the iteration steps on the noise level υt (0 < t <
T )

10: θ = {W1,W2, b, c} is the parameters of aDAE,where
W1 ∈ Rl×m,W2 ∈ Rm×l, b ∈ Rl, c ∈ Rm

11: # Train DAE using initial noise level υ0
12: for epoch i = 1 to N do
13: for mini-batch 1 to b do
14: X̃0 = getCorrupted (X , υ0) F The corruption

process can be GS or ZM
15: h = sigmoid(W1 ∗ X̃ + b)
16: X̂ = sigmoid(W2 ∗ h+ c)
17: L(X , X̂ ) =

∑
‖X − X̂‖2

18: θ = θ − η∂L/∂θ
19: end for
20: end for
21: # Continue to train using decreasing noise levels
22: for t in 1, · · · ,T do
23: υt := υt−1 −1υ

24: for 1 to K do
25: for mini-batch 1 to b do
26: X̃ = getCorrupted (X , υt )
27: Take steps (14)-(17)
28: end for
29: end for
30: end for
31: end procedure

correlations from multivariate noisy sensor data, and will be
used for buildingWT normal behavior models using SCADA
data in the following section.

III. MULTIVARIATE DATA-DRIVEN FAULT DETECTION
FRAMEWORK FOR WTs
The proposed generic MDFD framework for WTs is illus-
trated in Figure 2, where the MLD-AE approach described
in Section II is used for normal behavior modeling using
normal data collected fromWTs. Themain idea of this frame-
work is based on the evaluation of the reconstruction error
between the actual signal values and the reconstructed values
from well-trained normal behavior model. The changes of
the reconstruction error will give an indication of possi-
ble faults. Usually, normal test samples will produce a low
reconstruction error since they can well satisfy the learned

Algorithm 2MLD-AE Training Scheme II
1: procedure MLD-AE-S2(X , υ0,1υ, υT )
2: X , υ0, υ0,1υ are same as ones inMLD-AE-S1
3: for epoch i = 1 to N do
4: for mini-batch 1 to b do
5: X̃0 = getCorrupted (X , υ0)
6: for t = 1 to T do
7: υt := υt−1 −1υ

8: X̃t = getCorrupted (X , υt )
9: end for
10: X̃new = [X̃0, · · · , X̃T ] ∈ Rn(T+1)×m

F

Concatenate all corrupted inputs on different noise levels
11: h = sigmoid(W1 ∗ X̃new + b)
12: X̂ = sigmoid(W2 ∗ h+ c)
13: L(X , X̂ ) =

∑
‖X − X̂‖2

14: θ = θ − η∂L/∂θ
15: end for
16: end for
17: end procedure

FIGURE 1. Manifold of data under different noise levels. Suppose training
data x concentrate near a low-dimensional manifold (black line), and
then the corrupted examples x̃ using different noise levels corresponding
to different circles will lie farther from the manifold. These corrupted
ones will be learned and projected back onto the manifold.

normal model; whereas the faulty samples will produce a
high reconstruction error and therefore be identified as faults.
As shown in Figure 2, the proposed MDFD framework
mainly consists of two phases: offline training phase and
online detection phase. The normal behavior model is built
based on our proposed MLD-AE approach in the offline
training phase, and the corresponding fault indicator and the
detection threshold are calculated. During the online detec-
tion phase, the online fault indicator of a newly collected data
sample is calculated and then compared with the detection
threshold to determine whether a fault occurs. A fault alarm
will be then triggered when the testing fault indicator exceeds
a predefined threshold.

A. OFFLINE TRAINING PHASE
Let X = [x1, x2, · · · , xn] ∈ Rm×n be the collected sensor
data from a WT, where n denotes the number of data samples
and m is the number of sensor variables. These variables
are highly correlated due to their inherent nonlinear dynam-
ics and interactions among multiple components of the WT
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FIGURE 2. Designed multivariate data-driven fault detection framework for WTs with offline training phase and online detection phase. A normal
behavior model based on the proposed MLD-AE is trained offline with corrupted normal data X̃ , and then the learned model is used to calculate
the residual eM between a new coming data sample xM and its corresponding reconstructed signal x̂M for online fault detection.

system and more importantly, are redundant due to similar
sensor locations.

1) NORMAL BEHAVIOR MODELING
In practice, normal data are much more easily obtained
than faulty data due to WTs are mostly operating under
normal conditions. Therefore, in this study, we focus on
building normal behavior model using historical data under
normal operating conditions ofWTs. As is mentioned before,
SCADA data are usually nonlinear correlated with significant
measurement noises. In order to learn the relations among
different sensor variables and capture data structure hidden in
multivariate sensor data, in this paper, the proposedMLD-AE
approach is adopted for data analysis and modeling. It should
be noted that during the training phase, normal data are gener-
ally unlabeled, and therefore it can be considered as an unsu-
pervised learningmethod. Amajor advantage of using normal
behavior models is that no prior knowledge about the signal
behavior is required. Specifically, MLD-AE-S1 and MLD-
AE-S2 described in Section II-B are considered to learn two
important weight matrices W1 between the input layer and
the hidden layer and W2 connecting the hidden layer and the
output layer from the corrupted input X̃ with multiple noise
levels. Thus, the learned relations are embedded in learned
weight metrics and bias vectors, which can be further used to
perform the reconstruction of new data samples during online
detection phase.

2) FAULT INDICATOR CALCULATION
Once the trained normal behavior model is trained,
we can calculate the residuals E as the difference between

the training inputs and the reconstructed outputs as
follows:

E = X̂ − X (4)

Then, the fault indicator h of kth sample is calculated by
using Mahalanobis distance (MD) as follows:

hk =
√
(Ek − µ)C−1(Ek − µ)T (5)

where µ = [µ1, µ2, · · · , µm] is the vector of mean values
andC is the covariancematrix both obtained from the training
set. MD is an effective metric for multivariate problems with
interaction effects among large numbers of variables, and can
give a univariate distance value for the residual vector E.

However, considering that both the sample mean and the
sample covariance are sensible to the presence of outliers,
in this study, we use robust mahalanobis distance (RMD) [31]
[32] to calculate the fault indicator, which is defined as:

hk =
√
(Ek − µ̂)MCD−1(Ek − µ̂)T (6)

where µ̂ is the robust measure of central tendency (the
median) and MCD−1 is the inverse covariance matrix cal-
culated from the sample population through the minimum
covariance determinant estimator.

3) DETECTION THRESHOLD DETERMINATION
The threshold is determined by the distribution of the fault
indicator h. Because h does not follow the Gaussian distri-
bution, we use the kernel density estimation (KDE) [33] to
calculate the threshold from the estimated probability density
function.
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FIGURE 3. Block diagram of wind turbine benchmark model.

Assuming a set of data points xk , k = 1, 2, · · · ,N ,
the KDE at point x is defined as:

p(x) =
1
Nσ

N∑
k=1

K (
x − xk
σ

) (7)

where K (·) is the kernel function, and σ is the bandwidth.
In this paper, the Gaussian kernel presented in (8) is used.

K (g) =
e
−

g2

2
√
2π

(8)

Then, the detection threshold d with a given confidence
level α is formulated as:

P(x < d) =
∫ d

−∞

p(x)dx = α (9)

B. ONLINE DETECTION PHASE
During this phase, the new online monitoring samples will be
tested to identify the faults based on the well trained normal
behavior model and the predetermined threshold obtained in
the offline training phase.

For a new incoming sample xM ∈ Rm, we first calculate the
model estimated output x̂M ∈ Rm using the learned weight
matrices W1 ∈ Rl×m and W2 ∈ Rm×l (l is the number of
hidden units) obtained from offline training phase as:

x̂M = g(W2f (W1xM + b)+ c) (10)

where f (·) and g(·) are activation function, b ∈ Rl and c ∈ Rm

are learned bias vector.
And then the residual eM between the actual measurement

values and the estimated values can be represented as:

eM = xM − x̂M (11)

Finally, the detection indicator hM is calculated as:

hM =
√
(eM − µ̂)MCD−1(eM − µ̂)T (12)

Using hM as the test statistic, a fault is detected if hM > d .
The detection result can be used as decision support to adjust
the turbine operation and maintenance accordingly.

C. PERFORMANCE METRICS
For performance evaluation and comparison, the well-
established Area Under the Receiver Operating Characteris-
tic (ROC) Curve (i.e., AUC) [34] is used in this study. The
AUC is a comprehensive metric to evaluate the performance
of fault detectors considering fault detection rate (FDR) and
false alarm rate (FAR) under different confidence levels. FDR
is defined as the percentage of fault samples detected over
the fault period and FAR is the percentage of falsely iden-
tified fault samples over the normal operation period [28].
A good fault detection method will yield a high FDR while
a low FAR. The AUC metric can provide a relative tradeoff
between FDR and FAR. Generally, an AUC value close to one
indicates an excellent performance of the detector, whereas an
AUC equal to 0.5 indicates that the detector has no discrimi-
native ability.

IV. CASE STUDY I: BENCHMARK SIMULATIONS
In this section, we evaluate our proposed MLD-AE algo-
rithms for fault detection on a generic WT benchmark model.

A. BENCHMARK DESCRIPTION
Figure 3 shows the block diagram of the WT benchmark
model. It models an offshore 5-MW three-bladed horizontal
axis WT built upon fatigue, aerodynamics, structures, and
turbulence (FAST) aeroelastic simulator. The model is driven
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TABLE 1. Available sensor measurements in advanced benchmark.

by the stochastic wind input and controlled in closed-loop
with PI controllers. More detailed descriptions of the WT
benchmark model can be found in [35].

In the benchmark model, a total of m = 15 sensor
measurements are collected as listed in Table 1, where each
measurement is added with a band-limited Gaussian white
noise [35]. In this paper, we consider typical 5 fault scenarios
including both sensor faults and actuator faults, as listed
in Table 2. For each fault scenario simulation, the system
begins to operate in normal conditions for 30 s, and then the
fault is introduced and last for 20 s and finally cleared. Each
fault scenario corresponds to an individual simulation. There
are total 5 testing data sets corresponding to 5 fault scenarios.
Each set contains both 2400 normal samples and 1600 fault
samples, and all sets are tested for online fault detection.
In addition, we generate 8000 normal samples as the training
data used in the offline training phase. Note that the reported
detection performances below are obtained from the average
of 20 independent experiments to reduce the effects of the
randomness.

B. PARAMETERS SETUP
For all model training, we use the stochastic gradient descent
with a momentum for network optimization. We choose
8 hidden units to perform compressed representation learn-
ing. The learning rate and the momentum are set to 0.1 and
0.5, respectively. In order to speed up the training process,
we split the training set into mini-batches to update the net-
work weights, and the mini-batch size is 1000. The number
of epochs during the training process is chosen as 3000. For
all training data, each variable is linearly scaled to the range
[0,1]. Accordingly, the testing data is rescaled according to
the maximum and the minimum value of the training data,
thus ensuring both data sets in the similar range. For DAE
andMLD-AE, the hyperparameters (e.g. noise levelυ) will be
investigated in the following subsections. For online testing,
different confidence levels are set in the range [0, 1] with a
step size of 0.01 to calculate the AUC values.

C. ANALYSIS OF PARAMETERS IN MLD-AE
First, we examine the effects of different combinations
of the initial noise level υ0 and the final noise level υT .

FIGURE 4. Parameters effects of initial noise level υ0 and final noise level
υT for MLD-AE-S1 with Zero-Masking noise evaluated on F5 testing
dataset. The horizontal and vertical axis represent the initial noise level
υ0 and final noise level υT , respectively. Note that the bottom row
corresponds to AUC values using DAE with different noise levels, and the
initial noise level υ0 = 0 corresponds to the traditional AE.

FIGURE 5. Parameters effects of 1υ and K for MLD-AE-S1 with
Zero-Masking noise on detection performance evaluated on F5 testing
dataset.

We considered υ0 ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9},
and the corresponding υT (υT < υ0) can be chosen from
the range [0,0.8]. The smallest possible final noise level is 0,
which means no noise is added. The iteration steps K = 500
and the noise decreasing step size 1υ = 0.05 in Algo-
rithm 1 are used in this study. Figure 4 shows the evaluation
results on F5 testing dataset (i.e., converter actuator fault)
using MLD-AE-S1 with ZM noise. Clearly, for DAE, we can
see that as the noise level υ increases, AUC value will first
increase and then decrease from the noise level υ = 0.2. This
means that DAE achieves the best performance at the lower
noise level υ = 0.2. But the performance of DAE always
outperforms that of traditional AE under all noise levels.

From Figure 4, we can see that the MLD-AE-S1 yields
better performance in terms of AUC than the DAE. It is
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TABLE 2. Fault scenarios considered in the advanced benchmark.

FIGURE 6. Comparison with different methods for testing datasets: (a) F1; (b) F2; (c) F3; (d) F4; (e) F5. Note that υ0 = 0 corresponds to
traditional AE.

observed from each column in this figure that our proposed
MLD-AE algorithm using multiple noise levels obtains larger
AUC value than DAE only using a single fixed noise level.
The largest AUC values is over 0.9, which demonstrates the
effectiveness of our proposed method. Particularly, for MLD-
AE-S1, it can be observed that when the final noise level
υT is greater than the optimal noise level achieved by DAE,
the performance will degrade. Besides, for all choices of
the initial noise level υ0, MLD-AE-S1 exhibits stable AUC
values as long as the final noise level is not below the optimal
noise level for DAE, which suggests MLD-AE-S1 is robust
to the initial noise level υ0.
Second, we investigate the effects of the parameters

(1υ,K ), and the corresponding results evaluated on the
F5 testing dataset are shown in Figure 5. Clearly, for all
choices of (1υ,K ), MLD-AE-S1 obtains the relative consis-
tent AUC value, when the initial noise level υ0 is greater than
0.3. The result indicates our proposed MLD-AE-S1 method
is robust to the parameters (υ0,1υ,K ) at higher initial noise
levels. Note that for MLD-AE-S2, similar results have also
been obtained.

D. PERFORMANCE COMPARISON
We evaluate the performance of our proposed MLD-AE-
S1 and MLD-AE-S2 algorithms with ZM noise and GS

noise, as well as the traditional DAE on all fault scenar-
ios as listed in Table 2, and the corresponding results are
shown in Figure 6, where AUC values for each method
are calculated under different initial noise levels. Corre-
spondingly, the best performance results for DAE and four
MLD-AE methods are summarized in Table 3, where opti-
mal noise parameters are presented in parentheses. The
results obtained with the PCA method are also provided
for comparison. For each fault scenario, the best perfor-
mance among the considered methods has been highlighted
in bold.

From Figure 6 and Table 3, it is clearly found that all
four MLD-AE algorithms always perform better than DAE
regardless of noise types and noise adding schemes, with the
increase of the initial noise level υ0. The significant improve-
ment of detection performance can be observed in the cases of
F3, F4 and F5, which are more difficult to detect compared to
the scaling sensor fault (F1) and stuck sensor fault (F2). In the
cases of F1 and F2, the stable performances are achieved
when the initial noise level υ0 > 0.2. Meanwhile, it can be
found thatMLD-AE-S1 can obtainmore stable and consistent
performance at higher noise levels for most of the cases. This
reduces the requirements on the choice of the initial noise
levels. We also observe that MLD-AE-S1 with the ZM noise
outperforms that with the GS noise.
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TABLE 3. Comparative results on benchmark model in terms of AUC values.

FIGURE 7. Schematic diagram of a real WT.

To check more details on fault detection performance of
the proposed method, we calculate both metrics of FDR and
FAR for all five fault cases with different detection methods,
and the comparative results ares listed in Table 4, where the
confidence level α for detection calculation is set to 0.95. For
all cases, our proposed MLD-AE methods achieved larger
FDR values and smaller FAR values than traditional methods
of DAE, AE and PCA, especially for the cases of F3, F4, and
F5. This further demonstrates the superiority of the proposed
method.

V. CASE STUDY II: REAL SCADA DATA
In this section, the proposed method is further evaluated by
using SCADA data collected from a real operational wind
farm in Inner Mongolia in China. The wind farm includes
over 100 variable-speed pitch-controlled WTs with a multi-
stage gearbox and a doubly-fed induction generator. Figure 7
shows the structure sketch of a WT. All turbines are equipped
with the standard SCADA system to monitor and control the
operational status of turbines. The SCADA data are collected
at 30-s intervals and mainly consists of over 100 readings,
including temperatures, pressures, vibrations, power outputs,
wind speed and digital controls. In this case study, similar
to benchmark models described in IV, we select relevant
11 sensor variables for fault detection performance evaluation
as listed in Table 5. According to themaintenance documents,
two different fault scenarios occurred in different turbines are

FIGURE 8. Performance comparison for two different fault scenarios
(a) T1; (b) T2.

considered and the detailed information about these two faults
are listed in Table 6.

A. DATA PREPROCESSING
Practically, there are usually some bad data in the historical
operational SCADA data, including outlier points and invalid
values, maybe due to acquisition errors, communication prob-
lems or other issues. Additionally, there exist some gaps with
no power generation when a WT is inactive during periods of
lower and higher wind speeds, and due to the occurrence of
downtime andmaintenance periods. Therefore, it is necessary
to remove these bad data and gaps prior to model training.
Eventually, only those data under generating power condition
of WTs are retained.
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TABLE 4. Comparative results on benchmark model in terms of FDR and FAR.

FIGURE 9. Performance comparison on drive train vibation anomaly detection using (a) PCA; (b) AE; (c) DAE(ZM); (d) MLD-AE-S1 (ZM).

TABLE 5. SCADA variables used in this study.

Then, the training and testing datasets are chosen from the
preprocessed SCADA data, where the training set contains
8000 normal samples and the testing set contains 2000 normal
samples and 2000 fault samples. All data are also linearly
scaled to the range to [0,1] before model training to ensure
that all sensor variables lies in a similar range.

TABLE 6. Fault Scenarios considered on SCADA Data.

B. RESULTS ANALYSIS
The performance evaluation results for two considered
fault scenarios using different methods are presented in
Figure 8. Table 7 summarizes the best performance of DAE
and MLD-AE methods on optimal noise level parameters.
Clearly, our proposed MLD-AE algorithms generally out-
perform the traditional DAE, AE and linear PCA methods.
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TABLE 7. Comparative results on SCADA Data in terms of AUC.

Specifically, DAE with the ZM noise exhibits better perfor-
mance than DAE with the GS noise, and the latter shows
the significant performance degradation and bigger variations
at higher noise levels. The main reason is that adding high
level Gaussian noise will mask useful information contained
in original data, thus affecting detection results. In contrast,
the MLD-AE method presents relatively consistent detection
performance for two fault scenarios.

Furthermore, it can be seen from Table 7 that the first
fault scenario is more easily detected with the AUC value
of 1 for all DAE-based and MLD-AE methods. This means
the pitch system fault can be successfully detected with
no false alarms. For the second fault case, all DAE-based
and MLD-AE methods obtain the large FAR values of over
0.99 and significantly outperformed traditional AE and PCA
methods. In order to further check that whether the proposed
method can detect the fault start point and the fault end
point, we calculate the fault indicators of the testing data
covering the fault period of drive train vibration anomaly
listed in Table 6, and the comparative results obtained using
four representative methods are given in Figure 9. In this
figure, the detection threshold is determined with the confi-
dence level α = 0.95. From Figure 9, the DAE-based and
MLD-AE-based methods accurately identify the fault start
point and the fault end point, and during the fault period,
the fault indicators exceed the detection thresholds, suggest-
ing a large FDR value. Compared with MLD-AE, the AE
produces a small number of missed detections. Notably, both
AE and PCA methods performed worse with a large number
of missed detections during the fault period, and even worse,
they cannot detect the occurrence of the fault in time. This
result further demonstrate the superiority of the proposed
method.

VI. CONCLUSIONS
This paper presented a general multivariate data-driven fault
detection framework for WTs based on nonlinear autoen-
coder neural networks. The proposed framework offline
builds a normal behavior model using multivariate normal
data, and then online identifies potential faults by comparing
fault indicators derived from residuals. In this framework,
a new MLD-AE method was proposed to discover more
useful patterns and capture nonlinear dependencies from
multivariate noisy sensor data. Compared with traditional
approaches, such as DAE,AE and PCA, our proposedmethod
achieved better fault detection performance in terms of AUC,
FDR and FAR on both simulated and real case studies.
In addition, our proposed method can more accurately and
timely the fault occurrence with a larger FDR and a smaller
FAR, which has great potentials for practical applications.
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